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1. Introduction

We survey some old and new results related to the retrosection theorem
and some of its extensions. Let S be a closed Riemann surface of genus g.
Classical retrosection theorem asserts that we may find a Schottky group
G, with region of discontinuity Ω, and a regular planar covering P : Ω→ S
with G as covering group; that is G uniformizes S.

In order to extend classical retrosection theorem to the class of com-
pact Klein surfaces, we need to find a natural extension of a Schottky group.
An extended Schottky group is an extended Kleinian groups whose index
two orientation preserving half is a Schottky group. By definition, an ex-
tended Schottky group contains orientation reversing transformations and
the region of discontinuity of it is the same as for its index two Schottky
subgroup. If R is now a compact Klein surface, then the first extension
of the retrosection theorem asserts the existence of an extended Schottky
group K with region of discontinuity Ω and a regular (branched at the bor-
ders) planar covering Q : Ω→ R with K as covering group. We may see R
as the quotient S/hτi where S is a closed Riemann surface and τ : S → S
is an anticonformal automorphism. If we denote by G the index two orien-
tation preserving half of K, then the above may be stated as the existence
of a regular planar covering P : Ω→ S with G as covering group so that τ
lifts to an anticonformal automorphism of Ω under P . In the case that R
is closed, that is, when τ has no fixed points on S, the extended Schottky
group has no reflections; its orientation reversing transformations are only
glide-reflections and/or imaginary reflections. These extended Schottky
groups are the Klein-Schottky groups.

The boundary of moduli space in the Deligne-Mumford’s compactifica-
tion corresponds to conformal classes of closed stable Riemann surfaces. In
order to consider an extension of retrosection theorem to the class of sta-
ble Riemann surfaces, different from a closed Riemann surface, we need to
consider some kind of deformations of Schottky groups. At this points, we
deal with two types of degenerations. One degeneration provides geomet-
rically finite Kleinian groups in the algebraic boundary of Schottky space;
the noded Schottky groups. The other kind of degenerations is provided by
first considering geometrically finite Kleinian groups in the algebraic border
of a co-compact Fuchsian group and then by quotient them by suitable tor-
sion free normal subgroup (in a similar way as to obtain Schottky groups
as quotient of co-compact Fuchsian groups); the stable Schottky groups.
Noded Schottky groups are a particular subclass of stable Schottky group.
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An extended region of discontinuity of an stable Schottky group is defined
and the concept of a regular planar covering is given in order to see that
every stable Riemann surface may be uniformized by a stable Schottky
group. Moreover, they may be uniformized just only using noded Schottky
groups. Some stable Schottky groups were already considered in [8].

Stable Klein surfaces are obtained as quotient of stable Riemann sur-
faces by some anticonformal involution. Uniformizations of stable Klein
surfaces are given by certain degenerations (in some sense) of extended
Schottky groups, called extended stable Schottky groups, and all stable
Klein surfaces can be so uniformized, so this can be though as a retrosec-
tion theorem at the level of stable Klein surfaces.

This survey is structured as follows. In Section 2 we recall the defi-
nitions of (extended) Möbius transformations, Klein surfaces, (extended)
Kleinian groups, geometrically finite Kleinian groups, (extended) function
groups and the extended region of discontinuity. In Section 3 we recall
Koebe’s uniformization theorem of analytically finite Riemann surfaces by
(extended) function groups. In Section 4 we recall the definition of a Schot-
tky group and state the classical retrosection theorem, We also provided
other equivalent definitions of Schottky groups and discuss some problems
related to classical Schottky groups, including a conjecture due to Bers.
In Section 5 we recall the definition of extended Schottky groups and, in
particular, of a Klein-Schottky group. Then, we state the retrosection the-
orem for the class of compact Klein surfaces. In Section 6 we consider a
retrosection theorem for closed Riemann surfaces with automorphisms, so
that the automorphisms are reflected. In Section 7 we recall the definitions
of stable Riemann surfaces, the Deligne-Mumford’s compactification, qua-
siconformal deformation spaces, Teichmüller and Schottky spaces and real
structures. In Section 8 we provide the definition of a stable Klein surface
as the orbit space of a stable Riemann surface by an anticonformal involu-
tion. In Section 9 we define some degenerations of Schottky groups; noded
Schottky groups and stable Schottky groups. Then, we state a retrosecton
theorem for stable Riemann surfaces. In Section 10 we define some degen-
erations of extended Schottky groups; extended stable Schottky groups and
extended noded Schottky groups. In Section 11 we provide a retrosection
theorem for stable Klein surfaces.
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2. Some preliminaries

2.1. Möbius and extended Möbius transformations

Let us denote by M the group of Möbius transformations and by cM the
group generated by M and τ(z) = z. The elements of cM −M are called
extended Möbius transformations and correspond to the anticonformal au-
tomorphisms of bC. By Poincaré extension, we may seeM (respectively, cM)
as the group of orientation preserving hyperbolic isometries (respectively,
the total group of hyperbolic isometries) of of hyperbolic 3-space H3.

A loxodromic transformation is an orientation preserving isometry of
H3 that has exactly two fixed points, necessarily on the sphere at infinity;
every loxodromic transformation is conjugate, in the group of isometries of
H3, to one of the form z → λeiθz, where λ is real and λ > 1 (if moreover,
θ ∈ 2πZ, then we say that it is a hyperbolic transformation). A parabolic
transformation is an orientation preserving isometry of H3 that has exactly
one fixed point, necessarily on the sphere at infinity; every parabolic trans-
formation is conjugate, in the group of isometries of H3, to z → z + 1. An
elliptic transformation is an orientation preserving isometry with a hyper-
bolic line of fixed point; every elliptic transformation is conjugate to the
transformation z → eiθz.

A glide reflection is an orientation reversing isometry of H3 that has
exactly two fixed points, necessarily on the sphere at infinity; every glide
reflection is conjugate, in the group of isometries of H3, to one of the form
z → λz̄, where λ is real and λ > 1. A pseudo-parabolic is an orientation
reversing isometry of H3 that has exactly one fixed point, necessarily on
the sphere at infinity; every pseudo-parabolic is conjugate, in the group of
isometries of H3, to z → z + 1. An imaginary reflection is an orientation
reversing isometry of order two with exactly one fixed point, necessarily in
the interior of hyperbolic space; every imaginary reflection is conjugate to
the transformation z → −1/z.

2.2. Klein and Riemann surfaces

A Klein surface is a surface on which the change of coordinates are either
conformal or anticonformal (that is, a di-analytic structures) [2]. If all
change of coordinates are conformal, then we are in the presence of a Rie-
mann surface. Now on, we reserve the name Klein surface for one different
from a Riemann surface, that is, there is at least some anticonformal local
change of coordinates. In this way, Klein surfaces may be seen as quotients
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of Riemann surfaces by some anticonformal automorphisms of order two.
A compact Klein surface is the quotient of a closed Riemann surface by
some anticonformal involution. A Klein surface is said to have algebraic
genus g if it is the quotient of a closed Riemann surface of genus g by an
anticonformal involution.

2.3. Kleinian and extended Kleinian groups

A Kleinian group is a discrete subgroup of M and an extended Kleinian
group is a subgroup K of cM so that its index two orientation preserving
half K+ is a Kleinian group. If K is a (extended) Kleinian group, then the
Riemann sphere is divided into two disjoint sets: the region of discontinuity
Ω(K) and the limit set Λ(K).

