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1. Introduction

As is known now, the Moore-smith convergence theory plays an im-
portant role in general topology, it not only is an significantly basic the-
ory of fuzzy topology and fuzzy analysis but also has wide applications in
fuzzy inference and some other aspects. In [18], Pu and Liu introduced
the concept of Q-neighborhoods and established a systematic Moore-Smith
convergence theory of fuzzy nets in [0,1]-topology. It paved a new way for
the study of the fuzzy topology. Wang extended this theory to L-fuzzy set
theory in [22]. Later on, all kinds of convergence theory were presented
[2, 3, 4, 7, 8, 9, 12, 14]. In [19], Shi introduced the O-convergence theory
of nets in terms of neighborhoods of fuzzy points in L-space. It overcomes
the difficulty which the neighborhood method meets.

In this paper, our aim is to introduce the theory of OR-convergence and
weak OR-convergence of nets in L-spaces based on Shi’s O-convergence.
We shall discuss its properties and use them to characterize preclosed sets,
preopen sets, δ-closed sets, δ-open sets, near compactness and near S∗-
compactness.

2. Preliminaries

Throughout this paper (L,
W
,
V
,0 ) is a completely distributive de Mor-

gan algebra. X a nonempty set. LX is the set of all L-fuzzy sets (or L-sets
for short) on X. The smallest element and the largest element in LX are
denoted by 0 and 1.

An element a in L is called prime if a ≥ b ∧ c implies that a ≥ b or
a ≥ c. An element a in L is called co-prime if a0 is a prime element [13].
The set of nonunit prime elements in L is denoted by P (L). The set of
nonzero co-prime elements in L is denoted by M(L). The set of nonzero
co-prime elements in LX is denoted by M(LX). Members in M(LX) are
also called points.

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b
if and only if for every subset D ≤ L, the relation b supD always implies
that the existence of d ∈ D with ad [10]. In a completely distributive de
Morgan algebra L, each member b is a sup of {a ∈ L | a ≺ b}. In the
sense of [15, 23], {a ∈ L | a ≺ b} is the greatest minimal family of b, in
symbol β(b). Moreover for b ∈ L, define α(b) = {a ∈ L | a0 ≺ b0} and
α∗(b) = α(b) ∩ P (L).

For an L-set G ∈ LX , β(G) denotes the greatest minimal family of G
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and β∗(G) = β(G)
T
M(LX).

An L-topological space (or L-space for short) is a pair (X, T ), where T
is a subfamily of LX which contains 0, 1 and is closed for any suprema and
finite infima. T is called an L-topology on X. Each member of T is called
an open L-set and its quasi-complement is called a closed L-set.
Definition 2.1. Let (X, T ) be an L-space. A ∈ LX is called

(1) regularly open [1] if A−◦ = A, the complement of a regularly open
set is called regularly closed;

(2) β-open [16] if AA−◦−, the complement of a β-open set is called
β-closed;

(3) preopen [16] if AA−◦, the complement of a preopen set is called
preclosed. If A is not only preopen, but also preclosed, then we call it
preclopen.

Definition 2.2 ([19]). xλ ∈ M(LX) is said to be quasi-coincident with
B ∈ LX if xλ 6≤ B0.

Definition 2.3 ([19]). An (a regularly open, preopen, δ-open, etc.) open
L-set U is called an (a regularly open, preopen, δ-open, etc.)open neigh-
borhood of xλ ∈ M(LX) if XλU . All (regularly open, preopen, δ-open,
etc.)open neighborhoods of xλ are denoted by (N ◦

R(xλ), N ◦
P (xλ), N ◦

δ (xλ)
)N◦(xλ).

Definition 2.4 ([20]). Let (X,T ) be an L-space. An (a regularly open,
preopen, δ-open, etc.)open L-set U is called a strongly (regularly open, pre-
open, δ-open, etc.)open neighborhood of a fuzzy point xλ, if λ ∈ β (U(x)).

