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Abstract

Algebraic systems with partial operations have different ways to
interpret equality between two terms of the language. A strong identity
is a formula which says that two terms are equal in the algebra if the
existence of one of them implies the existence of the other one and in
the case of existence their values are equal. A class of partial algebras
defined by a set of strong identities is called a strong variety. In
the characterization of strong varieties in the case of partial algebras
by means of a Birkhoff-type theorem there appeared a new concept,
regularity of partial homomorphisms and partial subalgebras. Here
we define and study these operators from two different perspectives.
Firstly, in their relation with other well known concecpts of partial
homomorphisms and partial subalgebras, as well as with the po-monoid
of Pigozzi for the H, S and P operators. Secondly, in regard to the
preservation of the different types of formulae that represent equality
in the case of partial algebras for these operators. Finally, we give a
characterization of the strong varieties as classes closed under regular
homomorphisms, regular subalgebras, direct products and that satisfy
a closure condition.
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1. Introduction

The study of partial algebras has its origin in the works of Grätzer and
Tarski, five decades ago. In [4] , there is a chapter devoted to these sys-
tems and most of the concepts and notations that will be used here, are
introduced there. At that time, partial algebras appeared as subsets of
total algebras that are not closed under the operations of the algebra. At
present, partial algebras appear in different fields of mathematics and in
many cases, it can be proved that it is impossible to build a total algebra
that will work as a completion, in the sense that it contains a copy of the
original one, and preserves its structure.

One of the most important theorems about total algebras is due to
Birkhoff and says that the classes of (total) algebras defined by identities
are exactly those which are closed under homomorphisms, subalgebras and
direct products. When dealing with partial algebras, the notions of identity,
homomorphism and subalgebra, split into several different notions and it
becomes relevant to study the relations between them. We shall define
regular homomorphisms and regular subalgebras which are the appropriate
notions in order to work with classes of partial algebras which satisfy a set
of formulae known as strong identities [ see 2.5]. The concepts of regularity
allow us to obtain a characterization which generalizes Birkhoff’s theorem.

We consider partial algebras as structures with a non-empty set as its
universe and with operations that each are defined on a subset of a power
of the universe. We use a first order language with finitary operation sym-
bols. The axiomatic system is a generalization of the usual system to which
we add some specific axioms in order to assure that the variables will al-
ways be assigned to elements of the algebra, to identify all the terms that
are not defined and to secure that all the subterms of a defined term are
also defined. This axiomatic system was developed by Irene Mikenberg in
[5] . Some characterization results for certain equational classes of partial
algebras may be found in the works of Mikenberg [5] , who worked with
strong identities and built a closure for a particular class of partial alge-
bras closed by normal subalgebras which preserves the strong identities;
Peter Burmeister ([2]) who worked with infinitary languages and gave a
Birkhoff type theorem for varieties defined by existentially identities; Fer-
dinand Börner ([1]) who characterized the strong varieties as classes closed
by closed homomorphism, closed subalgebras and reduced products; and
Bozena and Bogdan Staruch ([7] ) who characterized the strong varieties
in terms of five operators including closed homomorphisms and closed sub-
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algebras. This work contains another independent characterization which
uses neither closed homomorphism nor closed subalgebras but instead a
weak notion, the regularity.

2. Preliminaries

In order to obtain a Birkhoff type theorem for a class of partial algebras
it is necessary to make precise the concepts of identity, homomorphism
and subalgebra that we will use. Definitions of regular homomorphism
and subalgebra appear from the need of finding algebraic operators which
preserve some kind of identities called strong identities, and they are the key
to the characterization theorem for strong varieties. We use the following
axiomatic system developed by Mikenberg in [5] .
Let F1 = F1(x1, . . . , xn), F2 = F2(x1, . . . , xn), F3 = F3(x1, . . . , xn) first
order formulae and let σ = σ(x1, . . . , xn), τ = τ(x1, . . . , xn) be terms of the
language:

(A1) (F1 ⇒ F2)⇒ ((F2 ⇒ F3)⇒ (F1 ⇒ F3))

(A2) (¬F1 ⇒ F1)⇒ F1

(A3) F1 ⇒ (¬F1 ⇒ F2)

(A4) ∀x(F1 ⇒ F2)⇒ (∀xF1 ⇒ ∀xF2)

(A5) ∀xF1 ⇒ F1

(A6) F1 ⇒ ∀xF1, where x does not appear in F1.