We say that an extended Kleinian group K acts freely or it is freely
acting on its region of discontinuity if the stabilizer of any point of its
region of discontinuity (in the Riemann sphere) is trivial. A freely acting
extended Kleinian group may have non-trivial elements with fixed points in
the interior of hyperbolic space (when we see it as a group of isometries of
hyperbolic space), for instance, an imaginary reflection always has a fixed
point on H3.

2.4. Geometrically finite Klenian groups

A geometrically finite Kleinian group is one for which there is a finite sided
fundamental polyhedron when seen as a group of isometries of H3. Simi-
larly, an extended Kleinian group K is called geometrically finite if K+ is
geometrically finite.

2.5. Function groups

A function group is given by a couple (F,∆), where F < M is a finitely
generated Kleinian group and ∆ ⊂ bC is an invariant component of the
region of discontinuity of F [23]. In case ∆ is a simply connected domain,
we say that (F,∆) is a B-group. An extended function group is a pair (K,∆)
for which K is an extended Kleinian group and ∆ is invariant under the
action of K. An extended function group (H,∆) for which ∆ is simply
connected is an extended B-group. At this point, let us note that if we
consider a Fuchsian group F , acting on the unit disc so that its limit set is
all of the unitary circle, and τ is the reflection on that unitary circle, then
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K = hF, τi is an extended Kleinian group with K+ = F a function group,
but K is not an extended function group.

2.6. Extended region of discontinuity

Given a (extended) Kleinian group G we define its extended region of dis-
continuity Ωext(G) as the union of its region of discontinuity with its double-
cusped parabolic fixed points [9] (see also section 9.1). The complement
Λext(G) = bC − Ωext(G) is called the extended limit set of G. Observe
that if G has no double-cusped parabolic fixed points (for instance, Schot-
tky groups and co-compact Fuchsian groups), then Ωext(G) = Ω(G) and
Λext(G)− Λ(G).

We say that an (extended) Kleinian group K is freely acting on its
extended region of discontinuity if the stabilizer of any point of its extended
region of discontinuity is trivial.

3. Koebe’s uniformization theorem

Let (K,∆) be a function group so that no non-trivial element of K fixes a
point in ∆. Then, R = ∆/K is a Riemann surface and we have a natural
regular planar holomorphic covering P : ∆→ R.

An uniformization of a Riemann surface S is a triple (∆, F, P : ∆→ S),
where (F,∆) is a function group and P : ∆ → S is a holomorphic regu-
lar covering with F as cover group. As consequence of Ahlfors’ finite-
ness theorem [1], we have that S should be analytically finite, that is,
is the complement of a finite set of points (possible empty) of a closed
Riemann surface. Similarly, an uniformization of a Klein surface S is a
triple (∆, F, P : ∆ → S), where (F,∆) is an extended function group and
P : ∆→ S is a di-analytic regular covering with F as cover group.

Theorem 1 (Koebe’s uniformization theorem [18, 19]) Every analytically
finite (Klein) Riemann surface can be uniformized by (extended) function
groups.

Moreover, quasiconformal deformation theory asserts that if we have an
(extended) function group (F,∆) uniformizing a (Klein) Riemann surface
S, then every (Klein) Riemann surface quasiconformally equivalent to S
can be also uniformized by a quasiconformal deformation of the previous
(extended) function group.
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4. Retrosection theorem for closed Riemann surfaces

4.1. Schottky groups

A Schottky group of genus g ≥ 1 is defined as the group generated by
g loxodromic transformations A1,..., Ag, with the following geometric re-
striction: should exist a collection of 2g pairwise disjoint simple loops, say
C1, C

0
1,..., Cg and C

0
g, all of them bounding a common domain D of connec-

tivity 2g, so that Aj(Cj) = C 0j and Aj(D) ∩D = ∅, for all j = 1, .., g. The
generators A1,..., Ag are called a Schottky set of generators and the loops
C1, C

0
1, ..., Cg, C

0
g a fundamental set of loops. A result due to V. Chuckrow

[5] asserts that every set of free generators of a Schottky group is in fact a
Schottky set of generators. A classical Schottky group is a Schottky group
which admits a fundamental set of loops, for a suitable set of Schottky
generators, being all of them circles of bC. Schottky groups were invented
by Schottky (at least the classical ones), before Klein and Poincaré initi-
ated the general theory on Kleinian groups. The name Schottky group was
coined by Poincaré. The basic properties on Schottky groups were obtained
after 1968 by [5, 6, 22, 25] just to mention a few of them.

4.2. Retrosection theorem

If we denote by Ω (respectively, by Λ) the region of discontinuity (respec-
tively, the limit set) of a Schottky group G of genus g, then Ω is connected
and Λ is empty for g = 0, consists of two points for g = 1 and it is a Cantor
set for g ≥ 2. Also, the quotient Ω/G turns out to be a closed Riemann
surface of genus g. The reciprocal holds and it is known as (Koebe) retro-
section theorem [18]. A modern proof of retrosection theorem is given in
[3] with the help of quasiconformal deformation theory.

Theorem 2 (Retrosection theorem for closed Riemann surfaces) Every
closed Riemann surface may be uniformized by a suitable Schottky group.

4.3. Other equivalent definitions of a Schottky group

A Schottky group G of genus g may also be defined as a geometrically
finite Kleinian group which is purely loxodromic and is isomorphic to a
free group of rank g [5, 23, 25]. Let us consider a regular planar covering
P : ∆→ R. We say that P is a lowest regular planar covering of R if each
time we have another regular planar covering Q : ∆0 → R and a continuous
map T : ∆ → ∆0 with P = QT (then T is necessarily a regular planar
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covering map), then Q is necessarily a homeomorphism. Schottky groups
are known to be the covering groups providing the lowest (holomorphic)
regular planar coverings of closed Riemann surfaces.

4.4. Classical versus nonclassical Schottky groups

L. Bers observed the existence of Schottky groups admitting Schottky gen-
erators for which there is no fundamental set of loops being all of them
circles. It is then important to note that a classical Schottky group may
have a Schottky set of generators for which there is no fundamental set of
loops being circles. Examples of classical Schottky groups are those which
are Fuchsian ones [4]. The theoretical existence of nonclassical Schottky
groups is due to Marden [22]. This is done by comparison of the alge-
braic boundaries of the space of (marked) classical Schottky groups (clas-
sical Schottky space) with the space of (marked) Schottky spaces (Schottky
space). The algebraic boundary of classical Schottky space consists of geo-
metrically finite Kleinian groups and the boundary of Schottky space has
geometrically infinity Kleinian groups. The first claim of a concrete ex-
ample of a nonclassical Schottky group was dome by Zarrow [34] in 1975,
but Sato [32] observed that such an example was classical in 1988. Later,
in 1991, Yamamoto [33] constructed a correct example of a nonclassical
Schottky group of genus 2. In [15] there is also a theoretical construction
of infinitely many nonclassical Schottky groups for every genus.

4.5. A conjecture due to Bers

Let S be a closed Riemann surface of genus g ≥ 2. Retrosection theorem
asserts the existence of Schottky groups that provide uniformizations of S.
Unfortunately, there is no an explicit way to determine when two given
Schottky groups (both of same genus) provide uniformizations of confor-
mally equivalent Riemann surfaces. This problem makes hard a solution to
the following classical problem due to Bers.

Conjecture 1. Every closed Riemann surface of genus g ≥ 2 may be uni-
formized by a classical Schottky group.

It was known to Koebe [19] (see Theorem 5.5) that if the surface admits
an anticonformal involution with fixed points, then it may be uniformized
by a classical Schottky group. This result is also an easy consequence of
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quasiconformal deformation theory. C. McMullen observed, by use of col-
lar’s lemma and modulus of ring domains, that if a closed Riemann surface
of genus g ≥ 2 admits a collection of g pairwise disjoint, homologically inde-
pendent, simple closed geodesics with sufficiently small hyperbolic lenghts,
then it may be uniformized by a classical Schottky group.