Definition 2.5. Let (X,T1) and (Y, T2) be two L-spaces. A map f :
(X,T1) → (Y, T2) is called (1) almost continuous [1] if f

←
L (G) ∈ T1 for

all regularly open L-set G in (Y, T2); (2) completely continuous [5, 17] if
f←L (G) is regularly open L-set in (X,T1) for each G ∈ T2; (3) R-irresolute
[21] if f←L (G) is regularly closed in (X,T1) for each regularly closed L-set
G in (Y, T2); (4) δ-continuous [11] if f

←
L (G) is δ-open in (X,T1) for each

regularly open L-set G in (Y, T2).

Definition 2.6 ([19]). A net S with index setD is also denoted by {S(n) |
n ∈ D} or {S(n)}n∈D. For G ∈ LX , a net S is said to quasi-coincide with
G if ∀n ∈ D,S(n) 6≤ G0.

Definition 2.7 ([19, 22]). Let α ∈M(L). A net {s(n) | n ∈ D} in LX is
called an α−-net if there exists n0 ∈ D such that ∀nn0, V (S(n))α, where
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V (S(n)) denotes the height of S(n). A net {S(n)}n∈D in LX is said to be
a constant α-net if the height of each S(n) is a constant value α.

Definition 2.8 ([19, 22]). Let {S(n) | n ∈ D} be a net in (X,T ), xλ ∈
M(LX). S eventually possesses the property P, if there exists n0 ∈ D such
that ∀n ≥ n0, S(n) always possesses the property P. S frequently possesses
the property P, if for every n ∈ D, there always exists n0 ∈ D such that
n0 ≥ n and S(n0) possesses the property P.

Definition 2.9 ([19]). xλ is an O-cluster point of S, if ∀U ∈ N◦(xλ), S
is frequently in U . xλ is an O-limit point of S, if ∀U ∈ N◦(xλ), S is
eventually in U , in this case we also say that S O-converges to xλ, denoted

by S
O−→ xλ.

Definition 2.10 ([20]). Let (X,T ) be an L-space, a ∈M(L) andG ∈ LX .
A subfamily U of LX is called a βa-cover of G if for any x ∈ X with
a /∈ β(G0(x)), there exists an A ∈ U such that a ∈ β(A(x)). A βa-cover U
of G is called open(regularly open, etc.) βa-cover of G if each member of
U is open (regularly open, etc.).

It is obvious that U is a βa-cover of G if and only if for any x ∈ X it

follows that a ∈ β

Ã
G0(x) ∨ W

A∈U
A(x)

!
.

Definition 2.11 ([20]). Let (X,T ) be an L-space, a ∈M(L) andG ∈ LX .
A subfamily U of LX is called a Qa-cover of G if for any x ∈ X with
G(x) 6≤ a0, it follows that

W
A∈U

A(x) ≥ a. A Qa-cover U of G is called open

(regularly open, etc.) Qa-cover of G if each member of U is open (regularly
open, etc.).

Definition 2.12 ([21]). Let (X,T ) be an L-space. G ∈ LX is called
nearly compact if for every family U ≤ T , it follows that

^
x∈X

Ã
G0(x) ∨

_
A∈U

A(x)

! _
V ∈2(U)

^
x∈X

Ã
G0(x) ∨

_
A∈V

A−◦(x)

!
.

Lemma 2.13 ([21]). Let (X,T ) be an L-space and G ∈ LX . Then G is
nearly compact if and only if for any a ∈ M(L) and any b ∈ β∗(a), each
open Qa-cover of G has a finite subfamily V such that V −◦ is a Qb-cover
of G.
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Definition 2.14. Let (X,T ) be an L-space and G ∈ LX . Then G is called
nearly S∗-compact if for any a ∈M(L), each open βa-cover of G has a finite
subfamily V such that V −◦ = {A−◦ | A ∈ V } is a Qa-cover of G. (X,T ) is
said to be nearly S∗-compact if 1 is nearly S∗-compact.