(A7) ∃x (x ≈ y), where x 6= y and y is a variable symbol.

(A8) (∀x¬(x ≈ σ) ∧ ∀x¬(x ≈ τ))⇒ σ ≈ τ

(A9) σ ≈ τ ⇒ σ1 ≈ τ1, where τ1 is obtained from σ1 substituting one or
more occurrences of τ by σ.

(A10) σ ≈ τ ⇒ (σ1 ≈ τ1 ⇒ σ2 ≈ τ2), where the atomic formula σ2 ≈ τ2 is
obtained from σ1 ≈ τ1 substituting one or more occurrences of τ by
σ.

(A11) ∃x (x ≈ ϕ(σ1, . . . , σn)) ⇒
n̂

i=1

∃x(x ≈ σi), where σ1, . . . , σn are terms

and ϕ is an n-ary operation symbol of the language.
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(A12) ∃x∃x1 . . . ∃xn (x ≈ ϕ(x1, . . . , xn)) for all n-ary operation symbol ϕ
of the language.

From now on, L is a fixed first order language with similarity type Ω of
finitary operations symbols, denoted by small Greeks letters ϕ,ψ, . . .. The
class of partial algebras which satisfies a set Σ of L-formulas is denoted by
Modp(Σ).

Definition 2.1. Let A = hA,ϕAiϕ∈Ω, B = hB,ϕBiϕ∈Ω be partial alge-
bras of L and let h : A → B be a mapping. We say that h : A→ B is
a weak (partial) homomorphism if and only if for any n-ary func-
tion symbol ϕ of L, for all a1, . . . , an ∈ A, if (a1, . . . , an) ∈ DomϕA,
then (h(a1), . . . , h(an)) ∈ DomϕB and in this case, h(ϕA(a1, . . . , an)) =
ϕB(h(a1), . . . , h(an)). In particular, if c is a constant symbol, h(c

A) = cB.

Definition 2.2. Let h be a weak homomorphism from A to B. We say that
h is a full homomorphism if and only if ϕB(h(a1), . . . , h(an)) = h(a0)
implies that there exist elements a00, a

0
1, . . . , a

0
n ∈ A such that h(ai) = h(a0i)

and ϕA(a01, . . . , a
0
n) = a00.

Furthermore, a weak homomorphism h is a closed homomorphism
if and only if ϕB(h(a1), . . . , h(an)) = h(a0) implies that (a1, . . . , an) ∈
DomϕA.

If K is a class of partial algebras of the same type, we denote by
Hw(K), Hf (K) and Hc(K) respectively the classes of weak, full and closed
surjective homomorphic images of K.

If h : A → B is a closed and bijective homomorphism we say that h
is an isomorphism from A onto B or that A is isomorphic to B. I(K)
denotes the class of algebras which are isomorphic to some partial algebra
A ∈ K.

Definition 2.3. A partial algebra B is a weak (partial) subalgebra of
the partial algebra A if idB : B → A is a weak homomorphism, that is to
say, for any b, b1, . . . , bn ∈ B we have that ϕB(b1, . . . , bn) = b implies that
ϕA(b1, . . . , bn) = b.

We say that a partial algebra B is a relative (partial) subalgebra
of the partial algebra A if idB : B → A is a full homomorphism, that is to
say, for any b, b1, . . . , bn ∈ B we have that ϕA(b1, . . . , bn) = b implies that
ϕB(b1, . . . , bn) = b.
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The relative subalgebraB is a normal subalgebra ofA if ϕA(a1, . . . , an) =
b ∈ B implies a1, . . . , an ∈ B.

The relative subalgebra B is a closed subalgebra of A if idB : B → A
is a closed homomorphism, that is to say for any b, b1, . . . , bn ∈ B we
have that (b1, . . . , bn) ∈ DomϕA if and only if (b1, . . . , bn) ∈ DomϕB and
ϕA(b1, . . . , bn) = ϕB(b1, . . . , bn).

We use Sw(K), Sr(K), Sn(K), Sc(K) respectively to denote the class of
partial algebras which are isomorphic to a weak, relative, normal or closed
subalgebra of A.