5. Retrosection theorem for compact Klein surfaces

5.1. Extended Schottky groups

An extended Schottky group G of genus g is an extended Kleinian group
whose index two orientation preserving half G+ is a Schottky group of
genus g. If we denote by Ω the region of discontinuity of G+, then we
have that Ω is also the region of discontinuity of G. In this case, S+ =
Ω/G+ is a closed Riemann surface of genus g admitting an anticonformal
automorphism τ : S+ → S+ of order 2 so that S = S+/τ = Ω/G. In this
way, S is a compact Klein surface of algebraic genus g with boundary if and
only if τ acts with fixed points on S+. We say that S is uniformized by the
extended Schottky group G. Some particular classes of extended Schottky
groups are defined below.

5.2. Real Schottky groups

A real Schottky group is an extended Schottky group for which its index
two orientation preserving Schottky group keeps invariant a circle on the
Riemann sphere and which is generated by such a Schottky group and the
reflection on the invariant circle.

5.3. Klein-Schottky groups

Let us consider an extended Schottky groups G, with region of discontinuity
Ω, so that S = Ω/G is a closed Klein surface, that is, it has no boundary.
This asserts that G cannot have reflections nor parabolics (then, neither
can have pseudo-parabolics), in particular, the extended Schottky group G
acts freely on its region of discontinuity. These particular class of extended
Schottky groups are called Klein-Schottky groups and can be constructed
as follows [16]. Let m and n be non-negative integers, with m+n > 0. Let
D be a region in the extended complex plane bounded by m+ 2n disjoint
Euclidean circles. Label these circles asB1, . . . , Bm, C1, C

0
1, . . . , Cn, C

0
n. For

i = 1, . . . ,m, let σi be an imaginary reflection mapping the inside ofBi to its
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outside. For j = 1, . . . , n, let ρj be a glide reflection mapping the inside of
Cj to the outside of C

0
j . It is easy to see that G = hσ1, . . . , σm, ρ1, . . . , ρni is

a combination theorem free product of the cyclic groups generated by these
generators, and that G+, the orientation preserving half of G is a Schottky
group (in fact, a classical Schottky group) of genus g = (2n + m − 1);
then, G is a Klein-Schottky group of genus g. We call the group G, or any
quasiconformal deformation of G, an (m,n)-Klein-Schottky group. It is
immediate that any two (m,n)-Klein-Schottky groups define topologically
equivalent uniformizations of topologically equivalent Klein surfaces.

5.4. Retrosection theorem for compact Klein surfaces

Theorem 3 (Retrosection theorem for compact Klein surfaces [16, 17,
19])

An extended Schottky group of genus g uniformizes a Klein surface of
algebraic genus g. Reciprocally, every Klein surface of algebraic genus g can
be uniformized by an extended Schottky group of genus g. The unbordered
case correspond to exactly the Klein-Schottky groups. Moreover, if X is a
closed Klein surface of algebraic genus g, then, for each pair (m,n) of non-
negative integers so that g = 2n+m− 1, there is a (m,n)-Klein-Schottky
group uniformizing X.

5.5. The bordered case

That every bordered compact Klein surface can be uniformized by a real
Schottky group was already known to Koebe.

Theorem 4 (Retrosection theorem for bordered compact Klein sur-
faces [19]) Every bordered compact Klein surface may be uniformized by a
suitable real Schottky group.

6. Retrosection theorem with automorphisms

The previous retrosection theorems may be seen as particular cases of a
more general one which we explain in this section.

Let us consider a closed Riemann surface S and a group H < Aut(S),
whereAut(S) denotes the group of conformal/anticonformal automorphisms
of S; we denote by Aut+(S) its subgroup of conformal automorphisms.
In this case, O = S/H turns out to be a compact orbifold, maybe with
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non-empty border, with a di-analytic structure (a conformal structure if
H < Aut+(S)). Classical retrosection theorem states that S may be uni-
formized by a Schottky group. We may ask for the existence of a Schot-
tky uniformization for which H lifts, that is, to find a Schottky group
G, say with region of discontinuity Ω, and a regular holomorphic covering
P : Ω→ S with G as covering group so that there is a (extended) Kleinian
group K containing G as a normal subgroup and so that K/G represents
H (this means that S/H = Ω/K). If this holds, then we say that H is a
group of Schottky type.

For instance, if H = hτi is the group generated by a symmetry on S,
then the last section asserts that H is of Schottky type.

A collection of pairwise disjoint simple loops on S, say L1, ...., Lk ⊂ S,
is called a Schottky system of loops of H if

(1) each connected component of S − ∪nj=1Lj is a genus zero bordered
surface; and

(2) the collection of loops {L1, ...., Lk} is invariant under the action of
the group H.

We have the following necessary and sufficient condition for a group of
automorphisms to be of Schottky type.

Theorem 5 ([13]) A group H < Aut(S) of automorphisms of a closed
Riemann surface S of genus g ≥ 2 is of Schottky type if and only if there
is a Schottky system of loops of H

The case H = {I} is the classical retrosection theorem and the case
H generated by a symmetry is the retrosection theorem for compact Klein
surfaces.

Theorem 6 may be seen as a retrosection theorem for compact orb-
ifolds. Let us consider a compact orbifold O with a di-analytic structure.
This means the existence of a (extended) function group F , with invariant
component ∆ of its region of discontinuity, so that ∆/F = O. The group F
is finitely generated as consequence of Ahlfors finiteness theorem (applied to
the orientation preserving subgroup of F ). It follows from Selberg’s lemma
that F has a finite index normal subgroup F0. Its orientation preserving
half is then also finite index normal subgroup of F , so we may assume F0
a function group (all its transformations are orientation preserving ones).
In this way, S = ∆/F0 is a closed Riemann surface admitting the group
H = K/F0 < Aut(S). If H is of Schottky type, then we have the existence
of a (extended) Kleinian group K, with region of discontinuity Ω, so that
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Ω/K = O and K contains a Schottky group as a normal subgroup of finite
index. The only problem with this is that the finite index normal subgroup
F0 is non unique and it may happens that a choice for F0 produces a group
which is not of Schottky type and probably we may find another for which
the corresponding group H is of Schottky type. In order to overcome this
problem, we need to observe that Theorem 6 permits to provide a geo-
metrical classification of all those (extended) Kleinian groups containing a
Schottky group as a normal subgroup of finite index. Of course, this is not
an easy task, but if we restrict ourselves to low index, then it can be carry
out. Once this is done, it provides the types of orbifolds O for which a
choice of F0 produxes a Schottky type group of automorphisms.

7. Deformation spaces

Before to continue with more extensions of the retrosection theorem to
degenerate surfaces, we need to recall some definitions and facts.

7.1. Stable Riemann surfaces

A stable Riemann surface is a (not necessarily compact) connected complex
space of dimension one R, that is, defined locally by a (finite) set of analytic
functions, so that the singular points of R (those points at which R fails
to be a two-dimensional real manifold) have a system of neighborhoods
homeomorphic to the set {(z, w) ∈ C2; z · w = 0, |z| < 1, |w| < 1}. These
points are called the nodes of R, and we denote the set of them by N(R)
(the nodal set of R). We say that R is a stable Riemann surface of genus g
if the following hold:

(1) If g ≥ 2, then

(1.1) Every component Ri of R−N(R) is a Riemann surface of genus
gi with ni deleted points so that 2gi − 2 + ni > 0, and

(1.2) If R1,..., Rk are the components of R − N(R) and the number
of nodes of R is m, then g = Σki=1gi +m+ 1− k.

