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1. Introduction

As is known now, the Moore-smith convergence theory plays an im-
portant role in general topology, it not only is an significantly basic the-
ory of fuzzy topology and fuzzy analysis but also has wide applications in
fuzzy inference and some other aspects. In [18], Pu and Liu introduced
the concept of Q-neighborhoods and established a systematic Moore-Smith
convergence theory of fuzzy nets in [0,1]-topology. It paved a new way for
the study of the fuzzy topology. Wang extended this theory to L-fuzzy set
theory in [22]. Later on, all kinds of convergence theory were presented
[2,3,4,7,8,9, 12, 14]. In [19], Shi introduced the O-convergence theory
of nets in terms of neighborhoods of fuzzy points in L-space. It overcomes
the difficulty which the neighborhood method meets.

In this paper, our aim is to introduce the theory of Og-convergence and
weak Opg-convergence of nets in L-spaces based on Shi’s O-convergence.
We shall discuss its properties and use them to characterize preclosed sets,
preopen sets, d-closed sets, d-open sets, near compactness and near S*-
compactness.

2. Preliminaries

Throughout this paper (L,\/, \,’) is a completely distributive de Mor-
gan algebra. X a nonempty set. L is the set of all L-fuzzy sets (or L-sets
for short) on X. The smallest element and the largest element in LX are
denoted by 0 and 1.

An element a in L is called prime if a > b A ¢ implies that a > b or
a > c¢. An element a in L is called co-prime if @’ is a prime element [13].
The set of nonunit prime elements in L is denoted by P(L). The set of
nonzero co-prime elements in L is denoted by M(L). The set of nonzero
co-prime elements in L is denoted by M(LX). Members in M (LX) are
also called points.

The binary relation < in L is defined as follows: for a,b € L, a < b
if and only if for every subset D < L, the relation bsup D always implies
that the existence of d € D with ad [10]. In a completely distributive de
Morgan algebra L, each member b is a sup of {a € L | a < b}. In the
sense of [15, 23], {a € L | a < b} is the greatest minimal family of b, in
symbol B(b). Moreover for b € L, define a(b) = {a € L | a’ < '} and
a*(b) = a(b) N P(L).

For an L-set G € L*, 3(G) denotes the greatest minimal family of G
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and §*(G) = B(G) N M(LY).

An L-topological space (or L-space for short) is a pair (X, 7 ), where 7
is a subfamily of LX which contains 0, 1 and is closed for any suprema and
finite infima. 7 is called an L-topology on X. Each member of 7 is called
an open L-set and its quasi-complement is called a closed L-set.
Definition 2.1. Let (X,7T) be an L-space. A € L is called

(1) regularly open [1] if A=° = A, the complement of a regularly open
set is called regularly closed;

(2) B-open [16] if AA~°", the complement of a (-open set is called
(B-closed;

(3) preopen [16] if AA™°, the complement of a preopen set is called
preclosed. If A is not only preopen, but also preclosed, then we call it
preclopen.

Definition 2.2 ([19]). ), € M(LX) is said to be quasi-coincident with
BeLX ifzy £ B.

Definition 2.3 ([19]). An (a regularly open, preopen, d-open, etc.) open
L-set U is called an (a regularly open, preopen, d-open, etc.)open neigh-
borhood of x) € M(LX) if X\U. All (regularly open, preopen, d-open,
etc. Jopen neighborhoods of x) are denoted by (NR(zy), Np(xx), Ny (x)
)N°(25).

Definition 2.4 ([20]). Let (X,T) be an L-space. An (a regularly open,
preopen, §-open, etc.)open L-set U is called a strongly (regularly open, pre-
open, §-open, etc.)open neighborhood of a fuzzy point xy, if A € §(U(x)).