For the sake of convenience, we introduced the following concept.

Definition 2.15. Let A ∈ LX . clδ(A) =
V{V | AV ◦−, V ∈ T 0} is called

δ-closure of A. The δ-interior of A, written as intδ(A), is defined to be
clδ(A

0)0.

It can be proved that Definition 2.15 is equivalent to the notion of δ-
closure in [11] when L = [0, 1].

Obviously we have the following theorem.

Lemma 2.16. For each A ∈ LX , clδ(A) ∈ T 0 and intδ(A) ∈ T .

Lemma 2.17. LetA ∈ LX , then clδ(A) =
V{V | AV, V is regularly closed}.

Lemma 2.18. Let A ∈ LX , then A−clδ(A) and intδ(A)A
◦.

Lemma 2.19. If A is β-open, then A− = clδ(A); If A is β-closed, then
A◦ = intδ(A).

Definition 2.20. An L-set G is called δ-closed if A = clδ(A); The com-
plement of a δ-closed set is called δ-open.

Lemma 2.21. Each regular open L-set is δ-open and each regular closed
L-set is δ-closed.

3. OR-convergence and weak OR-convergence of nets

Definition 3.1. xλ ∈ M(LX) is said to be weak quasi-coincident with
B ∈ LX if λ /∈ β(B0(x)).

Definition 3.2. Let (X,T ) be an L-space, xλ ∈ M(LX) and S = {S(n) |
n ∈ D} a net in LX . Then

(1) xλ is an OR-cluster point of S, if ∀U ∈ N◦(xλ), S is frequently in
U−◦.

(2) xλ is an OR-limit point of S, if ∀U ∈ N◦(xλ), S is eventually in U−◦,

in this case we also say that S OR-converges to xλ, denoted by S
OR−→ xλ.
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Definition 3.3. Let {S(n) | n ∈ D} be a net in (X,T ), xλ ∈M(LX). xλ is
called a weak OR-cluster point of S, if for each strongly open neighborhood
U of xλ, S is frequently in U−◦. xλ is called a weak OR-limit point of S, if
for each strongly open neighborhood U of xλ, S is eventually in U

−◦, in this

case, we also say that S weakly OR-converges to xλ, denoted by S
WOR−→ xλ.

Theorem 3.4. Let S be a net in (X,T ) and xλ ∈ M(LX). Then the
following conditions are equivalent.

(1) xλ is an OR-cluster point of S.
(2) ∀U ∈ N◦

P (xλ), S is frequently in U−◦.
(3) ∀U ∈ N◦

R(xλ), S is frequently in U .

Proof. (1) ⇒ (2) Suppose that xλ is an OR-cluster point of S. If
U ∈ N◦

P (xλ), then U−◦ ∈ N◦(xλ). By the hypothesis of (1) S is frequently
in U−◦−◦. S is frequently in U−◦ since U−◦−◦U−◦.

(2) ⇒ (3) is obvious.
(3) ⇒ (1) Suppose that the given condition hold for a net S and let

U ∈ N◦(xλ), then U−◦ ∈ N◦
R(xλ). By the hypothesis of (3) S is frequently

in U−◦. Therefore xλ is an OR-cluster point of S. 2
Analogous to the proof of Theorem 3.4 we can easily obtain the following

result.

Theorem 3.5. Let S be a net in (X,T ) and xλ ∈ M(LX). Then the
following conditions are equivalent.

(1) xλ is an OR-limit point of S.
(2) ∀U ∈ N◦

P (xλ), S is eventually in U−◦.
(3) ∀U ∈ N◦

R(xλ), S is eventually in U .

For weak OR-convergence, we have same conclusions as Theorem 3.4
and Theorem 3.5. We omit them.

Theorem 3.6. Let S be a net in (X,T ) and xλ ∈M(LX). Then
(1) xλ is a weak OR-cluster point of S if and only if for each strongly

δ-open neighborhood U of xλ, S is frequently in U .
(2) xλ is a weak OR-limit point of S if and only if for each strongly

δ-open neighborhood U of xλ, S is eventually in U .