(2) If g = 1, then either R is a Riemann surface of genus one, or N(R)
consists of exactly one point, say p, so that R − {p} is a Riemann
surface conformally equivalent to the punctured plane C∗ = C−{0}.

(3) If g = 0, then R ∼= bC.
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If R is a stable Riemann surface of genus g and N(R) = ∅, then R is
a Riemann surface of genus g. Two stable Riemann surfaces S and R are
said to be topologically equivalent if there is a homeomorphism f : S → R.
If the restriction of such a homeomorphism to the complement of the nodes
f : S − N(S) → R − N(R) is bi—holomorphic, we say that R and S are
conformally equivalent.

7.2. Deligne-Mumford’s compactification

The moduli spaceMg of genus g is by definition the set of conformal classes
of closed Riemann surfaces of genus g. This is a complex analytic space with
singularities, in fact, a quasi-algebraic projective variety. A compactifica-
tion cMg of Mg, called the Deligne-Mumford’s compactification, is obtained
after adding the conformal class of stable Riemann surfaces of genus g and
it turns out that cMg has the structure of an algebraic projective variety of
complex dimension 3g − 3 if g ≥ 2 [30].

7.3. Quasiconformal deformation spaces

Let us consider a (extended) function group (K,∆). Associated to it we
have the unit ball L∞1 (K,∆) is given by the measurable functions μ : bC→
C so that kμk∞ < 1, μ ≡ 0 in ∆c and

μ(k(z)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kz(z)

kz(z)
μ(z), if k ∈ K+;

kz(z)

kz(z)
μ(z), if k ∈ K −K+,

A equivalence relation ∼ is defined on L∞1 (K,∆) as follows. If μ ∈
L∞1 (K,∆), then we have a unique quasiconformal homeomorphism Wμ :bC→ bC, with complex dilation μ, that fixes 0, 1 and ∞. We have that for
each k ∈ K+ (respectively, k ∈ K −K+) the element kμ = WμkWμ−1 is
a Möbius transformation (respectively, extended Möbius transformation) if
k is Möbius transformation (respectively, and extended Möbius transfor-
mation). If we set Kμ = WμKWμ−1, then we have an isomorphism of
groups

χμ : K → Kμ : k 7→ kμ.

We say that μ1, μ2 ∈ L∞1 (K,∆) are equivalent (μ1 ∼ μ2) if χμ1 = χμ2 .
The quotient space

Q(K,∆) = L∞1 (K,∆)/ ∼
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is called the quasiconformal deformation space of (K,∆). As the group K
is finitely generated, by definition, we have that Q(K,∆) is:

(i) a real analytic manifold of finite dimension, if K 6= K+; and

(ii) a complex manifold of finite dimension, if K = K+.

The topology in Q(K,∆) turns out to be the algebraic convergence one.
General details on quasiconformal deformation spaces of Kleinian groups
can be found in the book of S. Nag [31]. In the case that G is a Schottky
group of genus g, with region of discontinuity Ω, its quasiconformal defor-
mation space Q(G) = Q(G,Ω) is called a Schottky space, and it turns out
to be a connected complex manifold of dimension

dimCQ(G) =

⎧⎪⎨⎪⎩
3g − 3, g ≥ 2;
1, g = 1;
0, g = 0.

As a consequence of the retrosection theorem, there is a natural holo-
morphic map from the Schottky space Q(K) onto the moduli space Mg of
closed Riemann surfaces of genus g. Similarly, given an extended Schottky
group Γ of genus g, its quasiconformal deformation space Q(Γ) = Q(Γ,Ω)
is called an extended Schottky space, which is a connected real manifold of
real dimension

dimRQ(Γ) =

⎧⎪⎨⎪⎩
3g − 3, g ≥ 2;
1, g = 1;
0, g = 0.

If we have extended Schottky groups Γ and Γ∗ both algebraically iso-
morphic, then we have a real analytic isomorphism between their respective
deformation spaces.

7.4. Teichmüller and Schottky space

The quasiconformal deformation space of a B-group, uniformizing a closed
Riemann surface of genus g, gives us a model of the universal cover space
of Mg, that is, the Teichmüller space Tg. The quasiconformal deformation
of a Schottky group of genus g (that is, the Schottky space) gives us the
Schottky cover of Mg. The real points on moduli space can be seen as the
projections of the real points on the Schottky space. To obtain, at the level
of Schottky groups, the Deligne-Mumford’s compatification cMg, we need to
add certain boundary points (in the algebraic convergence topology) of the
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Schottky space. Such boundary points correspond to the noded Schottky
groups [9] and the stable Schottky groups, which proceed to define in a
next section.

7.5. Real structures

Let Γ be some extended Schottky group of genus g and set G = Γ+; which
is a Schottky group of genus g. We have a natural real analytic imbedding
of the extended Schottky space Q(Γ) into the Schottky space Q(G) by
restriction of Beltrami coefficients of Γ to G. If we write Γ = hG, τi, then
the extended Möbius transformation τ ∈ Γ induces an antiholomorphic
involution τ∗ on the Schottky space Q(G), defined by

τ∗([μ(z)]) =

"
τz(z)

τz(z)
μ(z)

#
.

The locus of fixed points of τ∗ is exactly the embedding of Q(Γ). In this
way, we may identified the real points of the Klein real structure τ∗ on the
corresponding Schottky space with the extended Schottky space associated
to the extended Schottky group Γ.

We have that real points represented by Klein-Schottky groups corre-
spond to closed Klein surfaces and those represented by extended Schottky
groups which are not Klein-Schottky groups correspond to bordered com-
pact Klein surfaces.

8. Stable Klein surfaces

8.1. Anticonformal involutions on stable Riemann surfaces

An anticonformal involution of a stable Riemann surface S is by definition
a homeomorphism σ : S → S of order two so that on the complement of
the nodes it is an anticonformal map.

8.2. Stable Klein surfaces

A surface of the form S/σ, where S is a stable Riemann surface of genus g
and σ is an anticonformal involution on S, is called a stable Klein surface
of algebraic genus g. The image on X = S/σ of a node on S can be
either: (i) a node (that is, it has a neighborhood homeomorphic to a node
of S); (ii) a half-node (it has a neighborhood homeomorphic to the set
{(z, w) ∈ C2; z · w = 0, |z| < 1, |w| < 1, Im(z) ≥ 0, Im(w) ≥ 0}; (iii)
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a phantom node (it has a neighborhood homeomorphic to the unit disc).
The collection of the nodes, half-nodes and phantom nodes of X = S/σ is
called the nodal set and denoted also by N(X). Let us observe that each
component of the complement of the nodal set of an stable Riemann surface
S of genus g ≥ 2 is of hyperbolic type, that is, it has the hyperbolic plane
as universal cover. It follows that each component of the complement of
the nodal set of a stable Klein surface is also covered (as orbifold) by the
hyperbolic plane.

Example 1. As the only stable Riemann surface of genus zero is the Rie-
mann sphere, we have that the stable Klein surfaces of algebraic genus zero
are the (i) real projective plane RP2 and (ii) the closed disc. As the stable
Riemann surfaces of genus one are either a torus or a torus with one node,
we have that the stable Klein surfaces of algebraic genus one are (i) the
closed annuli, (ii) RP2 with one component border, (iii) the Klein bot-
tle RP2#RP2, (iv) a closed disc with a phantom node, (v) RP2 with a
phantom node and (vi) the closed set formed by the common part of two
tangent different circles.

