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1. Introduction

The space of functions of bounded mean oscillation, or BMO, naturally

arises as the class of functions whose deviation from their means over cubes

is bounded. L∞ functions have this property, but there exist unbounded

functions with bounded mean oscillation, for instance the function log |x| is

in BMO but it is not bounded. The space BMO shares similar properties

with the space L∞ and it often serve as a substitute for it. The space of the

functions with bounded mean oscillation BMO, is well known for its sev-

eral applications in real analysis, harmonic analysis and partial differential

equations.

The definition ofBMO is that f ∈ BMO if supQ
1
|Q|
R
Q |f(x)− fQ| dx =

kfkBMO <∞where fQ = 1
|Q|
R
Q f(y)dy, |Q| is the Lebesgue measure of Q

and Q is a cube in Rn, with sides parallel to the coordinate axes.

In [1] Garnet and Jones gave comparable upper and lower bounds for

the distance

dist (f, L∞) = inf
g∈L∞

kf − gkBMO .(1.1)

The bounds were expressed in terms of one constant in Jhon-Nirenberg

inequality. Jhon and Nirenberg proved in [2] that f ∈ BMO if and only if

there is > 0 and λ0 = λ0( ) such that

sup
Q

1

|Q| |{x ∈ Q : |f(x)− fQ| > λ}| ≤ e−λ/ ,(1.2)

whenever λ > λ0 = λ0(f, ). Indeed, when f ∈ BMO, (1.2) holds with

= CkfkBMO, where the constant c depends only on the dimension.

Specifically, setting

(f) = inf { > 0 : f satisfies (1.2)} ,
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Garnett and Jones proved that

A1 (f) ≤ dist (f, L∞) ≤ A2 (f),

where A1 and A2 are constants depending only on the dimension. Also,

they observed that dist (f,L∞) can be related to the growth of

sup
Q

µ
1

|Q|

Z
Q
|f(x)− fQ|p dx

¶ 1
p

as p→∞. This is because

(f)

e
= lim

p→∞
1

p

Ã
sup
Q

1

|Q|

Z
Q
|f(x)− fQ|p dx

! 1
p

(1.3)

Our latter end is to extend (1.3) to BMOp
ϕ (see Preliminaries and Theorem

6.1) on spaces of homogeneous type. Also, we like to point out that (1.3)

was announced in [1] without proof. Under the light of Remark 1 (see

Preliminaries) we should note that if |B| = μ(B), then our main result

coincide with the result of Garnett and Jones [1].

2. Spaces of homogeneous type

Let us begin by recalling the notion of space of homogeneous type.

Definition 2.1. A quasimetric d on a set X is a function d : X × X →

[0,∞) with the following properties:

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. There exists a constant K such that

d(x, y) ≤ K [d(x, z) + d(z, y)] ,

for all x, y, z ∈ X.
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A quasimetric defines a topology in which the balls

B(x, r) = {y ∈ X : d(x, y) < r} form a base. These balls may be not open

in general; anyway, given a quasimetric d, is easy to construct an equivalent

quasimetric d0 such that the d0-quasimetric balls are open (the existence of d0

has been proved by using topological arguments in [3]). So we can assume

that the quasimetric balls are open. A general method of constructing

families {B(x, δ)} is in terms of a quasimetric.

Definition 2.2. A space of homogeneous type (X, d, μ) is a set X with a

quasimetric d and a Borel measure μ finite on bounded sets such that, for

some absolute positive constant A the following doubling property holds

μ (B(x, 2r)) ≤ Aμ (B(x, r))

for all x ∈ X and r > 0.

Next, we are ready to give some example of a space of homogeneous

type.

Example 1. Let X ⊂ Rn, X = {0}∪{x : |x| = 1} , put inX the euclidean

distance and the following measure μ: μ is the usual surface measure on

{x : |x| = 1} and μ ({0}) = 1. Then μ is doubling so that (X, d, μ) is a

homogeneous space.

Example 2. In Rn, let Ck (k = 1, 2, · · ·) be the point (kk + 1/2, 0, · · · , 0),

for k ≥ 2, let Bk be the ball B(Ck, 1/2) and B1 = B(0, 1/2). Let

X = ∪∞k=1Bk with the euclidean distance and the measure μ such that

μ (Bk) = 2
k and on each ball Bk, μ is uniformly distributed.