Proof. (1) Sufficiency. Suppose that U is a strongly open neighborhood
of xλ, then U

−◦ is a strongly δ-open neighborhood of xλ. By the hypothesis,
S is frequently in U−◦. Therefore xλ is a weak OR-cluster point of S.
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Necessity. Suppose that xλ is a weak OR-cluster point of S and U is
a strongly δ-open neighborhood of xλ. Then there exists a regularly open
L-set C such that CU and xλ ∈ β(C) since

xλ ∈ β(U) = β (
W{C | CU,C is regularly open})

=
S{β(C) | CU,C is regularly open}.

By the hypothesis, S is frequently in CU .

(2) This is analogous to the proof of (1). 2

It is easy to prove the following theorem.

Theorem 3.7. Let S be a net in (X,T ), T a subnet of S and xλ, xμ ∈
M(LX). Then

(1) S
O−→ xλ implies that S

OR−→ xλ;

(2) S
OR−→ xλ implies that S

WOR−→ xλ;

(3) S
OR−→ xλ implies that xλ is an OR-cluster point of S;

(4) S
WOR−→ xλ implies that xλ is a weak OR-cluster point of S;

(5) xλ is an O-cluster point of S implies that xλ is an OR-cluster point
of S;

(6) xλ is an OR-cluster point of S implies that xλ is a weak OR-cluster
point of S;

(7) If xλxμ and xλ is an OR-cluster point of S, then xμ is also an
OR-cluster point of S;

(8) S
OR−→ xλxμ ⇒ S

OR−→ xμ;

(9) If xλxμ and xλ is a weak OR-cluster point of S, then xμ is also a
weak OR-cluster point of S;

(10) S
WOR−→ xλxμ ⇒ S

WOR−→ xμ;

(11) S
OR−→ xλ ⇒ T

OR−→ xλ;

(12) S
WOR−→ xλ ⇒ T

WOR−→ xλ;

(13) xλ is an OR-cluster point of T implies that xλ is an OR-cluster
point of S;

(14) xλ is a weak OR-cluster point of T implies that xλ is a weak OR-
cluster point of S;

(15) xλ is an OR-cluster point of S if and only if S has a subnet R such

that R
OR−→ xλ.

(16) xλ is a weak OR-cluster point of S if and only if S has a subnet R

such that R
WOR−→ xλ.
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Theorem 3.8. Let xλ ∈M(LX), B be β-open. Then the following condi-
tions are equivalent.

(1) xλ quasi-coincides with B−.

(2) There exists a net S quasi-coinciding with B such that S
OR−→ xλ.

(3) There exists a net S quasi-coinciding with B such that xλ is an
OR-cluster point of S.

Proof. (1) ⇒ (2) Suppose that xλ quasi-coincides with B−. Then ∀U ∈
N◦
R(xλ), U 6≤ B−

0
, i.e., B−U 0. Hence B 6≤ U 0. This implies that U 6≤ B0.

Take S(U) ∈ M(LX) such that S(U)U , S(U) 6≤ B0. We obtain a net
{S(U) | U ∈ N◦

R(xλ)} OR-converging to xλ and it quasi-coincides with B.
(2) ⇒ (3) is obvious by Theorem 3.7(3).
(3) ⇒ (1) Let {S(n)}n∈D be a net quasi-coinciding with B and xλ is

an OR-cluster point of S. If xλ(B
−)0, then ∀n ∈ D, there exists n0 ∈ D

such that n0 ≥ n and S(n0)(B
−)0−◦ = B−◦−

0
B0 since B is β-open, which

contradicts that S quasi-coincides with B. 2

Corollary 3.9. Let (X,T ) be an L-space and A ∈ LX . Then the following
conditions are equivalent:

(1) A is preclosed.

(2) For any net S quasi-coinciding with A◦, if S
OR−→ xλ, then xλ 6≤ A0 .