Stable Klein surfaces of algebraic genus g may be though as the bound-
ary points of the real structures on moduli space Mg. To describe those
points at the level of Schottky groups, we need to consider certain groups,
called extended stable Schottky groups, defined as those groups containing
as index two subgroup a stable Schottky group.

9. Stable and Noded Schottky Groups

In this section we introduce two class of uniformization groups of stable Rie-
mann surfaces, each one given by certain degeneration of Schottky groups.

The first kind of degenerations are given as follows. Let us consider
a B-group (F,∆) so that ∆/F is a closed Riemann surface of genus g.
If N < F is so that G = F/N is free group, then we have that G is a
Schottky group with region of discontinuity Ω = ∆/N . The reciprocal
holds as consequence of the uniformization theorem. We may now consider
some geometrically finite degenerations of the B-group (F,∆) to obtain the
noded πg-groups (see section 9.1). This degenerations of (F,∆) produces
some degenerations of the Schottky group G, obtaining the stable Schottky
groups (see section 9.2). Unfortunately, in general a stable Schottky group
do not act on the Riemann sphere, but on trees of open dense subsets
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of Riemann spheres. Examples of stable Schottky groups were already
considered By Gerritzen and Herrlich in [8]. Their definitions were purely
topological, the one obtained in here are from the point of view of Kleinian
groups.

The second kind of degenerations can be done considering geometrically
finite (algebraic) degenerations of Schottky groups, producing in this way
the noded Schottky groups [9] (see section 9.3). We may see noded Schot-
tky groups as a subclass of stable Schottky groups: they are those stable
Schottky groups acting on a Riemann sphere.

9.1. Noded πg group

A Kleinian group G which is geometrically finite and algebraically isomor-
phic to the fundamental group of a closed orientable surface of genus g
will be called a noded πg group. We have seen in [10] that the region of
discontinuity of a noded πg group G is necessarily non-empty (this is an
easy consequence of Marden’s isomorphism theorem). Let Ωext(G) be its
extended region of discontinuity and Ω(G) its region of discontinuity. We
consider the cuspidal topology on this extended region, that is, the topol-
ogy generated by the usual open sets in Ω(G) together the sets of the form
D1∪D2∪{p}, where p is a double cusped parabolic fixed point and D1 and
D2 are Euclidean discs contained in Ω(G) and tangent at p. It is clear that
a noded π0 group is the trivial group and a π1 group is a rank two Abelian
group. B. Maskit observed in [28] that for g ≥ 2 a noded πg group having
no parabolics is necessarily a quasifuchsian group uniformizing a couple of
closed Riemann surfaces of genus g and, in particular, Ω(G) = Ωext(G) con-
sists of exactly two simply connected invariant components. In the presence
of parabolics elements this is essentially the same situation and we have the
following simultaneous uniformization theorem for stable surfaces.

Theorem 6 [[10]] Let G be a noded πg group, where g ≥ 2. Then Ωext(G)
consists of exactly two components, each one simply connected and in-
variant, and the quotient of each of them by G is a stable Riemann sur-
face of genus g, where the quotient map is analytic outside the parabolic
fixed points. Reciprocally, if S1 and S2 are any two stable Riemann sur-
faces of same genus g ≥ 2, then there is a noded πg group G so that
Ωext(G)/G = S1 ∪ S2.

Remark 1. Some examples of noded πg groups are given by regular B-
groups ( finitely generated Kleinian groups G with a simply connected in-
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variant component ∆ so that Area(∆/G) = Area((Ω(G)−∆)/G) [20]) iso-
morphic to the fundamental group of some closed Riemann surface. Ahlfor’s
finiteness theorem [1] asserts that Ω(G)/G is a finite union of analytically
finite Riemann surfaces. That a regular B-group is geometrically finite is
given, for instance, in [26, 27].

9.2. Stable Schottky groups

Now we proceed to give the first class of groups that give uniformizations of
stable Riemann surfaces that can be seen as certain class of degenerations
of a Schottky group. Some of these groups where already considered in [8].

Let us start with some noded πg group Γ. Let ∆ be one of the two
components of Ωext(Γ). Then S = ∆/Γ is a stable Riemann surface of
genus g. Let K be a normal subgroup of Γ so that G = Γ/K is a free group
of rank g, and set Z = ∆/K with the quotient topology. We have that Z
is a stable Riemann surface so that its nodes are given by the projections
of the double-cusped parabolic fixed points of K inside ∆. The group G
acts as a group of homeomorphisms on Z and as a group of conformal
automorfisms on the complement of its nodes. Let P : Z → S be the
natural quotient map induced by the action of G. We have that P turns
out to be holomorphic in (∆∩Ω(Γ))/K. We say that (Z,G,P : Z → S) is
a stable Schottky uniformization of S and that G is a stable Schottky group
of genus g. Theorem 9.1 asserts the following:

Corollary 1 (Retrosection theorem for stable Riemann surfaces).
Every stable Riemann surface of genus g ≥ 2 can be uniformized by a suit-
able stable Schottky group. Moreover, if the surface S has no nodes, that
is, when S is a closed Riemann surface, then the stable Schottky group is
a Schottky group.

The above result asserts that the boundary points of Mg inside the

Deligne-Mumford’s compactificaton cMg can be uniformized by stable Schot-
tky groups.

Remark 2.

(i) A stable π1 group G containing parabolics is, up to conjugation, gen-
erated by the transformations A(z) = z + 1 and B(z) = z + t, where
Im(t) > 0. We have that Ωext(G) = Ω(G) = C, that is, we have no
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double-cuped parabolic points. In this case, K is a rank one parabolic
subgroup, which we may assume to be generated by the transforma-
tions A. We have that Z = C/hAi = C − {0} and G/K ∼= Z is a
cyclic group generated by a loxodromic transformation which has as
fixed points 0 and∞. In this way, an stable Schottky groups of genus
1 is necessarily a Schottky group.

(ii) Let us consider a regular B-group (Γ,∆) so that ∆/Γ is a closed Rie-
mann surface S of genus two and so that (Ωext(Γ)−∆)/Γ uniformizes
the stable Riemann surface of genus two with one dividing node and
one non-dividing node at each complement of the first. Let K be the
smallest normal subgroup of Γ containing the three primitive parabol-
ics that define these three nodes. If Z = (Ωext(Γ)−∆)/K, then Γ/K
defines a stable Schottky group uniformizing (Ωext(Γ)−∆)/Γ.

9.3. Noded Schottky groups

Now we proceed to the second class of degenerations of Schottky groups.
A noded Schottky group of genus g is a geometrically finite Kleinian group
isomorphic to a free group of rank g. If G is a noded Schottky group
of genus g, then we have that Ω(G) 6= ∅, Ωext(G) is connected and that
S = Ωext(G)/G is an stable Riemann surface of genus g [9]. The triple
(Ωext(G),G, P : Ωext(G)→ S) is called a noded Schottky uniformization of
S. In this case, geometrically finiteness asserts that every parabolic fixed
point of a noded Schottky group is double-cusped, in particular, Ωext(G) is
the union of Ω(G) with all parabolic fixed points. Noded Schottky groups
are obtained as algebraic degenerations of Schottky groups [24].

Remark 3.

(i) We have that the a noded Schottky group of genus one is isomorphic
to the cyclic group hz 7→ z+1i. Recall that we have already observed
that there are no stable Schottky group of genus one except Schottky
groups.

