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Abstract

In this paper a study of properties of the Mitsch order relation ’μ’
on a regular semigroup and Nambooripads order ’ν’ on any arbitrary
regular semigroup is made. Mainly a characterization of Lallement
order on a regular semigroup is obtained. The necessary and sufficient
condition for the restriction of Lallement order ’λ’ to B(S) to be usual
order on an orthodox semigroup is also obtained.
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1. Introduction

In this paper a study of properties of the Mitsch Order relation ’μ’ on
a regular semigroup S, Lallement order ’λ’ on a regular semi group and
Nambooripads order ν on a regular semigroup of ’S is made. The common
property enjoyed by all the three partial orders λ, ’μ’ and ν is that the set
E (S) is an initial segment (See def. 1.5) of ’S’ under each of these partial
orders. It is interesting to note that λ is a compatible partial order on
a regular semigroup such that λ ∩ [E(S)XE(S)] is contained in the usual
order on E(S), where as Nambooripads partial order ’ν’ is not in general
compatible but ν ∩ [E(S)xE(S)] is the usual order on E(S). It is obtained
in theorem (2.15) that the restriction of Lallement order λ to E(S) is the
usual order on E(S). Nambooripad himself proved that on a regular semi
group ’ν’ is compatible iff ’S’ is a locally inverse semigroup (See def. 1.4).
A necessary and sufficient condition for restriction of Lallement order λ to
E(S) is the usual order on E(S) is also the same i.e., ’S’ is a locally inverse
semi group is also obtained and in this case both λ and ν are same. It is
also observed that in order to show that ν is compatible on ’S’ it is enough
to show that (xey, xfy) ∈ ν whenever ∀(e, f) ∈ ν∀ and ∀x, y ∈ S1. The
necessary and sufficient condition for the restriction of lallement order ’λ’
to B(S) to be the usual order on B(S) is that B(S) is a normal band. It
is also obtained as a corollary that a band B is narmal band if and only if
’λ’ is equal to usual partial order on B(S).

First we start with the following preliminaries

Definition 1.0 : Suppose ’S’ is a semigroup. An element a ∈ S is said
to be regular if there exists x ∈ S such that axa = a. If every element of
’S’ is regular then ’S’ is called a regular semigroup.

Definition 1.1 : On a semigroup ’S’ define the relation ’≤’ on ’S’ by
a ≤ b if there exists two idempotents e, f in S1 (S1 is the monoid obtained
from ’S’ by adjoining an identity 1) such that a = eb = bf .

Definition 1.2 : Suppose (S,.) is a regular semigroup. Then the
Lallement order λ on ’S’ is defined by the rule that aλb iff for all x, y in ’S’
xRxa⇒ xa = xb and yLay ⇒ ay = by.

Definition 1.3 : Suppose (S,.) is a regular semigroup and E(S) is the
set of all Idempotents of ’S’. For any two elements a, b of S, define a relation
ν on ’S’ by aνb if Ra ≤ Rb and (there exist e ∈ E ∩Ra)a = eb. ’ν’ is called
Nambooripads order on ’S’, Ra is the principal right ideal containing a.
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Definition 1.4 : A regular semigroup S with set E of Idempotents will
be called locally inverse if eSe is an inverse semigroup for every e in E.

Definition 1.5 : Suppose (X,≤) is a partially order set. Then a subset
A of X is called an initial segment of Xifx ∈ A whenever x ≤ a ∈ A.

Definition 1.6 : Suppose (S,.) is a semigroup. Then the Mistch order
relation ”μ” on ’S’ is defined for any a, b ∈ S, a0μ’ b, iff there exists s, t ∈ S1

such that sa = sb = a = at = bt. Now we start with the following lemma

Lemma 2.0 : Suppose ”μ” is a Mitsch order relation on ’S’.Then the
restriction of ”μ” to the set of Idempotents of ’S’ coincides with the usual
order on E(S).

Proof : Let (e, f) ∈0 μ’, where e, f ∈ E(S), so that
se = sf = e = et = ft for some s, t ∈ S1 and hence
ef = sef = sf2 = sf = e so that fe = ef = e therefore e ≤ f . Conversely
if e, f ∈ E(s) and e.f = f.e = e, then by choosing s = t = e, we have
se = sf = e = et = ft and hence (e, f) ∈0 μ’, so that the restriction of the
order ’μ’ to E(S) coincides with the usual order on E(S).