Claim 1. μ satisfies the doubling condition. Let Br = B(P, r) with
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P = (P1, . . . , Pn) and r > 0.

Case 1. Assume for some k, Bk ⊂ Br and let k0 = max {k : Bk ⊂ Br}.

Then certainly P1 + r ≤ bk0+1 = (k0 + 1)
k0+1 + 1 and μ(Br) ≥ 2k0 . But,

then

P1 + 2r ≤ 2
³
(k0 + 1)

k0+1 + 1
´

≤ (k0 + 2)
k0+2 = ak0+2.

Therefore B2r ⊂ Bak0+2
(0) ≡ B0. But

μ(B0) =
k0+1X
k=0

2k ≤ 2k0+2 ≤ 4μ(Br).

Hence the doubling condition holds with A = 4.

Case 2. If for all k, Bk 6⊆ Br, then r < 1 so that Br and B2r intersect only

one ball Bk. Then the doubling condition holds.

3. Preliminaries

In this section, we recall the definition of the space of functions of Bounded

(ϕ, p) Mean Oscillation, BMO
(p)
ϕ (X), where X is a space of homogeneous

type (see [4]). Let ϕ be a nonnegative function on [0,∞). A locally μ-

integrable function f : X → R is said to belong to the class BMO
(p)
ϕ (X),

1 ≤ p <∞, if

sup

µ
1

μ(B) [ϕ (μ(B))]p

Z
B
|f(x)− fB|p dμ(x)

¶ 1
p

<∞,

where the sup is taken over all balls B ⊂ X, and

fB =
1

μ(B)

Z
B
f(y)dμ.
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Remark 1. It is not hard to check that the expression

kfkBMOp
ϕ
= sup

B

µ
1

μ(B) [ϕ (μ(B))]p

Z
B
|f(x)− fB|p dμ(x)

¶ 1
p

<∞,(3.1)

define a norm on BMO
(p)
ϕ (X). For ϕ ≡ 1 and p = 1, k · kBMOp

ϕ
coincide

with k · kBMO.

4. John-Nirenberg inequality on homogeneous type space

The proof of this theorem follows along the same lines as the proof of [4].

Theorem 4.1. There exist two positive constants β and b such that for

any f ∈ BMOϕ(X) and any ball B ⊂ X, one has

μ ({x ∈ S : |f − fB| > λ}) ≤ β exp
©
−bλ/kfkBMOϕ

ª
μ(B).(4.1)

Proof. We follows the standard stopping time argument; that is, we

assume that λ is large enough and fix some λ1. Then we study the sets

{x ∈ S : |f(x)− fS | ≤ λ1}, {x ∈ S : |f(x)− fS| ≤ 2λ1} up to

{x ∈ S : |f(x)− fS| ≤ mλ1 ∼ λ}

in showing (4.1), we assume kfkϕ = 1 and fix S = B(a,R). We define a

maximal operator associated to S (if we replace S by another ball, then

the maximal operator changes)

MSf(x) = sup
B ball ,x∈B,B⊂B(a,αR)

½
1

ϕ (μ(B))μ(B)

Z
B
|f(y)− fS | dμ(y)

¾
.

Using a Vitali-type covering lemma, one can prove that

μ ({x :MSf(x) > t}) ≤ A

t
μ(S),
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where A is a constant that depends only on K and k2 but not on S. Take

λ0 > A and consider the open set U = {x :MSf(x) > λ0}. We have

μ (U ∩ S) ≤ A

λ0
μ(S) < μ(S),

and therefore S ∩ U c 6= ∅. Define

r(x) =
1

5K
dist (x,U c) .

If x, y ∈ S, then d(x, y) ≤ 2KR. Since S ∩ U c 6= ∅, if x ∈ S, we have

r(x) ≤ 2KR/(5K) = 2R/5.

Clearly,

U ∩ S ⊂
[

x∈U∩S
B (x, r(x)) ⊂ U.

Again by a Vitali-type covering lemma (e. g, see [1, Theorem 3.1]), we can

select a finite or countable sequence of disjoint balls {B (xj , rj)} such that

rj = rj(x) and

U ∩ S ⊂
[
j

B (xj , 4Krj) ⊂ U.