Definition 2.4. Let {Ai}i∈I be a family of partial algebras of type Ω and
let D be a proper filter over I. The direct product of {Ai}i∈I is defined
as the partial algebra A = h

Y
i∈I

Ai, ϕ
Aiϕ∈Ω where for every n-ary operation

symbol ϕ and every f1 . . . , fn ∈
Q

i∈I Ai we have (f1 . . . , fn) ∈ DomϕA ⇔
∀ i ∈ I ((f1(i), . . . , fn(i)) ∈ DomϕAi ).

The reduced product of {Ai}i∈I is the partial algebra
AD = h

Y
D

Ai, ϕ
A
Diϕ∈Ω, where

Q
DAi = {[f ]D : f ∈ Qi∈I Ai} with [f ]D =

{g ∈
Y
i∈I

Ai : {i ∈ I : f(i) = g(i)} ∈ D} and for every n-ary opera-

tion symbol ϕ and every f1 . . . , fn ∈
Q

i∈I Ai we have ([f1]D . . . , [fn])D ∈
DomϕAD ⇔ {i ∈ I((f1(i), . . . , fn(i)) ∈ DomϕAi )} ∈ D. In this case,
ϕAD([f1]D . . . , [fn])D = [f ]D where

f(i) =

(
ϕAi (f1(i), . . . , fn(i)) if (f1(i), . . . , fn(i)) ∈ DomϕAi
f1(i) if not.

As usual, if D is an ultrafilter we call the algebra AD, an ultraproduct.

We denote by P (K), Pr(K) and PU (K) respectively the class of direct
product, reduced product and ultraproduct of partial algebras in K.

Like the operators H, S and P on classes of total algebras the set

{Hw,Hf ,Hrg,Hc, Sw, Sr, Srg, Sn, Sc, P, Pr, PU}

can be considered as a set of operators on classes of similar partial algebras
with the composition. We can compare operators O1, O2 by O1 ≤ O2 if and
only if O1(K) ⊆ O2(K) for any class of partial algebras K of the language.
Note that O1 ≤ O2 implies QO1 ≤ QO2 and O1Q ≤ O2Q for any operator
Q.
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Definition 2.5. Let σ and τ be terms of the language.

1. An e-identity, briefly, σ ≈e τ , is the formula (∃x x ≈ σ ∧ ∃x x ≈
τ ∧ σ ≈ τ).

2. A s(strong)-identity, σ ≈s τ , is the formula (∃x x ≈ σ ∨ ∃x x ≈
τ)→ (σ ≈ τ).

3. Let {σ1, . . . , σn}, {τ1, . . . , τm} be all the proper subterms of σ and τ
respectively. An E-identity, σ ≈E τ , is the formula:

(∃x x ≈ σ ∧
m̂

j=1

∃xx ≈ τj) ∨ (∃x x ≈ τ ∧
n̂

i=1

∃xx ≈ σi)→ (σ ≈ τ)

4. A w-identity, σ ≈w τ , is the formula (∃x x ≈ σ ∧∃x x ≈ τ)→ (σ ≈
τ).

A class K of partial algebras is an e, s, E, w-variety if there exists a set
Σ of e, s, E, w-identities respectively such that K is precisely the class of
partial algebras which satisfies Σ, that is to say K =Modp(Σ).

3. Properties of the operations on classes of partial algebras

First we give the definition of regular homomorphism and regular subalge-
bra. Let A, B and C be partial algebras of the same type of similarity.

1. A weak homomorphism h : A→ B is a regular homomorphism if
and only if for every term τ of the language L, if τB(h(a1), . . . , h(an)) =
h(a0), there are elements a

0
0, a

0
1, . . . , a

0
n ∈ A such that h(ai) = h(a0i)

and τA(a01, . . . , a
0
n) = a00. We use Hrg(K) to denote the class of par-

tial algebras which are regular homomorphic images of some partial
algebra A ∈ K.

2. We say that C is a regular subalgebra of A if idC : C → A is a
regular homomorphism, that is to say, if for every term τ of the lan-
guage and c1, . . . , cn ∈ C, τA(c1, . . . , cn) = c ∈ C, then τC(c1, . . . , cn)
is defined in C and it is equal to c. Similarly Srg(K) denotes the class
of all partial algebras which are isomorphic to a regular subalgebra
of some algebra A ∈ K.