Definition 2.5. Let (X,T1) and (Y,T3) be two L-spaces. A map f :
(X,T1) — (Y, T») is called (1) almost continuous [1] if f; (G) € Ty for
all regularly open L-set G in (Y,T»); (2) completely continuous [5, 17] if
fi (G) is regularly open L-set in (X,Ty) for each G € Ty; (3) R-irresolute
[21] if f; (G) is regularly closed in (X,Ty) for each regularly closed L-set
G in (Y,T3); (4) d-continuous [11] if f; (G) is §-open in (X,T}) for each
regularly open L-set G in (Y, T3).

Definition 2.6 ([19]). A net S with index set D is also denoted by {S(n) |
n € D} or {S(n)}nep. For G € LX, a net S is said to quasi-coincide with
G ifvn e D,S(n) £ G'.

Definition 2.7 ([19, 22]). Let o € M(L). A net {s(n) | n € D} in LX is
called an o~ -net if there exists ng € D such that ¥Ynng, V(S(n))a, where
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V(S(n)) denotes the height of S(n). A net {S(n)}nep in L is said to be
a constant a-net if the height of each S(n) is a constant value «.

Definition 2.8 ([19, 22]). Let {S(n) | n € D} be a net in (X,T), x) €
M(LX). S eventually possesses the property P, if there exists ng € D such
that Vn > ng, S(n) always possesses the property P. S frequently possesses
the property P, if for every n € D, there always exists ng € D such that
nog > n and S(ng) possesses the property P.

Definition 2.9 ([19]). x) is an O-cluster point of S, if YU € N°(xy), S
is frequently in U. x, is an O-limit point of S, if YU € N°(zy), S is
eventually in U, in this case we also say that S O-converges to x), denoted
by S 9, Ty.

Definition 2.10 ([20]). Let (X,T) be an L-space, a € M (L) and G € LX.
A subfamily U of LX is called a B,-cover of G if for any © € X with
a ¢ B(G'(x)), there exists an A € U such that a € (A(x)). A Ba-cover U
of G is called open(regularly open, etc.) [q-cover of G if each member of
U is open (regularly open, etc.).

It is obvious that U is a 4-cover of G if and only if for any x € X it
follows that a € (G/(a:) VARV, A(a:))
AeU

Definition 2.11 ([20]). Let (X,T) be an L-space, a € M (L) and G € LX.
A subfamily U of LX is called a Qq-cover of G if for any x € X with

G(z) £ d, it follows that \/ A(x) > a. A Qq-cover U of G is called open
AeU
(regularly open, etc.) Qq-cover of G if each member of U is open (regularly

open, etc.).

Definition 2.12 ([21]). Let (X,T) be an L-space. G € L% is called
nearly compact if for every family U < T, it follows that

N (G’(m)v \/ A(@) VA (G’(a:)\/ \/ A°(a:)>.

zeX AeU VeaU) zeX AeV

Lemma 2.13 ([21]). Let (X,T) be an L-space and G € LX. Then G is
nearly compact if and only if for any a € M(L) and any b € *(a), each

open @Qq-cover of G has a finite subfamily V such that V~° is a QQy-cover
of G.
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Definition 2.14. Let (X,T) be an L-space and G € LX. Then G is called
nearly S*-compact if for any a € M (L), each open [3,-cover of G has a finite
subfamily V' such that V—° ={A7° | A€V} is a Qq-cover of G. (X, T) is
said to be nearly S*-compact if 1 is nearly S*-compact.

For the sake of convenience, we introduced the following concept.

Definition 2.15. Let A € LX. cls(A) = N{V | AV°~,V € T'} is called
d-closure of A. The d-interior of A, written as ints(A), is defined to be
cls(A").

It can be proved that Definition 2.15 is equivalent to the notion of -
closure in [11] when L = [0, 1].
Obviously we have the following theorem.

Lemma 2.16. For each A € LX, cls(A) € T and ints(A) € T.
Lemma 2.17. Let A € LX, thencls(A) = N{V | AV, V is regularly closed}.
Lemma 2.18. Let A € LX, then A~ cls(A) and ints(A)A°.