(ii) In the case g ≥ 2, noded Schottky groups are a particular class of
stable Schottky groups as they correspond to the case where K (the
normal subgroup of the noded πg-group Γ so that G = Γ/K as in
the previous section) contains no parabolic transformations on the
component ∆.
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(iii) The group G generated by A(z) = z + 2 and B(z) =
z

iz + 1
, is an

example of a noded Schottky group of genus two which uniformizes a
stable Riemann surface of genus two with three nodes, one of which
is a dividing node.

Theorem 7 (Retrosection theorem for stable Riemann surfaces [9]) If G
is a noded Schottky group of genus g, then Ωext(G)/G is a stable Riemann
surface of genus g; the nodes of this surface being the projection of the
parabolic fixed points. Reciprocally, every stable Riemann surface of genus
g can be uniformized by a noded Schottky group of genus g.

The above result asserts that the boundary points of Mg inside the

Deligne-Mumford’s compactificaton cMg can be also uniformized by noded
Schottky groups, that is, only using some kind of stable Schottky groups.

Theorem 8 [[24]] Noded Schottky groups belong to the (algebraic) bound-
ary of the corresponding Schottky space. They are exactly the geometri-
cally finite boundary points.

The space of noded Schottky groups (containing the class of Schottky
groups) NSg can be embedded into the space bC3g−3 using some correct
choice of fixed points for a normalized collection of free generators of the
groups [9]. The image of Schottky space Sg is an open subset of bC3g−3.
The natural holomorphic cover map (which is not regular) π : Sg → Mg

extends continuously to a natural surjective map π : NSg → cMg. This
construction is different to the one obtained in [8]; where they constructed
an infinite coordinate system. As a matter of completeness, we recall the
following commutator rigidity fact which is related to Torelli’s theorem for
closed Riemann surfaces.

Theorem 9 [[14]] Let G be a noded Schottky group of genus g ≥ 2. Then
G is uniquely determined by its commutator subgroup [G,G].

10. Extended Stable Schottky Groups

In this section we describe uniformizations of stable Klein surfaces by means
of extensions of stable Schottky groups (including noded Schottky groups)
by anticonformal automorphisms of the regions of discontinuity on which
they act.
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10.1. Extended Stable Schottky groups

Let us consider a stable Schottky uniformization (Z,G, P : Z → S) of
some stable Riemann surface S of genus g. If we have an anticonformal
involution τ : S → S which lifts to Z under P : Z → S to an anti-
conformal homeomorphism bτ : Z → Z, then the group K = hG, bτi is
called an extended stable Schottky group of genus g. The extended sta-
ble Schottky group K uniformizes the stable Klein surface S/hτi in the
sense that (Z,K,Q : Z → S/hτi) is an uniformization, where Q = hP and
h : S → S/hτi is the natural projection induced by the action of τ on S.

10.2. Extended Noded Schottky groups

An extended Kleinian group G for which its index two orientation preserv-
ing half G+ is a noded Schottky group is called an extended noded Schottky
group. As in the case of noded Schottky groups, we have that these groups
can be considered as a subclass of extended stable Schottky groups which
act on the Riemann sphere and not on a tree of Riemann spheres. We have
that the stable Riemann surface S = Ωext(G)/G+ admits an anticonformal
involution τ : S → S, which is induced by any element of G−G+. The quo-
tient S/hτi is a stable Klein surface which is uniformized by the extended
Schottky group G, that is, S/hτi = Ωext(G)/G. In section 11.2 we observe
that the stable Klein surface S/hτi is closed and without phantom nodes
if and only if G is freely acting on Ωext(G); we say in this case that G is a
noded Klein-Schottky group.

As noded Schottky groups belong to the algebraic boundary of the
corresponding Schottky space, we have, using similar arguments as in [24],
that noded extended Schottky groups also belong to the algebraic boundary
of the deformation spaces of a suitable extended Schottky group.

Proposition 1. Every noded extended Schottky group of genus g belongs
to the (algebraic) boundary of a suitable extended Schottky space.

Any two Schottky groups of the same genus are known to be quasi-
conformally equivalent, but we have seen in [15] that there are infinitely
many topologically different noded Schottky groups of same genus. More-
over, only finitely many of these topological classes can be neoclassical and
infinitely many are sufficiently complicated. In particular, if in example 2
below we use as Klein-Schottky group a cyclic group of order 2 generated
by some imaginary reflection, we get the following.
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Theorem 10 There are infinitely many topologically different noded Klein-
Schottky groups of a fixed genus at least 2. Infinitely many of these classes
have a sufficiently complicated noded Schottky subgroup as index two ori-
entation preserving half.

11. Retrosection theorems for stable Klein surfaces

We know that extended stable Schottky groups (in particular, extended
noded Schottky groups) give uniformizations of stable Klein surfaces. In
the following we proceed to observe that in fact every stable Klein surface
can be so obtained.

11.1. The non-hyperbolic cases: g ∈ {0, 1}

In example 1 we have listed the stable Klein surfaces of algebraic genus
g ∈ {0, 1}. We proceed to show a corresponding noded extended Schottky
group that uniformizes each one of them.

(i) The closed disc is uniformized by the group generated by a reflection.

(ii) The real projective plane is uniformized by the group generated by
an imaginary reflection.

(iii) The closed annuli is uniformized by the group generated by the re-
flections on two disjoint circles.

(iv) The real projective plane with one border is uniformized by the group
generated by a reflection and an imaginary reflection, each one keep-
ing invariant a circle, so that both circles are disjoint.

(v) The Klein bottle is uniformized by the group generated by two imag-
inary reflections, each one keeping invariant a circle, so that both
circles are disjoint.

(vi) The closed disc with a phantom node is uniformized by the group
generated by the translation z 7→ z + 1 and the reflection z 7→ z.

(v) The real projective plane with a phantom node is uniformized by the
pseudo-parabolic z 7→ z + 1.

(vi) The closed common region bounded by two tangent circles is uni-
formized by the reflections of two tangent circles.
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11.2. The hyperbolic case

We now consider the class of stable Klein surfaces of algebraic genus g ≥ 2.

11.2.1. Closed stable Klein surfaces without phantom nodes

A closed stable Klein surface may only have nodes or phantom nodes.
Let us observe that if G is a noded Klein-Schottky group of genus g (we
denote by G+ its index two noded Schottky subgroup) and τ ∈ G is ori-
entation reversing transformation, then we must have τ2 ∈ G+. Since τ
is required not to have fixed points on Ωext(G), we have that τ cannot
be a pseudo-parabolic transformation. Similarly, if τ is a reflection, then
we must have that its circle C of fixed points of it must be contained in
Λext(G) ⊂ Λ(G+), in particular, G+ has C as part of its limit set. In
this situation, as G+ is a noded Schottky group, we must necessarily have
that G+ contains parabolic transformations (otherwise it will be a Schot-
tky group), whose fixed point will be necessarily fixed by τ , a contradiction
to the freely action property. It follows that the only possibilities for τ
are to be either a imaginary reflection or a glide-reflection. In this way, if
G is a noded Klein-Schottky group of genus g, then it may only contains
loxodromic transformations, parabolic transformations, imaginary reflec-
tions or glide-reflections. Let S = Ωext(G)/G, S+ = Ωext(G)/G+ and
η : S+ → S+ the anticonformal involution induced on S+ by any of the
elements of G−G+. The condition that on Ωext(G) none of the elements
of G−G+ has fixed points gives the following facts:

(i) η has no fixed points on S+ −N(S+); and

(ii) if η has a node of S+ as fixed point, then we must have two parabolic
transformations A,B ∈ G+, with different fixed points, an element
C ∈ G+ and an element τ ∈ G − G+ so that τ and C both send
the fixed point of A to the fixed point of B. In that case, we have
that τ ◦ C−1 ∈ G − G+ will fix a parabolic fixed point belonging to
Ωext(G), a contradiction.