We will start the study of the algebraic operators with the following crucial
theorem.
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Theorem 3.1. Homomorphism theorem for partial algebras. Let
A, B partial algebras of the same type and h : A → B a weak homomor-
phism. Then:

1. For all n-ary terms τ of the language, τA[a1, . . . , an] = a0 ∈ A implies
that τB[h(a1), . . . , h(an)) = h(a0) ∈ B. In particular, if A |= ∃xx ≈
τ [a1, . . . , an] then B |= ∃xx ≈ τ [h(a1), . . . , h(an)]. Moreover, if h is a
closed and surjective homomorphism, τB(h(a1), . . . , h(an)) = h(a0) ∈
B implies that τA(a1, . . . , an) ∈ A.

2. For all formula F (x1, . . . , xn) of the language such that for all subterm
σ of F we have σA[a1, . . . , an] is defined in A, then A |= F [a1, . . . , an]
implies that B |= F [h(a1), . . . , h(an)]. The condition of the existence
of the subterms of F can be removed when h is a closed homomor-
phism.

Proof: By induction of the length of the terms and formulas taking into
account the special axioms (A7), (A8), (A11) and (A12).

Corollary 3.2. If B is a relative subalgebra of A, then for all n-ary terms
τ of the language and all b1, . . . , bn ∈ B , if τB(b1, . . . , bn) = b ∈ B then
τA(b1, . . . , bn) = b ∈ A.

The basic properties of the regular homomorphism and regular subal-
gebras with respect to the other operators are established in the following

Theorem 3.3. IfHp, Hq ∈ {Hc, Hrg, Hf , Hω} and Sp, Sq ∈ {Sc, Sn, Srg, Sr, Sw}
and Pα ∈ {P,Pr, PU} then:

1. Hc < Hrg < Hf < Hw

2. Sc < Srg < Sr < Sw

3. Sn < Srg

4. Sn and Sc are not comparable.

5. SpSp = Sp and HpHq = max{Hp,Hq}.

6. SqHp ≤ HpSq

7. PαHp < HpPα, PαSq < SqPα

8. SnSc = ScSn = Srg
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Proof:

We just check those assertions concerning to regularity since the others
are well known, see [2] .

1. Let h : A→ B be a closed homomorphism and let τ be a term of the
language such that τB(h(a1), . . . , h(an)) = h(a0) for some elements
a0, a1, . . . , an ∈ A. By induction over the length of the term τ , we
have that τA(a1, . . . , an) = a0, which implies that h is regular. The
other inequality is obvious.

To see that Hc 6= Hrg, let A = hA, ϕA i, B = hB, ϕB i be the fol-
lowing mono-unary partial algebras: A = {a, b, c, d}, ϕ(a) = ϕ(b) =
ϕ(c) = c and not defined in d and B = {0, 1}, ϕ(0) = ϕ(1) = 1.
Note that all the terms of the language are ϕn(x), where ϕ0(x) = x
and ϕn+1(x) = ϕ(ϕn(x)). Let h : A → B be the mapping defined
by h(a) = h(d) = 0, h(b) = h(c) = 1. The next table shows that
h : A → B is a regular but not closed homomorphism from A onto
B. We omit the superscripts for simplicity.

x a b c d

h(ϕ(x)) 1 1 1 -

ϕ(h(x)) 1 1 1 1

ϕn(h(x)) 1 1 1 1

h(ϕn(x)) 1 1 1 -

Finally, to see that Hrg 6= Hf , consider the partial algebras A, B and
the mapping h as above, except that now ϕ(c) is not defined. Then
h is a full but not regular homomorphism. In fact, for every x ∈ A
we have ϕ(h(x)) = 1 = h(c) = h(ϕ(a)) and ϕ2(h(a)) = 1 = h(c) ∈ B,
but ϕ2(x) is not defined in A.

2. The proof of Sc ≤ Srg ≤ Sr is straightforward. To prove that equality
does not hold, let A = hA, si where A = { 0, 1, 2, 3, 4} and s represents
the successor function (hence s(4) is not defined in A). Let B the
relative subalgebra of A with universe B = { 1, 2}. All terms of the
language are of the form sn, hence B ∈ Srg(A), but B /∈ Sc(A)
because s(2) is not defined in B. On the other hand, the relative
subalgebra C of A with universe C = { 0, 3} is not regular, because
s3(0) = 3 is defined in A but it is not defined in C.
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3. The assertion Sn ≤ Srg is immediate from the definition. The regular
subalgebra B of the former example is not a normal subalgebra of A
because s(0) ∈ B, which shows that we have strict inequality.