(3) For any net S quasi-coinciding with A◦, if xλ is an OR-cluster point
of S, then xλ 6≤ A0.

Proof. (1)⇒ (2) Suppose that xλA
0. Then A0 ∈ N◦

P (xλ). By Theorem
3.5 there exists n0 ∈ D such that ∀n ≥ n0, S(n)A

0−◦ = A◦−
0
A◦

0
, which

contradicts that S quasi-coincides with A◦. Therefore xλ 6≤ A0.
(2)⇒ (1) ∀xλ 6≤ A◦−

0
, by Theorem 3.8 there exists a net quasi-coinciding

with A◦ such that S
OR−→ xλ. By the hypothesis of (2) xλ 6≤ A0. It implies

that A0A◦−
0
, i.e., A◦−A. Therefore A is preclosed.

(1) ⇔ (3) is analogous to the proof of (1) ⇔ (2). 2

Corollary 3.10. Let (X,T ) be an L-space and A ∈ LX . Then the follow-
ing conditions are equivalent:

(1) A is preopen.

(2) ∀xλA,S
OR−→ xλ implies that S is eventually in A−◦.

(3) ∀xλA, if xλ is OR-cluster point of S, then S is frequently in A−◦.

Proof. (1) ⇒ (2) is obvious by Theorem 3.5.
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(2) ⇒ (1) ∀xλA−◦ = A−
0−0 , by Theorem 3.8 there exists a net quasi-

coinciding with A−
0
such that S

OR−→ xλ. If xλA, by the hypothesis of (2) S
is eventually in A−◦A−, which contradicts that S quasi-coincides with A−

0
.

Thus xλ 6≤ A. It implies that AA−◦. Therefore A is preopen.
(1) ⇔ (3) is analogous to the proof of (1) ⇔ (2). 2

Corollary 3.11. Let (X,T ) be an L-space and A ∈ LX . Then A is pre-
clopen if one of the following conditions is true.

(1) For any net S quasi-coinciding with A◦, if S
OR−→ xλ, then xλ 6≤ A0

(2) ∀xλA,S
OR−→ xλ implies that S is eventually in A−◦

(3) For any net S quasi-coinciding with A◦, if xλ is an OR-cluster point
of S, then xλ 6≤ A0

(4) ∀xλA, if xλ is OR-cluster point of S, then S is frequently in A−◦.

Proof. Suppose that the condition (1) is satisfied. By Corollary 3.9 A
is preclosed. Now we prove that A is preopen, i.e., AA−◦. ∀xλA−◦ = A−

0−0 ,

there exists a net S quasi-coinciding with A−
0
such that S

OR−→ xλ. By the
hypothesis of (1) and A−

0
= A

0◦, it follows that xλ 6≤ A. This implies that
AA−◦. Therefore A is preclopen.

Suppose that the condition (2) is satisfied. By Corollary 3.10, A is
preopen. Now we prove that A is preclosed, i.e., A◦−A. ∀xλA◦−

0
, there

exists a net S quasi-coinciding with A◦ such that S
OR−→ xλ. If xλA

0, by
the hypothesis of (2) S is eventually in A0−◦ = A◦−

0
A◦

0
, which contradicts

that S quasi-coincides with A◦. Thus xλ 6≤ A0. It implies that A0A◦−
0
, i.e.,

A◦−A. Therefore A is preclopen.
The other cases can achieved from the similar progress. 2

Theorem 3.12. Let xλ ∈M(LX), B ∈ LX . Then the following conditions
are equivalent.

(1) xλ weak quasi-coincides with clδ(B).

(2) There exists a net S quasi-coinciding with B such that S
WOR−→ xλ.

(3) There exists a net S quasi-coinciding with B such that xλ is a weak
OR-cluster point of S.