Lemma 2.19. If A is S-open, then A~ = cls(A); If A is f-closed, then
A° = ints(A).

Definition 2.20. An L-set G is called 0-closed if A = cls(A); The com-
plement of a d-closed set is called d-open.

Lemma 2.21. Fach regular open L-set is d-open and each regular closed
L-set is d-closed.

3. Og-convergence and weak Og-convergence of nets

Definition 3.1. z), € M(L¥) is said to be weak quasi-coincident with
B e LY if A ¢ B(B'(x)).

Definition 3.2. Let (X,T) be an L-space, x5 € M (LX) and S = {S(n) |
n € D} a net in LX. Then

(1) zy is an Op-cluster point of S, if VU € N°(zy), S is frequently in
Uu—°.

(2) zy is an Og-limit point of S, if VU € N°(xy), S is eventually in U~°,

. . O
in this case we also say that S Og-converges to xy, denoted by S =% ).
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Definition 3.3. Let {S(n) | n € D} beanet in (X,T), xy € M(LY). =z is
called a weak Opr-cluster point of S, if for each strongly open neighborhood
U of xy, S is frequently in U~°. x) is called a weak Opr-limit point of S, if
for each strongly open neighborhood U of x, S is eventually in U~°, in this

case, we also say that S weakly Opr-converges to xy, denoted by S Vo . A

Theorem 3.4. Let S be a net in (X,T) and x5 € M(LX). Then the
following conditions are equivalent.

(1) x is an Og-cluster point of S.

(2) VU € Np(xy), S is frequently in U~°.

(3) YU € Ng(zy), S is frequently in U.

Proof. (1) = (2) Suppose that z) is an Og-cluster point of S. If
U € Np(xy), then U=° € N°(zy). By the hypothesis of (1) S is frequently
in U7°7°. S is frequently in U~° since U °7°U~°.

(2) = (3) is obvious.

(3) = (1) Suppose that the given condition hold for a net S and let
U € N°(xy), then U™° € Np(zy). By the hypothesis of (3) S is frequently
in U~°. Therefore x) is an Og-cluster point of S. O

Analogous to the proof of Theorem 3.4 we can easily obtain the following
result.

Theorem 3.5. Let S be a net in (X,T) and z) € M(LX). Then the
following conditions are equivalent.

(1) =y is an Og-limit point of S.

(2) VU € Np(xy), S is eventually in U~°.

(3) YU € Ng(zy), S is eventually in U.

For weak Opg-convergence, we have same conclusions as Theorem 3.4
and Theorem 3.5. We omit them.

Theorem 3.6. Let S be a net in (X,T) and z) € M(LX). Then

(1) xy is a weak Op-cluster point of S if and only if for each strongly
d-open neighborhood U of x, S is frequently in U.

(2) zy is a weak Og-limit point of S if and only if for each strongly
0-open neighborhood U of x, S is eventually in U.

Proof. (1) Sufficiency. Suppose that U is a strongly open neighborhood
of z, then U™° is a strongly §-open neighborhood of z. By the hypothesis,
S is frequently in U~°. Therefore ) is a weak Og-cluster point of S.
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Necessity. Suppose that x) is a weak Opg-cluster point of S and U is
a strongly d-open neighborhood of ). Then there exists a regularly open
L-set C such that CU and z) € 5(C) since

zx€ BU) = B(V{C|CU,C is regularly open})
U{B(C) | CU,C is regularly open}.

By the hypothesis, S is frequently in CU.
(2) This is analogous to the proof of (1). O
It is easy to prove the following theorem.