4. Let A = hA, si the partial algebra of item 2. and let B0 be the
relative subalgebra of A with universe { 0, 1, 2}. It is clear that B0
is a normal but not closed subalgebra of A. On the other hand, the
relative subalgebra C 0 of A with universe { 2, 3, 4} is a closed but not
normal subalgebra of A.

5. Straightforward.

6. Let B ∈ SqHrg(A). Then, there exists a partial algebra C and a
mapping h : A → C such that B ∈ Sq(C) and h is a regular homo-
morphism from A onto C. Consider the relative subalgebra
h−1(B) ∈ Sr(A) with universe h

−1[B]. We will prove that hh−1(B) is a
regular homomorphism onto B. Let τ be a term of the language and
let a0, a1, . . . , an ∈ h−1[B] such that τB(h(a1), . . . , h(an)) = h(a0).
Then there exist a00, . . . , a

0
n ∈ A such that h(ai) = h(a0i), i = 1, . . . , n

and τA(a01, . . . , a
0
n) = a00. But h(a

0
i) ∈ B, therefore

a0i ∈ h−1[B]. Hence B ∈ HrgSr(A) ⊆ HrgSw(A). Now, if B ∈
Srg(C) and τA(b1, . . . , bn) ∈ h−1[B] with b1, . . . , bn ∈ h−1[B] then
h(b1), . . . , h(bn) ∈ B and τC(h(b1), . . . , h(bn)) ∈ B which implies
τB(h(b1), . . . , h(bn)) is defined in B. Hence τh

−1(B)(b1, . . . , bn) is de-
fined in h−1(B) which implies that h−1(B) ∈ Srg(A). If B ∈ Sn(C)
and ϕA(a1, . . . , an) = b ∈ h−1[B],then ϕC(h(a1), . . . , h(an)) = h(b) ∈
B and therefore h(a1), . . . , h(an) ∈ B which implies a1, . . . , an ∈
h−1[B]. Similarly we prove that B ∈ Sc(C) implies h

−1(B) ∈ Sc(A).
Hence B ∈ HrgSq(A). In the same way we prove that SrgHp ≤ HpSrg.

7. Similar to the above proof.

8. Let B ∈ SnSc(A). Then, there exists a partial algebra C such that
C ∈ Sc(A) and B ∈ Sn(C). We will construct recursively a partial
algebra D such that B is a closed subalgebra of D. Let D = A\SXn,
where:

X1 = {a ∈ C \B : ∃ϕ ∈ Ω∃ b1, . . . , bn ∈ B (ϕB(b1, . . . , bn) = a},
Xn+1 = {a ∈ C \B : ∃ϕ ∈ Ω∃ b1, . . . , bn ∈ Xn (ϕ

C(b1, . . . , bn) = a}
Let D be the relative subalgebra of A with universe D. Then B ∈
Sc(D) and D ∈ Sn(A) by construction.
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Now, let B ∈ ScSn(A). Then, there exists a partial algebra C such
that C ∈ Sn(A) and B ∈ Sc(C). We will construct recursively a
partial algebra D such that B is a normal subalgebra of D. Let
D = A \SXn, where

X1 = {a ∈ C\B : ∃ϕ ∈ Ω∃ b1, . . . , bn ∈ C ϕC(b1, . . . , bn) ∈ B, and a =
bi, for some i ∈ {1, . . . , n}},
Xn+1 = {a ∈ C \ B : ∃ϕ ∈ Ω∃ b1, . . . , bn ∈ C (ϕC(b1, . . . , bn) ∈
Xn, and a = bi, for some i ∈ {1, . . . , n}}
Let D be the relative subalgebra of A with universe D. Then B ∈
Sn(D) and D ∈ Sc(A) by construction.

Finally, it is clear that if B ∈ SnSc(A) then B ∈ Srg(A). Suppose
that B ∈ Srg(A). Let X = {a ∈ A \ B : there exists a term τ and
there exist elements b1, . . . , bn ∈ B such that τA(b1, . . . , bn) = a} and
let C be the relative subalgebra of A with universe A \ X. Then
B ∈ Sc(C) and C ∈ Sn(A).