Proof. (1)⇒ (2) Suppose that xλ weak quasi-coincides with clδ(B). Then
for each strongly open neighborhood U of xλ, U 6≤ clδ(B)

0, i.e., U 6≤ W{C |
CB0, C is regularly open}. Thus U−◦ 6≤ B0. Take S(U) ∈ M(LX) such
that S(U)U−◦, S(U) 6≤ B0. We obtain a net

{S(U) | U is a strongly open neighborhood of xλ}.
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It weak OR-converges to xλ and quasi-coincides with B.
(2) ⇒ (3) is obvious by Theorem 3.7(4).
(3) ⇒ (1) Let {S(n)}n∈D be a net quasi-coinciding with B and xλ is

a weak OR-cluster point of S. If xλ does not weak quasi-coincides with
clδ(B), then xλ ∈ β(clδ(B)

0). Hence there exists a regularly open L-set C
such that CB0 and xλ ∈ β(C) since

xλ ∈ β(clδ(B)
0) = β ((

V{A | BA,A is regularly closed})0)
= β(

W{A0 | BA,A is regularly closed})
=

S{β(C) | CB0, C is regularly open}.

Then ∀n ∈ D, there exists n0 ∈ D such that n0 ≥ n and S(n0)CB
0, which

contradicts that S quasi-coincides with B. 2

Corollary 3.13. Let (X,T ) be an L-space and A ∈ LX . Then the follow-
ing conditions are equivalent.

(1) A is δ-closed.

(2) For any net S quasi-coinciding with A, if S
WOR−→ xλ, then xλ /∈ β(A0).

(3) For any net S quasi-coinciding with A, if xλ is a weak OR-cluster
point of S, then xλ /∈ β(A0).

Proof. (1) ⇒ (2) Suppose that xλ ∈ β(A0). By Theorem 3.6, S is
eventually inA0 since A is δ-closed, which contradicts that S quasi-coincides
with A.

(2) ⇒ (1) Suppose that xλ /∈ β(clδ(A)
0). Then there exists a net S

quasi-coinciding with A such that S
WOR−→ xλ. By the hypothesis of (2), it

follows that xλ /∈ β(A0). Therefore A0clδ(A)0, i.e., clδ(A)A. By Lemma 2.18
we know that Aclδ(A). Therefore A is δ-closed.

(1) ⇔ (3) This proof is analogous to the proof of (1) ⇔ (2). 2

Corollary 3.14. Let (X,T ) be an L-space and A ∈ LX . Then the follow-
ing conditions are equivalent.

(1) A is δ-open.

(2) ∀xλ ∈ β(A), S
WOR−→ xλ implies that S is eventually in A.

(3) ∀xλ ∈ β(A), if xλ is weak OR-cluster point of S, then S is frequently
in A.

Proof. (1) ⇒ (2) is obvious by Theorem 3.6.
(2) ⇒ (1) Suppose that xλ ∈ β(A). If xλ /∈ β(intδ(A)) = β(clδ(A

0)0),

then there exists a net S quasi-coinciding with A0 such that S
WOR−→ xλ.
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By the hypothesis of (2), S is eventually in A, which contradicts that S
quasi-coincides with A0. Thus xλ ∈ β(intδ(A)). It implies that Aintδ(A).
By Lemma 2.18 we know that intδ(A)A. Therefore A is δ-open.

(1) ⇔ (3) This proof is analogous to the proof of (1) ⇔ (2). 2

Theorem 3.15. Let f : (X,T1)→ (Y, T2) be a R-irresolute L-value Zadeh’s
type mapping. Then

(1) For any net S in LX , if S
OR−→ xλ, then f→L (S)

OR−→ f→L (xλ).
(2) For any net S in LX , if xλ is an OR-cluster point of S, then f

→
L (xλ)

is an OR-cluster point of f
→
L (S).

Proof. (1) Suppose that U ∈ N◦
R(f

→
L (xλ)). Then f←L (U) ∈ N◦

R(xλ).

Since S
OR−→ xλ, there exists n0 ∈ D such that ∀n ≥ n0 S(n)f

←
L (U). This

implies that f→L (S)
OR−→ f→L (xλ) by

f→L (S(n))f
→
L (f

←
L (U))U.