As a consequence of the above we have the following.

Theorem 11 If G is a noded Klein-Schottky group of genus g, then
Ωext(G)/G is a closed stable Klein surface without phantom nodes.

In the following two examples we provide constructions of noded Klein-
Schottky groups which can be used together Klein-Maskit’s combination
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theorems in order to produce a large family of noded Klein-Schottky groups.

Example 2. Let us start with a (m,n)-Klein-Schottky group G1 and per-
form a free product from Klein-Maskit’s combination theorems [23] with
a noded Schottky group G2 of genus p. The group G = hG1, G2i, in
this way constructed, is a noded Klein-Schottky group for which S =
Ωext(G)/G is the connected sum of the closed non-orientable Klein sur-
face S1 = Ω(G1)/G1 of topological genus m+ 2n and the stable Riemann
surface S2 = Ω

ext(G2)/G2 of genus p.

Example 3. Let bτ(z) = z, τ(z) = −z,W (z) = iz, Σ be a circle, orthogonal
to the unit circle, with center at a point p > 1 and disjoint from W (Σ),
and τ1 the reflection on Σ. Set τ2 = W ◦ τ1 ◦ W−1, τ3(z) = −τ1(−z),
τ4(z) = −τ2(−z), r = bτ ◦ τ1, A = τ1 ◦ τ2, B = τ1 ◦ τ3, C = τ1 ◦ τ4 and
η = r ◦ τ . Then we have that r ◦ A ◦ r−1 = C−1, r ◦ B ◦ r1 = B−1,
τ ◦A ◦ τ = B−1 ◦A, τ ◦B ◦ τ = B−1, τ ◦C ◦ τ = B−1 ◦C, η ◦A ◦ η−1 = A,
η ◦B ◦ η−1 = B, η ◦ C ◦ η−1 = B ◦A−1 and η2 = B. The group

G = hη,Ai = hη,A,B,Ci

is a Klein-Schottky group uniformizing a closed non-orientable Klein sur-
face isomorphic to #4RP2. Making p to approach a suitable value p∞ > 1
(when the circles Σ and W (Σ) get tangent) the group G converges alge-
braically to a noded Klein-Schottky group G∞ that uniformizes a stable
surface S∞ with two non-dividing nodes, so that both of them divide S∞
into two components, each one a real projective plane.

Let us observe that using noded Klein-Schottky groups of types de-
scribed in examples 2 and 3 and the first Klein-Maskit’s combination the-
orem we may obtain noded Klein-Schottky groups uniformizing any topo-
logical type of a closed stable Klein surface without phantom nodes. In this
way, quasiconformal deformation theorem permits to obtain the following.

Theorem 12 (Retrosection theorem for closed Klein surfaces without
phantom nodes) If S is a closed stable Klein surface with no phantom nodes,
then there is a noded Klein-Schottky group so that S = Ωext(G)/G.
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11.2.2. No phantom nodes nor half-nodes

In the previous section we have considered the closed stable Klein sur-
faces without phantom nodes. In this section we proceed to consider those
bordered compact stable Klein surfaces without phantom nodes and with-
out half-nodes. Let us start with the following construction.

Example 4. Let G be a noded Klein-Schottky group. By Theorem 11.2.1,
the stable closed Klein surface S = Ωext(G)/G has no phantom nodes. The
nodal set of S is denoted as before as N(S). The components S−N(S) are,
each one, a Riemann surface with at most a finite number of punctures. Let
us consider any componentR of S−N(S). Inside Ω(G) there is a component
∆ ⊂ Ω over R. If G∆ is the stabilizer of ∆ in G, then ∆/G∆ = R. Let
F ⊂ ∆ be a fundamental set for G∆. We may choose a finite collection
of pairwise disjoint circles Σ1,..., Σm, all of them inside F and all of them
bounding a common domain. For each circle Σj we consider the reflection τj
on it. The group K = hG, τ1, ..., τmi is a noded extended Schottky group so
that Ωext(K)/K is topologically S minus the interior of m pairwise disjoint
closed discs inside the component R.

The above construction, done with any collection of components of the
complement of the nodal set, provides stable Klein surfaces having no phan-
tom nodes nor half-nodes and permits to obtain the following.

Theorem 13 (Retrosection theorem for compact Klein surfaces without
phantom nodes nor half-nodes).

If S is a compact stable Klein surface without phantom nodes and
without half-nodes, then there is a noded extended Schottky group so that
S = Ωext(G)/G.
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11.2.3. Adding some phantom nodes

In the previous sections we have considered compact and closed stable
Klein surfaces without phantom nodes. We proceed to find uniformizations
under the presence of them. We first start with the following construction.

Example 5. Let F be a Fuchsian group, acting on a disc ∆, so that ∆/F
is the Riemann sphere with n ≥ 3 punctures. Set G = hF, τi, where τ is the
reflection on the boundary circle of ∆. As F is a noded Schottky group, the
group G is a noded extended Schottky group that uniformizes the stable
Klein surface given by the Riemann sphere with exactly n phantom nodes.

If we use, in the first Klein-Maskit’s combination theorem, noded ex-
tended Schottky groups as in the previous sections and groups as in the
above example, then we may produce at least 3 phantom nodes on each
component of the nodal set of a compact stable surface. This permits us
to obtain the following.

Theorem 14 (Retrosection theorem for compact Klein surfaces without
half-nodes) If S is a compact (including the closed ones) stable Klein surface
with no half-nodes and so that on each component of the complement of
the nodes there are none or at least 3 phantom nodes, then there is a noded
extended Schottky group so that S = Ωext(G)/G.

11.2.4. The general situation

Let us assume we have a pair (S, τ), where S is some stable Riemann
surface of genus g ≥ 2, and τ : S → S is an anticonformal involution. In
order to obtain a uniformization of the stable Klein surface S/hτi by some
noded extended Schottky group or some noded stable Schottky group, we
need to answer the following problem: Is there either a noded Schottky
group or a stable Schottky group uniformizing S for which H = hτi lifts?,
equivalently, Is H of Schottky type? Clearly, if there is a positive answer
to this question, then the group generated by the noded Schottky group
(or the stable Schottky group) and the lifted anticonformal automorphism
will be an extended noded Schottky group (or an extended stable Schottky
group) uniformizing S/hτi.
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By a fattening process of the nodes of S we obtain a closed orientable
surface Σ, a deformation σ : Σ → S and an orientation reversing homeo-
morphism j : Σ→ Σ for which (i) σ ◦ j = τ ◦σ and (ii) each node p ∈ N(S)
is the image of a simple closed curve αp ∈ Σ. We may also assume that if
τ(p) = p, then either :

(1) j acts as the identity on αp;

(2) j has exactly two fixed points on αp.

We may give a Riemann surface structure to Σ so that j is an anti-
conformal involution. Also, we may assume that each loop αp is a simple
closed geodesic. As we have already consider the case when S/hτi is closed
without phantom nodes, we may assume from now on that Fix(τ) 6= ∅. The
following was already proved in [12].

Theorem 15 Let S be a stable Riemann surface of genus g and τ :
S → S an anticonformal involution so that Fix(τ) 6= ∅. Then there is a
stable Schottky uniformization (Z,H,P : Z → S) of S for which τ lifts,
that is, there is an anticonformal automorphism τ∗ : Z → Z such that
P ◦ τ∗ = τ ◦ P .