Theorem 3.7. Let S be a net in (X,T), T a subnet of S and xy,x, €
M(LX). Then

(1) S 9, x) implies that S O, T;
9) § &, x) implies that S WOg Tx;

)

)
3) S Ox, x) implies that x is an Ogr-cluster point of S;
4) S WOz x) implies that x is a weak Og-cluster point of S;
)

5) x is an O-cluster point of S implies that x is an Og-cluster point

(6) x) is an Ogr-cluster point of S implies that x) is a weak Og-cluster
point of S;

(7) If xyz, and xy is an Op-cluster point of S, then z, is also an
ORg-cluster point of S;

8) S Or, T\, = S On, Ty;

(9) If zyx,, and x) is a weak Og-cluster point of S, then x, is also a

weak Opg-cluster point of S;

(10) S 7O T T, = S WO Ty

(11) § 28 2y = T 22 g,
(12) § Ty = T V¥ gy

(13) x) is an OR cluster point of T' implies that x) is an Og-cluster
point of S;

(14) =y is a weak Op-cluster point of T' implies that x) is a weak Opr-
cluster point of S;

(15) xy is an Og-cluster point of S if and only if S has a subnet R such
that R <% Ty

(16) x) is a weak Og-cluster point of S if and only if S has a subnet R

such that R WOr T-
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Theorem 3.8. Let z) € M(LX), B be $-open. Then the following condi-
tions are equivalent.

(1) x) quasi-coincides with B~ .

(2) There exists a net S quasi-coinciding with B such that S Or, xy.

(3) There exists a net S quasi-coinciding with B such that z) is an
Opg-cluster point of S.

Proof. (1) = (2) Suppose that =) quasi-coincides with B~. Then VU €
N&(z)),U £ B~ i.e., B"U’". Hence B £ U'. This implies that U £ B'.
Take S(U) € M(LX) such that S(U)U, S(U) £ B'. We obtain a net
{S(U) | U € Ni(zr)} Og-converging to x and it quasi-coincides with B.

(2) = (3) is obvious by Theorem 3.7(3).

(3) = (1) Let {S(n)}nep be a net quasi-coinciding with B and z is
an Op-cluster point of S. If x)(B~)’, then Vn € D, there exists ng € D
such that ng > n and S(ng)(B~)'~° = B~°~ B’ since B is (-open, which
contradicts that S quasi-coincides with B. O

Corollary 3.9. Let (X,T) be an L-space and A € L. Then the following
conditions are equivalent:

(1) A is preclosed.

(2) For any net S quasi-coinciding with A°, if S O, xy, then zy £ A’ .

(3) For any net S quasi-coinciding with A°, if z is an Og-cluster point
of S, then x\ £ A’

Proof. (1) = (2) Suppose that zyA’. Then A’ € Np(z)). By Theorem
3.5 there exists ng € D such that Vn > ng, S(n)A~° = A°~'A°" which
contradicts that S quasi-coincides with A°. Therefore z) £ A’.

(2) = (1) Y&y £ A°~", by Theorem 3.8 there exists a net quasi-coinciding
with A° such that § 2% & A- By the hypothesis of (2) z) £ A’. Tt implies
that A’A°~ i.e., A°~ A. Therefore A is preclosed.

(1) & (3) is analogous to the proof of (1) & (2). O

Corollary 3.10. Let (X,T) be an L-space and A € L. Then the follow-
ing conditions are equivalent:

(1) A is preopen.

(2) Vzp A, S On, x implies that S is eventually in A™°.

(3) VapA, if xy is Og-cluster point of S, then S is frequently in A~°.

Proof. (1) = (2) is obvious by Theorem 3.5.
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(2) = (1) VoyA° = A=~ by Theorem 3.8 there exists a net quasi-
coinciding with A~ such that S O, xy. If x5\ A, by the hypothesis of (2) S
is eventually in A=°A~, which contradicts that S quasi-coincides with A~".
Thus ) £ A. It implies that AA™°. Therefore A is preopen.

(1) < (3) is analogous to the proof of (1) & (2). O

Corollary 3.11. Let (X,T) be an L-space and A € LX. Then A is pre-
clopen if one of the following conditions is true.