(2) This is analogous to the proof of (1). 2

Theorem 3.16. Let f : (X,T1)→ (Y, T2) be an almost continuous L-value
Zadeh’s type mapping. Then

(1) For any net S in LX , if S
O−→ xλ, then f→L (S)

OR−→ f→L (xλ).
(2) For any net S in LX , if xλ is an O-cluster point of S, then f→L (xλ)

is an OR-cluster point of f
→
L (S).

Proof. (1) Suppose that U ∈ N◦
R(f

→
L (xλ)). Then f←L (U) ∈ N◦(xλ).

Since S
O−→ xλ, there exists n0 ∈ D such that ∀n ≥ n0 S(n)f

←
L (U). This

implies that f→L (S)
OR−→ f→L (xλ) by

f→L (S(n))f
→
L (f

←
L (U))U.

(2) This is analogous to the proof of (1). 2

Theorem 3.17. Let f : (X,T1) → (Y, T2) be a completely continuous
L-value Zadeh’s type mapping. Then

(1) For any net S in LX , if S
OR−→ xλ, then f→L (S)

O−→ f→L (xλ).
(2) For any net S in LX , if xλ is an OR-cluster point of S, then f

→
L (xλ)

is an O-cluster point of f→L (S).
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Proof. (1) Suppose that U ∈ N◦(f→L (xλ)). Then f←L (U) ∈ N◦
R(xλ).

Since S
OR−→ xλ, there exists n0 ∈ D such that ∀n ≥ n0 S(n)f

←
L (U). This

implies that f→L (S)
O−→ f→L (xλ) by

f→L (S(n))f
→
L (f

←
L (U))U.

(2) This is analogous to the proof of (1). 2

For weak OR-convergence, we have the similar three conclusions as
above since f→L (xλ) ∈ β(U) implies xλ ∈ β(f←L (U)). They are also omitted
here.

Theorem 3.18. Let f : (X,T1) → (Y, T2) be an L-value Zadeh’s type
mapping. Then the following conditions are equivalent.

(1) f is δ-continuous.

(2) For any net S in LX , if S
WOR−→ xλ, then f→L (S)

WOR−→ f→L (xλ).
(3) For any net S in LX , if xλ is a weak OR-cluster point of S, then

f→L (xλ) is a weak OR-cluster point of f
→
L (S).

Proof. (1) ⇒ (2) Suppose that U is a strongly regularly open neigh-

borhood of fuzzy point f→L (xλ) and net S
WOR−→ xλ. Then xλ ∈ β(f←L (U)).

Thus f←L (U) is a strongly δ-open neighborhood of fuzzy point xλ since f is
δ-continuous. There exists n0 ∈ D such that ∀n ≥ n0, S(n)f

←
L (U). Thus

f→L (S(n))f
→
L (f

←
L (U))U for any n ≥ n0. Therefore f

→
L (S)

WOR−→ f→L (xλ).
(2) ⇒ (1) Suppose that A is a regularly open L-set in (Y, T2). ∀xλ ∈

β(f←L (A)), let S
WOR−→ xλ. By the hypothesis of (2) f

→
L (S)

WOR−→ f→L (xλ).
There exists n0 ∈ D such that ∀n ≥ n0, f

→
L (S(n))A since f→L (xλ) ∈

β(f→L (f
←
L (A))) ≤ β(A). It implies that S(n)f←L (A). Thus f

←
L (A) is δ-

open by Corollary 3.14. Therefore f is δ-continuous.
(1) ⇔ (3) This is analogous to the proof of (1) ⇔ (2). 2

4. Characterizations of near (compactness) S∗-compactness

Theorem 4.1. An L-set G is nearly compact in (X,T ) if and only if ∀a ∈
M(L), ∀b ∈ β∗(a), each constant b-net quasi-coinciding with G has an
OR-cluster point xa quasi-coinciding with G.