Proposition 3.4. Let K be a class of total algebras of the same type Ω
such thatK = SI(K) (S means total subalgebras). Then Sn(K) = Srg(K).

Proof: Sn(K) = SnS(K) = SnSc(K) = Srg(K).

Observation 3.5. The operators Sn and Srg are in general different for ar-
bitrary classes of partial algebras and they are different for arbitrary classes
of total algebras. This means that a regular subalgebra of a total algebra
is not necessarily a normal subalgebra.

In [6] the lattice of the algebraic operators on classes of total algebras
H,S and P is characterized as the partially ordered monoid (po-monoid)
with three generators and defining relations:

HH = H, SS = S, PP = P
1 ≤ H, 1 ≤ S, 1 ≤ P

SH ≤ HS, PH ≤ HP, PS ≤ SP

It is shown in that paper that this lattice, called S, has exactly 18
elements and any po-monoid with three generators and the above defining
relations is an homomorphic image of S with at least 16 elements. The only
relationships which are not directly obtained from the above conditions are
SHPS 6= HSP (SHPS ≤ HSP is always true) and HPSPHS. Since
operators Hp, Sq and P , verify the defining relations we have the following
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Corollary 3.6. LetHp ∈ {Hc, Hrg, Hf , Hω} and Sq ∈ {Sc, Sn, Srg, Sr, Sw}
and Pα ∈ {P,Pr, PU}. Then the operators Hp, Sq and Pα generate a po-
monoid with at least 16 elements which is a homomorphic image of the
lattice S.

We don’t know yet if SrgHrgPSrg 6= HrgSrgP and HrgPSrgPHrgSrg.

Definition 3.7. Let O be an operator and F a formula of the language.
We say that O preserves the formula F if for any class K of the language,
K |= F ⇒ O(K) |= F .

In [2] it is proved that e-identities are preserved under Hw, Sc and P .
We will prove similar results for the others identities. It is clear that if
O1 ≤ O2 and F is a formula, then O2 preserves F implies that O1 preserves
F .

Proposition 3.8. Let σ, τ be a terms of the language. Then

1. σ ≈s τ is preserved by Hrg and Srg but not by Hf and Sr.

2. σ ≈E τ preserved by Hc and Sr but not by Hrg and Sw.

3. σ ≈w τ preserved by Hc and Sw but not by Hrg.

Proof:
Preservation is straightforward. For instance consider 1. and let h :

A→ B be a regular homomorphism fromA ontoB and let σ ≈s τ(x1, . . . , xn)
be a s-identity such that A |= σ ≈s τ . Let b1, . . . , bn ∈ B such that
B |= ∃xx ≈ σ[b1, . . . , bn]. This means that there exists an element b0 ∈ B
such that σB(b1, . . . , bn) = b0. Because h is a surjective regular homomor-
phism, there exist a0, a1, . . . , an ∈ A such that for i = 0, 1, . . . , n, h(ai) = bi
and σA(a1, . . . , an) = a0. Hence A |= ∃xx ≈ σ[a1, . . . , an], so it follows that
A |= ∃xx ≈ τ [a1, . . . , an]. Moreover, τ

A(a1, . . . , an) = a0.

Now, we give counterexamples for non preservation.

1. Let A = hA,ϕA, ψAi be the partial algebra of type (1, 2) with universe
A = { 0, 1, 2, 3, 4, 5, 6, 7} such that Domϕ = { 0, 2, 5, 6}, Domψ =
{ (0, 2), (5, 5), (5, 6)} and defined by ϕ(0) = 1, ϕ(2) = 4, ϕ(5) =
6, ϕ(6) = 7, ψ(0, 2) = 3, ψ(5, 5) = 7, ψ(5, 6) = 7.

Let B = hB,ϕB, ψBi be the partial algebra of type (1, 2) with uni-
verse B = { a, b, c, d, e, f, g} and DomϕB = { a, b, e, f}, DomψB =
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{ (a, b), (e, e), (e, f)} and defined by ϕ(a) = b, ϕ(b) = d, ϕ(e) =
f, ϕ(f) = g, ψ(a, b) = c, ψ(e, e) = g, ψ(e, f) = g. Let h : A → B be
the following mapping:

x 0 1 2 3 4 5 6 7

h(x) a b b c d e f g

It is easy to check that h is a full homomorphism from A onto B.