(1) For any net S quasi-coinciding with A°, if S Ox, xy, then x) £ A’

(2) Vzp\A, S Ox, x) Implies that S is eventually in A™°

(3) For any net S quasi-coinciding with A°, if z is an Og-cluster point
of S, then x\ £ A’

(4) Yx\A, if xy is Og-cluster point of S, then S is frequently in A~°.

Proof. Suppose that the condition (1) is satisfied. By Corollary 3.9 A
is preclosed. Now we prove that A is preopen, i.c., AA™. Ve A=° = A=,
there exists a net S quasi-coinciding with A~ such that $ Or, & A By the
hypothesis of (1) and A~ = A", it follows that z) £ A. This implies that
AA™°. Therefore A is preclopen.

Suppose that the condition (2) is satisfied. By Corollary 3.10, A is
preopen. Now we prove that A is preclosed, i.e., A~ A. Vx)yA°~', there
exists a net S quasi-coinciding with A° such that S On, xzy. If 2)\A', by
the hypothesis of (2) S is eventually in A’~° = A°~' A°| which contradicts
that S quasi-coincides with A°. Thus zy £ A’. It implies that A’A°~", i.e.,
A°~ A. Therefore A is preclopen.

The other cases can achieved from the similar progress. O

Theorem 3.12. Letx) € M(LX), B € LX. Then the following conditions
are equivalent.

(1) =) weak quasi-coincides with cls(B).

(2) There exists a net S quasi-coinciding with B such that S Vor 4 A-

(3) There exists a net S quasi-coinciding with B such that x) is a weak
Opg-cluster point of S.

Proof. (1) = (2) Suppose that x) weak quasi-coincides with ¢ls(B). Then
for each strongly open neighborhood U of xy, U £ cls(B)’, i.e., U £ \/{C |
CB',C is regularly open}. Thus U~° £ B'. Take S(U) € M(LX) such
that S(U)U~°,S(U) £ B’. We obtain a net

{S(U) | U is a strongly open neighborhood of xy}.
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It weak Opr-converges to x) and quasi-coincides with B.

(2) = (3) is obvious by Theorem 3.7(4).

(3) = (1) Let {S(n)}nep be a net quasi-coinciding with B and z is
a weak Op-cluster point of S. If z) does not weak quasi-coincides with
cls(B), then x) € B(cls(B)’). Hence there exists a regularly open L-set C
such that CB’ and z) € 5(C) since

xy € B(cls(B)) = B((A{A|BA,Ais regularly closed})’)
= B(V{A'| BA, A is regularly closed})
= U{B(C) | CB,C is regularly open}.

Then Vn € D, there exists ng € D such that ng > n and S(ng)CB’, which
contradicts that S quasi-coincides with B. O

Corollary 3.13. Let (X,T) be an L-space and A € L. Then the follow-
ing conditions are equivalent.
(1) A is 0-closed.

(2) For any net S quasi-coinciding with A, if S WOr xy, thenzy ¢ B(A").
(3) For any net S quasi-coinciding with A, if x) is a weak Og-cluster
point of S, then x) ¢ B(4).

Proof. (1) = (2) Suppose that =) € B(A’). By Theorem 3.6, S is
eventually in A’ since A is d-closed, which contradicts that S quasi-coincides
with A.

(2) = (1) Suppose that =) ¢ B(cls(A)’). Then there exists a net S
quasi-coinciding with A such that S Vo A- By the hypothesis of (2), it
follows that ) ¢ B(A"). Therefore A'cls(A)', i.e., cls(A)A. By Lemma 2.18
we know that Acls(A). Therefore A is d-closed.

(1) < (3) This proof is analogous to the proof of (1) < (2). O

Corollary 3.14. Let (X,T) be an L-space and A € L~X. Then the follow-
ing conditions are equivalent.

(1) A is d-open.

(2) Vx\ € B(A4), S Os x) implies that S is eventually in A.

(3) Vz) € B(A), if ) is weak Opg-cluster point of S, then S is frequently
in A.