Proof. Suppose thatG is nearly compact. For a ∈M(L) and b ∈ β∗(a),
let {S(n) | n ∈ D} be a constant b-net quasi-coinciding with G. Suppose
that S has no OR-cluster point xa quasi-coinciding with G. Then for each
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xa 6≤ G0, there exist Ux ∈ N◦(xa) and nx ∈ D such that ∀n ≥ nx, S(n)U
−◦
x .

Take Φ = {Ux | xa 6≤ G0}, then Φ is an open Qa-cover of G. Since G
is nearly compact, Φ has a finite subfamily Ψ = {Uxi | i = 1, 2, · · · , k}
such that Ψ−◦ is a Qb-cover of G. Since D is a directed set, there exists
n0 ∈ D such that n0 ≥ nxi for each ik. Thus we can obtain that ∀n ≥ n0,
S(n)

W{U−◦
xi
| i = 1, 2, · · · , k}. This contradicts that Ψ−◦ is a Qb-cover of

G. Therefore S has an OR-cluster point xa 6≤ G0.

Conversely suppose that ∀a ∈ M(L), ∀b ∈ β∗(a), each constant b-net
quasi-coinciding with G has an OR-cluster point xa 6≤ G0. We now prove
that G is nearly compact. Let Φ be an open Qa-cover of G. If for each finite
subfamily Ψ of Φ, Ψ−◦ is not a Qb-cover of G, then for each finite subfamily
Ψ of Φ, there exists S(Ψ) ∈M(LX) with height b such that S(Ψ) 6≤ G0 and
S(Ψ) 6≤ WΨ−◦. Take S = {S(Ψ) | Ψ is a finite subfamily of Φ}, then S is a
constant b-net quasi-coinciding with G. By b ∈ β∗(a) we can take s ∈ β∗(a)
such that b ∈ β∗(s). Then S has an OR-cluster point xs 6≤ G0. Hence for
each finite subfamily Ψ of Φ we have that xs 6≤

W
Ψ(because if xs

W
Ψ, then

there exists an A ∈ Ψ such that xsA, i.e., A is an open neighborhood of
xs, hence there exists a finite subfamily Ψ0 of Φ such that Ψ ≤ Ψ0 and
S(Ψ0)A

−◦WΨ−◦WΨ−◦0 , this contradicts the definition of S), in particular
xs 6≤ B for each B ∈ Φ. But since Φ is an open Qa-cover of G, we know
that there exists B ∈ Φ such that xsB, this yields a contradiction with
xs 6≤ B. So G is nearly compact. 2

Theorem 4.2. An L-set G is nearly compact in (X, T ) if and only if ∀a ∈
M(L), ∀b ∈ β∗(a), each b−-net quasi-coinciding with G has an OR-cluster
point xa quasi-coinciding with G.

Proof. The sufficiency is obvious, we need only to prove the necessity.

Let G be nearly compact, a ∈ M(L), b ∈ β∗(a) and {S(n) | n ∈ D}
be an b−-net quasi-coinciding with G. Then there exists n0 ∈ D such that
∀n ≥ n0, S(n)b. Put E = {n ∈ D | n ≥ n0} and

T = {T (n) | n ∈ E, V (T (n)) = b, the support point of T (n) is same as S(n)}.

Then T is a constant b-net quasi-coinciding with G. Let xa be an OR-
cluster point of T . It is easy to see that xa is also an OR-cluster point of
S. 2

Analogous to the proof of Theorem 4.1 and Theorem 4.2 we can easily
obtain the following two results.
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Theorem 4.3. An L-set G is near S∗-compact in (X, T ) if and only if
∀a ∈ M(L), each constant a-net quasi-coinciding with G has a weak OR-
cluster point xa /∈ β(G0).

Theorem 4.4. An L-set G is near S∗-compact in (X, T ) if and only if
∀a ∈ M(L), each a−-net quasi-coinciding with G has a weak OR-cluster
point xa /∈ β(G0).
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