Then A |= ψ(x, ϕ(x)) ≈s ϕ(ϕ(x)) because 5 is the only element of
A which satisfies the formula ∃xx ≈ ψ(x, ϕ(x)) ∨ ∃xx ≈ ϕ(ϕ(x))
but B does not preserve the s-identities of A because ϕ(ϕ(a)) = c
and ψ(a, ϕ(a)) = d. Moreover, the relative subalgebra C of A with
universe { 5, 6, 7} shows that the s-identities are not preserved under
Sr.

2. Consider the following partial algebras of type (1, 1) ( The symbol ‘
- ’ means that the operation is not defined ):

x a b c d e f g h i j

ϕ(x) - c - e - - h - j -

ρ(x) b - - - f - i j - -

x 0 1 2 3 4 5 6 7 8

ϕ(x) 1 - - 4 - 6 - 8 -

ρ(x) 3 2 - - - 7 8 - -

Let h : A→ B defined by :

x a b c d e f g h i j

h(x) 0 3 4 0 1 2 5 6 7 8

Then h is a partial homomorphism from A onto B:

x ∈ DomϕA b d g i x ∈ DomρA a e g h

h(ϕ(x)) 4 1 6 8 h(ρ(x)) 3 2 7 8

ϕ(h(x)) 4 1 6 8 ρ(h(x)) 3 2 7 8

The next table shows the behaviour of all the terms defined in B.



A Birkhoff type theorem for strong varieties 213

ϕ(ρ(0)) = 4 0 = h(a) h(ϕ(ρ(a))) = h(c) = 4

ϕ(ρ(5)) = 8 5 = h(g) h(ϕ(ρ(g))) = h(j) = 8

(ψ(ϕ(0)) = 2 0 = h(d) h(ρ(ϕ(d))) = h(f) = 2

ρ(ϕ(5)) = 8 5 = h(g) h(ρ(ϕ(g))) = h(j) = 8

It follows that h is a regular homomorphism.

Now, consider the E-identity ϕ(ρ(x)) ≈E ρ(ϕ(x)). It is easy to see
that A |= ϕA(ρA(x) ≈E ρA(ϕA(x)) but we have ϕB(ψB(0)) = 4 and
ρB(ϕB(0)) = 2.

Finally, the weak subalgebra C of A does not satisfy the E-identity
ϕ(ρ(x)) ≈E ρ(ϕ(x)):

x g h i j

ϕ(x) h - - -

ρ(x) i j - -

3. The example just described in 2 shows that there is no preserva-
tion under regular homomorphisms using the w-identity ϕ(ψ(x)) ≈w
ψ(ϕ(x)).

4. An w-identity is a particular case of an e-quasi-identity, hence there is
no preservation under Hrg. Now, let A = h{ 0, 1, 2, 3}, ϕi with ϕ(0) =
0, ϕ(1) = 2, ϕ(2) = ϕ(3) = 3 and consider the normal (and regular)
subalgebra B with universe B = { 0, 1, 2}. Then, the following e-
quasi-identity is true in A and false in B: ϕ(y) ≈e ϕ(y)→ ϕ(ϕ(y)) ≈e
ϕ(ϕ(ϕ(y))).

To show that there is no preservation under closed homomorphism
consider the following algebras A and B of type (1, 1):

x ∈ A 0 1 2 3 4

ϕ(x) 2 - - 4 4

ρ(x) 1 - - 4 4

x ∈ B a b c d

ϕ(x) b - d d

ρ(x) b - d d
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The mapping h : A→ B is defined by:

x ∈ A 0 1 2 3 4

h(x) a b b c d

Then h is a closed homomorphism from A onto B:

x ∈ A 0 1 2 3 4

h(ϕ(x)) b - - d d

ϕ(h(x)) b - - d d

h(ρ(x)) b - - d d

ρ(h(x)) b - - d d

4. Characterization of strong varieties

Definition 4.1. Let A be a partial algebra and let B be a total algebra
with the same similarity type. We say that B is a closure or completion
of A if and only if A ∈ Sr(B) and A generates B.

In this sense, the free completion T(A) of A generated by A like in a term
algebra as usual is the greatest completion of the algebra A.