Proof. (1) = (2) is obvious by Theorem 3.6.
(2) = (1) Suppose that =) € S(A). If x) ¢ B(ints(A)) = B(cls(A")),

then there exists a net S quasi-coinciding with A’ such that S WOg Ty.
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By the hypothesis of (2), S is eventually in A, which contradicts that S
quasi-coincides with A’. Thus z) € S(ints(A)). It implies that Aints(A).
By Lemma 2.18 we know that int;(A)A. Therefore A is d-open.

(1) < (3) This proof is analogous to the proof of (1) < (2). O

Theorem 3.15. Let f : (X,T1) — (Y, T2) be a R-irresolute L-value Zadeh’s
type mapping. Then

(1) For any net S in LX, if S On, xy, then f;7(95) On, fr(zy).

(2) For any net S in LX, if x) is an Og-cluster point of S, then f;”(z))
is an Op-cluster point of f;7(.5).

Proof. (1) Suppose that U € Ng(f7 (z)). Then fi (U) € Ni(xy).
Since § 2% xy, there exists ng € D such that Vn > ng S(n)f; (U). This
implies that f;~(.5) O, [ (xx) by

[ (S) fr”(fr (U)U.

(2) This is analogous to the proof of (1). O

Theorem 3.16. Let f : (X,T1) — (Y, T3) be an almost continuous L-value
Zadeh’s type mapping. Then

(1) For any net S in LX, if S 9, xy, then f;7(S5) Or, fr(zy).

(2) For any net S in LY, if xy is an O-cluster point of S, then f;’(x))
is an Op-cluster point of f;(S).

Proof. (1) Suppose that U € N3(f; (zx)). Then f; (U) € N°(xy).
Since S -2 ., there exists ng € D such that ¥n > ng S(n)f; (U). This
implies that f;7(5) On, i (zx) by

fo (S fr (f (U)U.

(2) This is analogous to the proof of (1). O

Theorem 3.17. Let f : (X,T1) — (Y,T») be a completely continuous
L-value Zadeh’s type mapping. Then

(1) For any net S in LX, if S Oz, xy, then f;7(S5) 9, fr(zy).

(2) For any net S in L~ if x) is an Og-cluster point of S, then f;*(x))
is an O-cluster point of f;”(.5).
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Proof. (1) Suppose that U € N°(f;’(zx)). Then f; (U) € Ni(xy).
Since § 2% xy, there exists ng € D such that Vn > ng S(n)f; (U). This
implies that f7°(S) - f7*(z,) by

fo(S) fr”(fr (U)U.

(2) This is analogous to the proof of (1). O

For weak Opg-convergence, we have the similar three conclusions as
above since f77(zy) € B(U) implies z) € S(f; (U)). They are also omitted
here.

Theorem 3.18. Let f : (X,T1) — (Y,T2) be an L-value Zadeh’s type
mapping. Then the following conditions are equivalent.

(1) f is d-continuous.

2) For any net S in LX, if S WOr xy, then f77(S) WO, fr(zy).

(
(3) For any net S in L, if z is a weak Og-cluster point of S, then
[ (zx) is a weak Op-cluster point of f;(S).

Proof. (1) = (2) Suppose that U is a strongly regularly open neigh-
borhood of fuzzy point f;’(x)) and net S WOr zx. Then xy € 5(f; (U)).
Thus f; (U) is a strongly d-open neighborhood of fuzzy point ) since f is

d-continuous. There exists ng € D such that ¥n > ng, S(n)f; (U). Thus

fr7(S(n) fr(f;(U))U for any n > ng. Therefore f;”(5) WOr fr(zy).

(2) = (1) Suppose that A is a regularly open L-set in (Y, T3). Vx, €
B(fi(A)), let S L2F z,. By the hypothesis of (2) f7°(S) "“F f(z»).
There exists ng € D such that Vn > ng, f;7(S(n))A since f; (zy) €
B(fi(fi (A))) < B(A). It implies that S(n)f; (A). Thus f; (A) is J-
open by Corollary 3.14. Therefore f is d-continuous.