On the other hand, B (xj , 6Krj) ∩ U c 6= ∅ and B (xj , 6Krj) ⊂ B (a, αR)

because 6krj ≤ 12KR/5. Thus, we get

1

ϕ (μ (B (xj , 6Krj)))μ (B (xj , 6Krj))

Z
B(xj ,6Krj)

|f − fS | dμ ≤ λ0,

and consequently, if we write Sj = B (xj , 4Krj), we obtain

¯̄̄
fS − fSj

¯̄̄
≤ 1

μ (Sj)

Z
Sj

|f − fS| dμ

≤ ϕ (Sj) k
2
2

μ (B (xj ,Krj))
λ0 := λ1

because μ is a doubling measure.
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By differentiation theorem, |f(x)− fS| ≤ λ0 for μ-a.e. x ∈ S \ ∪jSj .

Moreover, X
μ (Sj) ≤ k2

X
j

μ (B (xj , 2Krj))

≤ C
X
j

μ (B (xj , rj))

≤ Cμ (U)

≤ CA

λ0
μ(S).

Now, we do the same construction for each Sj . Again |f(x)− fS | ≤ λ0 for

μ-a.e. x ∈ Sj \ ∪iS(2)i and therefore for these points

|f(x)− fS | ≤
¯̄̄
f(x)− fSj

¯̄̄
+
¯̄̄
fSj − fS

¯̄̄
≤ λ0 +

ϕ (Sj) k
2
2

μ (B (xj ,Krj))
λ0

≤ 2ϕ (Sj) k
2
2

μ (B (xj ,Krj))
λ0,

taking λ0 = 2CA, it is clear that

μ

Ã[
k

S
(2)
k

!
≤

X
j

CA

λ0
μ (Sj)

≤
µ
CA

λ0

¶2
μ(S) = 2−2μ(S).

Continuing in this maner we get N = 1, 2, · · · a family of ball
n
SN
j

o
such

that

μ
³[

SN
j

´
≤ 2−Nμ(S),

finally

μ ({x ∈ S : |f(x)− fS| > λ}) ≤ μ ({x ∈ S : |f(x)− fS | > Nλ1})

≤ μ
³[

SN
j

´
≤ 2−Nμ(S) = e−bλμ(S).

This complete the proof. 2
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5. Completeness

In this section we state some simple lemmas. The first one is showed by

elementary calculations.

Lemma 5.1. Let B0 and B1 be two balls such that B0 ⊂ B1 and f ∈

BMOϕ. Then there exists a constant C depending on B0 and B1 such that

|fB0 − fB1 | ≤ CkfkBMOϕ .

Proof. Indeed,

|fB0 − fB1 | =

¯̄̄̄
1

μ (B0)

Z
B0
(f(y)− fB1) dμ(y)

¯̄̄̄
≤ 1

μ (B0)

Z
B1
|f(y)− fB1 | dμ(y)

=
μ (B1)

μ (B0)

ϕ (μ (B))

ϕ (μ (B))μ (B1)

Z
B1
|f(y)− fB1 | dμ(y)

≤ μ (B1)ϕ (μ (B))

μ (B0)
kfkBMOϕ .

This complete the proof of Lemma 5.1. 2

Lemma 5.2 (John-Nirenberg type). Let f ∈ BMO
(p)
ϕ (X), 1 ≤ p <

∞, then there exists a constant Cp such that

kfkBMOϕ ≤ kfkBMO
(p)
ϕ
≤ CpkfkBMOϕ .

Proof. By Hölder’s inequality we have

1

ϕ (μ(B))μ(B)

Z
B
|f(y)− fB| dμ(y) ≤ supB

³
1

[ϕ(μ(B))]pμ(B)

R
B |f(y)− fB|p dμ(y)

´ 1
p

for any ball, thus

kfkBMOϕ ≤ kfkBMO
(p)
ϕ
.
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On the other handZ
B
|f(y)− fB|p dμ(y) ≤

Z ∞
0

pλp−1μ ({x ∈ B : |f(x)− fB| > λ}) dλ.

By Theorem 4.1, we obtainZ
B
|f(y)− fB|p dμ(y) ≤

Z ∞
0

pλp−1 exp
¡
−bλ/kfkBMOϕ

¢
μ(B)dλ.