Definition 4.2. Let A = hA,ϕAiϕ∈Ω be a partial algebra such that not
all the operations are total in A. We define the trivial completion for
an external point of A as the algebra A• = hA•, ϕA•iϕ∈Ω where p 6∈ A,
A• = A ∪ {p}, and for every n-ary operation symbol ϕ, a1, . . . , an ∈
A•, ϕA

•
(a1, . . . , an) = ϕA(a1, . . . , an) if (a1, . . . , an) ∈ DomϕA and it is

equal to p if not.
If the algebra A is a total algebra, then we define A• = A.

Note first that the next proposition is obvious.

Proposition 4.3. Let A be a partial algebra, A• its trivial completion.
Then A ∈ Sn(A

•) and if σ and τ are n-ary terms of the language, then

A |= σ ≈s τ if and only if A• |= σ ≈ τ

Since for any partial algebra we can construct a total algebra which
preserves its strong identities, we get a Birkhoff type theorem that charac-
terizes strong varieties.
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Theorem 4.4. Let K be a nonempty class of partial algebras and let K• =
{A• : A ∈ K}, K = {A ∈ K : A is a total algebra}. Then, the following
are equivalent

a) K is a strong variety.
b) K = HrgSrgP (K) and K• = K.
c) K = Sn(K) and K is a variety.
d) K = Srg(K) and K is a variety.
e) K = Srg(K•) and K• is closed with respect to H and P .

f) K• is a variety and K = {A : A• ∈ K•}.

Proof:
a)⇒ b) It is easy to see that strong identities are preserved under regular
homomorphisms, regular subalgebras and also under direct products. Then
K = HrgSrgP (K). Furthermore, by definition, A• = A if A is a total alge-
bra, then K ⊆ K•. But if A ∈ K then the total algebra A• preserves the
strong identities of the original partial algebra, hence A• ∈ K. Therefore
the other inclusion is true and we have K• = K.

b) ⇒ c) The completion A• contains the original partial algebra A as a
normal subalgebra and, by hypothesis, it is in the class K. Furthermore, if
A is a total algebra, then HSP (A) ⊆ HrgSrgP(A), hence HSP (K) ⊆ K
and K is a variety.

c)⇒ d) Given that K is closed under subalgebras and every normal subal-
gebra is regular, we will prove that Sn(K) = Srg(K). Although in general
the operators Sn and Srg are different.

Let A ∈ K, B ∈ Srg(A) \ Sn(A). We will construct recursively a
subalgebra C of A such that B is a normal subalgebra of C:

Let C = A \SCm where

C1 = {a ∈ A \B : ∃ϕ ∈ Ω ∃ (a1, . . . , an) ∈ DomϕA (a ∈ {a1, . . . , an} and
ϕA(a1, . . . , an) ∈ B)}

Cm+1 = {a ∈ A \B : ∃ϕ ∈ Ω ∃ (a1, . . . , an) ∈ DomϕA (a ∈ {a1, . . . , an}
and ϕA(a1, . . . , an) ∈ Cm)}

We remove the elements of A that prevent B from being a normal
subalgebra of A.
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It is important to note that if ϕ is an n-ary operation symbol and
b1, . . . , bn ∈ B, then ϕA(b1, . . . , bn) ∈ C, because B is a regular subalgebra
of A.

Let C be the relative subalgebra of A with universe C. Note that C is
a total algebra and therefore C ∈ S(A).

Indeed, if ϕ is an n-ary operation symbol and c1, . . . , cn ∈ C, then the el-
ement ϕC(c1, . . . , cn) ∈ C by construction, otherwise each ci ∈ {c1, . . . , cn}
should be in some Cmi .

Finally, B ∈ Sn(C), by construction of C1.

d) ⇒ e) In order to prove e) we use the fact that K is a variety, then, it
satisfies a set of identities. The set of strong identities that arise from such
set is preserved under regular subalgebras and therefore we have K• = K.

e) ⇒ f) It is not difficult to see that every (total) subalgebra of a total
algebra A is a regular subalgebra of A, too. Hence K• is closed under
H, S and P that is to say K• is a variety. Furthermore, A• ∈ K• implies
A ∈ Srg(K•), hence K = {A : A• ∈ K•}.

f) ⇒ a) If K• is a variety, there exists a set Σ of identities such that
K• = Mod(Σ). We consider the set Σs of the strong identities that arises
from the identities of Σ that axiomatize K•. Then using the fact that
A ∈ Sn(A

•), we obtain that K is a strong variety.
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