(1) < (3) This is analogous to the proof of (1) < (2). O

4. Characterizations of near (compactness) S*-compactness

Theorem 4.1. An L-set G is nearly compact in (X, T) if and only if Va €
M(L), ¥Yb € [*(a), each constant b-net quasi-coinciding with G has an
Og-cluster point x, quasi-coinciding with G.

Proof. Suppose that G is nearly compact. Fora € M (L) and b € 5*(a),
let {S(n) | n € D} be a constant b-net quasi-coinciding with G. Suppose
that S has no Og-cluster point x, quasi-coinciding with GG. Then for each
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xq £ G', there exist U, € N°(z,) and n, € D such that Vn > n,, S(n)U,°.
Take ® = {U, | xo £ G'}, then ® is an open Q,-cover of G. Since G
is nearly compact, ® has a finite subfamily ¥ = {U,: | i = 1,2,---,k}
such that ¥=° is a Qp-cover of G. Since D is a directed set, there exists
ng € D such that ng > n,: for each ik. Thus we can obtain that ¥n > nyg,
Sm)V{U_° | i =1,2,---,k}. This contradicts that ¥~° is a Q-cover of
G. Therefore S has an Og-cluster point z, £ G'.

Conversely suppose that Ya € M(L), Vb € $*(a), each constant b-net
quasi-coinciding with G has an Og-cluster point z, £ G'. We now prove
that G is nearly compact. Let ® be an open Q),-cover of G. If for each finite
subfamily W of ®, ¥~° is not a Qp-cover of G, then for each finite subfamily
U of ®, there exists S(¥) € M (LX) with height b such that S(¥) £ G’ and
S(¥) £ \V¥~°. Take S = {S(¥) | ¥ is a finite subfamily of ®}, then S is a
constant b-net quasi-coinciding with G. By b € 5*(a) we can take s € 5*(a)
such that b € 8*(s). Then S has an Og-cluster point z; £ G’. Hence for
each finite subfamily ¥ of ® we have that x5 € \/ U(because if x5 \/ ¥, then
there exists an A € ¥ such that z,A4, i.e., A is an open neighborhood of
T, hence there exists a finite subfamily ¥y of ® such that ¥ < W, and
S(Wg)A™°V ¥~°V\ ¥, °, this contradicts the definition of S), in particular
zs £ B for each B € ®. But since ® is an open QQ,-cover of G, we know
that there exists B € ® such that x,B, this yields a contradiction with
zs £ B. So G is nearly compact. a

Theorem 4.2. An L-set G is nearly compact in (X,7T) if and only if Va €
M(L), Vb € p*(a), each b~ -net quasi-coinciding with G has an Og-cluster
point x, quasi-coinciding with G.

Proof. The sufficiency is obvious, we need only to prove the necessity.

Let G be nearly compact, a € M(L), b € f*(a) and {S(n) | n € D}
be an b™-net quasi-coinciding with G. Then there exists ng € D such that
Vn > ng, S(n)b. Put E={ne€ D|n>np}and

T={T(n)|neEV(T(n))=>, the support point of T'(n) is same as S(n)}.

Then T is a constant b-net quasi-coinciding with G. Let x, be an Og-
cluster point of T'. It is easy to see that x, is also an Opg-cluster point of
S. O

Analogous to the proof of Theorem 4.1 and Theorem 4.2 we can easily
obtain the following two results.
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Theorem 4.3. An L-set G is near S*-compact in (X,7T) if and only if
Va € M(L), each constant a-net quasi-coinciding with G has a weak Og-
cluster point z, ¢ B(G’).

Theorem 4.4. An L-set G is near S*-compact in (X,7T) if and only if
Va € M(L), each a™-net quasi-coinciding with G has a weak Og-cluster

point x, ¢ B(G").
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