Therefore

1

[ϕ (μ(B))]p μ(B)

Z
B
|f(y)− fB|p dμ(y) ≤ pΓ(p)CkfkBMOϕ

and thus

kfk
BMO

(p)
ϕ
≤ CpkfkBMOϕ .

The Lemma is proved. 2

Theorem 5.1. BMO
(p)
ϕ equipped with the norm (3.1) is a Banach space.

Proof. We just need to prove that BMO
(p)
ϕ is complete. To this end,

let us take B1 to be the unit ball centered at the origin. Let fk ∈ BMO
(p)
ϕ ,

for each k = 1, 2, 3, · · ·, such that
∞X
k=1

kfkkBMO
(p)
ϕ

<∞,

and assume that Z
B1

fk(y)dμ(y) = 0.(5.1)

Let B be any ball in X and let B2 be a ball that contains both B1 and B,

then

∞X
k=1

µ
1

μ(B)

Z
B
|fk(y)|p dμ(y)

¶ 1
p

=
³
μ(B2)
μ(B)

´ 1
p P∞

k=1

³
1

μ(B2)

R
B2
|fk(y)|p dμ(y)

´ 1
p .

By Minkoswki’s inequality and by (5.1), we have
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∞X
k=1

µ
1

μ(B)

Z
B
|fk(y)|p dμ(y)

¶ 1
p
µ
[ϕ (μ (B2))]

p μ (B2)

μ(B)

¶ 1
p

≤
∞X
k=1

µ
1

[ϕ (μ (B2))]
p μ (B2)

Z
B2
|fk(y)− fB2 |p dμ(y)

¶ 1
p

+

+

µ
μ (B2)

μ (B)

¶ 1
p
∞X
k=1

µ
1

μ (B2)

Z
B2

¯̄̄
(fk)B2 − (fk)B1

¯̄̄p
dμ(y)

¶ 1
p

≤
µ
[ϕ (μ (B2))]

p μ (B2)

μ(B)

¶ 1
p
∞X
k=1

⎡⎣kfkkBMO
(p)
ϕ
+

µ
μ (B2)

μ (B)

¶ 1
p ¯̄̄
(fk)B2 − (fk)B1

¯̄̄⎤⎦ .
By Lemma 5.1, we have

∞X
k=1

µ
1

μ(B)

Z
B
|fk(y)|p dμ(y)

¶ 1
p

≤
³
μ(B2)
μ(B)

´ 1
p P∞

k=1

∙
kfkkBMOϕ

+ [ϕ (μ (B2))]
p kfkkBMO

(p)
ϕ

¸
.

By Lemma 5.2 is easy to see that

∞X
k=1

µ
1

μ(B)

Z
B
|fk(y)|p dμ(y)

¶ 1
p

≤
³
μ(B2)
μ(B)

´ 1
p P∞

k=1 (1 + [ϕ (μ (B2))]
p) kfkkBMO

(p)
ϕ

.

Therefore
P∞

k=1

³
1

μ(B)

R
B |fk(y)|

p dμ(y)
´ 1
p ≤∞. This means

µ
1

μ(B)

¶ 1
p
∞X
k=1

kfkkLp <∞,(5.2)

and from (5.2), we obtain

f = lim
m→∞

mX
k=1

fk, a. e.

For f ∈ Lp(B), clearly fB =
P∞

k=1 (fk)B.

Finally, we want to show that:



174 René Erĺın Castillo, Julio C. Ramos and Eduard Trousselot

(a) f ∈ BMO
(p)
ϕ (X),

(b) kPm
k=1 fk − fk

BMO
(p)
ϕ
→ 0 as m→ 0.

To this end, observe thatµ
1

[ϕ (μ (B2))]
p μ (B)

Z
B
|f(y)− fB|p dμ(y)

¶ 1
p

=

Ã
1

[ϕ (μ (B2))]
p μ (B)

Z
B

¯̄̄̄
¯
∞X
k=1

(fk(y)− (fk)B)
¯̄̄̄
¯
p

dμ(y)

! 1
p

≤
∞X
k=1

µ
1

[ϕ (μ (B2))]
p μ (B)

Z
B
|fk(y)− (fk)B|

p dμ(y)

¶ 1
p

≤
∞X
k=1

kfkkBMO
(p)
ϕ

<∞,

thus kfk
BMO

(p)
ϕ

<∞, then f ∈ BMO
(p)
ϕ (X). This proves part (a).