Corollary 2 (Retrosection theorem for stable Klein surfaces). Every
stable Klein surface can be uniformized by a suitable extended stable Schot-
tky group.

Question 1. Is the above result true by only using extended noded Schot-
tky groups?

11.3. Proof of theorem 11.2.4

Let us consider a stable Riemann surface S (with nodes) of genus g ≥ 2
with an anticonformal involution given by τ : S → S acting with fixed
points. Denote by

N = {P1, ..., Pr, Pr+1 = τ(P1), ..., P2r = τ(Pr), Q1 = τ(Q1), ..., Ql = τ(Ql)}

the set of nodes of S, where r + l > 0, and Q1,..., Ql are exactly the fixed
nodes by τ .

If we consider a neighborhoodW of a node Qj so thatW−{Qj} consists
of two pairwise disjoint punctured discs, then there are two possibilities: (i)



56 Rubén Hidalgo

τ permutes these two discs, or (ii) τ keeps invariant each of the to punctures
discs. In situation (ii), on each of the two punctured discs there are two
pairwise disjoint arcs, each one connecting the puncture to the exterior
border, so that each of these consists of only fixed points of τ .

By fattening the nodes (see, for instance, [21]) as previously stated, we
obtain a closed orientable surface Σ of genus g with an orientation reversing
homeomorphism j : Σ → Σ of order two satisfying conditions (1) and (2)
above. It is well known that we can give to Σ a Riemann surface structure
so that j is an anticonformal involution. The hipothesis of the theorem
asserts that j has fixed points.

Set S0 = Σ, S1 = S, τ0 = j and τ1 = τ . The results from either [21]
or theorem 9.1 assert that we can find a regular B-group G (a noded πg
group), with simply connected invariant component∆0 so that, for k = 0, 1,
Sk = ∆k/G, where ∆1 = Ω

ext(G) −∆0. B. Maskit [28] has shown that G
must have parabolic transformations; otherwise, it will be a quasifuchsian
group and, consequently, S will have no nodes. Let us denote by P (G)
the collection of parabolic fixed points of the noded πg group G. Each
parabolic transformation in G is necesarilly an accidental one (see [23]
for the definition of accidental parabolic transformation) as S0 is a closed
Riemann surface.

For each k ∈ {0, 1}, we set πk : ∆k → Sk = ∆k/G the natural quotient
map induced by the action ofG. We recall that a setX is precisely invariant
under a subgroup Γ of a Kleinian group G if γ(X) = X for all γ ∈ Γ and
γ(X) ∩X = ∅ for all γ ∈ G− Γ. We need the following lemma.
Lemma. There are continuous surjective maps σ̃ : ∆0 → ∆1 and σ : S0 →
S1, such that

(1) π1σ̃ = σπ0;

(2) σ̃ commutes with each element of G;

(3) the preimage under σ̃ of each parabolic fixed point p is a simple arc
precisely invariant under the stabilizer of the point p in G;

(4) all these arcs are pairwise disjoint;

(5) the map σ̃ is a homeomorphism from the complement of the above
arcs onto ∆1 − P (G) = Ω(G)−∆0; and

(6) the map σ is a deformation, where the preimage of each node is exactly
the simple loop obtained by projecting the respective (G class) arc in
(3) via π0.
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Proof. For each node p of S1 we choose a maximal parabolic cyclic
subgroup Hp of G, with fixed point xp ∈ P (G), so that π1(xp) = p. We can
choose a simple arc αp in ∆0 which is precisely invariant under Hp in G.
The end points of such an arc are the same and equal to xp. This arc will
project onto a simple loop on S0. Now consider the G-translates of that
arc. Continuing this construction for each node of S1 we obtain a collection
F of pairwise disjoint arcs, projecting onto a disjoint family of simple loops
on S0. Let X be a connected component of ∆1 − P (G). This component
has stabilizer GX in G. We have that X/GX is one of the connected com-
ponents of S1−N(S1). There is a unique component of ∆0−F , say Y , with
stabilizer GX . Moreover, Y is precisely invariant under GX . Let us consider
the connected component Y/GX of S0 − π0(F ). Since both components X
and Y are simply connected, we have that X/GX and Y/GX are homeo-
morphic surfaces with boundary. We can choose an orientation preserving
homeomorphism σ : Y/GX → X/GX and an orientation preserving homeo-
morphism σ̃ : Y → X, such that σ̃ commutes withGX (by the uniqueness of
universal covering space) and such that π1σ̃ = σπ0. Now we can proceed to
glue all this mappings to obtain a homeomorphism σ̃ : ∆0−F → ∆1−P (G)
and a homeomorphism σ : S0 − π0(F )→ S1 − π1(P (G)) satisfying (1) and
(2). If we extend the map σ̃ to each arc c ∈ F by sending it to its end
point, then we have the desired map. The map σ can be extended to the
above loops continuously preserving the condition (1).

2

Now we continue with the proof of Theorem 11.2.4. The simply con-
nectivity of ∆0 ensures the existence of an anticonformal automorphism
η0 : ∆0 → ∆0 such that π0η0 = τ0π0. Since Fix(τ0) 6= ∅, we may assume
that η0 has fixed points on ∆0, in particular, η

2
0 = I (as consequence of

Riemann mapping theorem).

The set of fixed points of η0 is a simple geodesic arc (respect to the
natural hyperbolic structure on Ω(G)), Ax(η0), with end points in the
boundary of ∆0, and η0 permutes the two components of ∆0 −Ax(η0).

Consider a connected component X1 of S1 −N(S1). Set X2 = τ1(X1).
Fix some lifting X̃1 of X1 in Ω(G)−∆0 and let G1 the stabilizer of X̃1 in
G. Now consider the connected component Ỹ1 of ∆0 − F for which G1 is
its stabilizer (we have that σ̃(Ỹ1) = X̃1). Set Ỹ2 = η0(Ỹ1), G2 its stabilizer
in G, and let us consider the connected component X̃2 of Ω(G)−∆0 with
stabilizer G2 (which is equal to σ̃(Ỹ2)). The equality π1σ̃ = σπ0 asserts
π1(X̃2) = X2. Both, X̃1 and X̃2 are simply connected and, in particular,
we may lift τ1 to an anticonformal map η1 : X̃1 → X̃2 so that η1σ̃ = σ̃η0.
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In particular, η1 induces the same isomorphism θ : G1 → G2 induced by
η0. Proceeding in this way, we may find an anticonformal automorphism
η1 : ∆1 − P (G) → ∆1 − P (G) such that σ̃η0 = η1σ̃. Since the map η1
permutes the maximal parabolic cyclic subgroups of G, we have that this
map extends continuously to all of P (G). By gluing both maps η0 and η1,
we get a new map η : Ω(G)ext → Ω(G)ext satisfying the following:

(i) η is an anticonformal automorphism of Ωext(G);

(ii) it induces an algebraic automorphism of G; and

(iii) η2 ∈ G.

Let (i) K be the group generated by G and η, (ii) T̃ be the torsion part
of K, and (iii) T the index two subgroup of conformal automorphisms of
T̃ . We have that T is a subgroup of G.

Since ∆0 is simply connected, we have from Heltai’s result in [7] that
∆0/T is a planar surface and G/T is a Schottky group of genus g with
region of discontinuity ∆0/T . It follows that G/T (acting on Z = ∆1/T ) is
a stable Schottky group of rank g, defining a stable Schottky uniformization
of S1 = S for which the anticonformal involution τ lifts. This ends the proof
of Theorem 11.2.4.
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