On the other hand,⎛⎝ 1

[ϕ (μ (B2))]
p μ (B)

Z
B

¯̄̄̄
¯̄
Ã ∞X
k=1

fk − f

!
(y)−

Ã
mX
k=1

fk − f

!
B

¯̄̄̄
¯̄
p

dμ(y)

⎞⎠
1
p

=

⎛⎝ 1

[ϕ (μ (B2))]
p μ (B)

Z
B

¯̄̄̄
¯̄ ∞X
k=m+1

(fk(y)− (fk)B)

¯̄̄̄
¯̄
p

dμ(y)

⎞⎠
1
p

≤
∞X

k=m+1

µ
1

[ϕ (μ (B2))]
p μ (B)

Z
B
|fk(y)− (fk)B|

p dμ(y)

¶ 1
p

≤
∞X

k=m+1

kfkkBMO
(p)
ϕ
→ 0, as m→∞.

Hence kPm
k=1 fk − fk

BMO
(p)
ϕ
→ 0 as m → 0. This proves part (b). This

completes the proof of the Theorem 5.1. 2

6. Main Result
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Theorem 6.1. Let f ∈ BMO
(p)
ϕ , then there is a constant > 0, such that

supμ ({x ∈ B : |f(x)− fB| > λ}) /μ(B) ≤ e−λ/ ,(6.1)

where λ > λ( , f). Indeed by Theorem 4.1, we have = Ckfk
BMO

(p)
ϕ
and

λ( , f) = Ckfk
BMO

(p)
ϕ
. Now let

(f) = inf { : (6.1) holds } .

Then
(f)

eϕ (μ(B))
= lim

p→∞
1

p
kfk

BMO
(p)
ϕ
.

Proof. SinceZ
B(x,r)

|f(x)− fB|p dμ(x) = p

Z ∞
0

λp−1μ (x ∈ B : |f(x)− fB| > λ) dλ

≤ pμ(B)

Z ∞
0

λp−1e−λ/ dλ

= μ(B) p
Z ∞
0

up−1eudu.

Thus
1

μ(B)

Z
B(x,r)

|f(x)− fB|p dμ(x) ≤ ppΓ(p).

Next, we obtain

1

p
sup

µ
1

[ϕ (μ (B))]p μ (B)

Z
B
|f(y)− fB|p dμ(y)

¶ 1
p

≤ [pΓ(p)]
1
p

ϕ (μ(B)) p

and then,

lim
p→∞

1

p
sup

µ
1

[ϕ (μ (B))]p μ (B)

Z
B
|f(y)− fB|p dμ(y)

¶ 1
p

≤ (f)

eϕ (μ(B))
.(6.2)

On the other hand, if < (f) then there exists B0 ⊂ X, such that

e−λ/ ≤ μ ({x ∈ B0 : |f(x)− fB| > λ}) /μ (B0) .



176 René Erĺın Castillo, Julio C. Ramos and Eduard Trousselot

Thus

pμ (B0)

Z ∞
0

λp−1eλ/ dλ < p

Z ∞
0

λp−1μ (x ∈ B : |f(x)− fB| > λ) dλ

and

[Γ(p)]
1
p

ϕ (μ(B)) p
<
1

p

µ
1

[ϕ (μ (B))]p μ (B)

Z
B
|f(y)− fB|p dμ(y)

¶ 1
p

.

It is follows that

(f)

eϕ (μ(B))
< lim

p→∞
1

p
sup

µ
1

[ϕ (μ (B))]p μ (B)

Z
B
|f(y)− fB|p dμ(y)

¶ 1
p

.(6.3)

Combining (6.2) and (6.3), we obtain the desired result. 2

Remark 2. Theorem 6.1 together with Lemma 5.2 allow us to estimate

the distance from BMO
(p)
ϕ to L∞ in the other words we can estimate

inf
g∈L∞

kf − gk
BMO

(p)
ϕ

with f ∈ BMO
(p)
ϕ .
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Edo. Sucre, Venezuela

e-mail : eddycharles2007@hotmail.com