Lemma 2.1 : Suppose ’S’ is a semigroup and a me where e is an
Idempotent of ’S’ then a is also an Idempotent of ’S’. In other words, the
set of all Idempotents of ’S’ is an Initial segment of ’S’ under ’μ’.

Proof : Let aμe, where e ∈ E(S), so that there exists s, t ∈ S1 such
that sa = se = a = at = et, and now a2 = seet = set = sa = a and hence
a is an Idempotent of ’S’.

Theorem 2.2 : Suppose a is a regular element of a semigroup ’S’ and
if (a, b) ∈0 μ’ then a ≤ bi.e.a = eb = bf for e, f ∈ E(S1).

Proof : Let (a, b) ∈0 μ’ so that there exists s, t ∈ S1 such that
sa = sb = a = at = bt. For any inverse a0 of a, we have aa’ and a’a are
Idempotents of ’S’. Now, a = aa0a = bta0a (as a = bt) = b (ta0a). Also
(ta0a) (ta0a) = ta0ata0a = ta0aa0a = ta0a so that ta0a ∈ E(S1). Similarly
aa0s ∈ E(S1) for s ∈ S1 and hence a = aa0a = aa0sb = (aa0s)b. Thus
a = eb = bf , Where e = aa0s and f = ta0a and hence a ≤ b.

Remark 2.3 : It can be easily observed that on any semigroup’S’; we
have as a relation ≤⊆0 μ’. ≤ is not in general a transitive relation. However
if a is a regular element of ’S’ and a ≤ b, b ≤ c then a ≤ c.
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Corollary 2.4 : Suppose ’S’ is a semigroup and a is a regular element
of ’S’ such that a = eb = bf and b = gc = ch for e, f, g, h ∈ E(S1) then
a ≤ c.

Proof : We have obviously ≤⊆0μ’. Since (a, b) ∈≤⊆0 μ’ and
(b, c) ∈≤⊆0 μ’ hence (a, c) ∈0 μ’ as ’μ’ is transitive and hence (a, c) ∈≤.

Corollary 2.5 : The Mitsch order relation ’μ’ on a semigroup ’S’ is
such that its restriction to the set E(S) of Idempotents of ’S’ is the usual
order on E(s).

Proof : Proof is obvious.

Remark 2.6 : If ’≤’ is the binary relation defined on a semigroup ’S’
by a ≤ b if and only if a = b or a = eb = bf for some Idempotents e, f of
’S’ and if the Idempotents form a subsemigroup of ’S’ then it can be easily
verified that ’≤’ is a partial order relation on ’S’.

Lemma 2.7 : Suppose ’S’ is a semigroup and ’≤’ on ’S’ is defined by
a ≤ b if either a = b or a = eb = bf for some Idempotents e, f of ’S’. If
to each c∈ Sande ∈ E(S)thereexistsg,h ∈ E(S) such that ce = gc and
fc = ch, then ’≤’ is compatible with multiplication.

Proof : If e, f are Idempotents of ’S’, then from the given condition
there exists an Idempotent g of ’S’ such that ef = ge so that
efe = ge2 = ge = ef and hence ef . ef = ef2 = ef . Thus the set of
Idempotents of ’S’ is a subsemigroup of ’S’. Hence by remark 2.6, ’≤’ is a
partial order relation on ’S’. For a, b ∈ S with a ≤ b, then a = eb = bf .
Since a = eb = bf so that ac = ebc = bfc. We have from the given condition
fc = ch for some Idempotent h and therefore, ac = e(bc) = (bc)h so that
ac ≤ bc. Similarly it can be shown that ca ≤ cb.

Remark 2.8 : The above condition is only sufficient but not necessary
because of the following example

Example 2.9 : Let S = a, b, c, d, e, f Define . on ’S’ as follows : .. a b
c d e f a b b e e e b b b b e e e b c f f d d d f d f f d d d f e b b e e e b f f f
d d d f In this example, the above condition is not satisfied one can easily
verify that ’≤’ is compatible with multiplication and b < a, d < c where a
and c are not regular elements of ’S’. In this example, idempotents form a
subsemigroup of ’S’.
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Theorem 2.10 : Suppose ’S’ is a regular semigroup then Lallement
order ’λ’ on ’S’ is a compatible partial order on ’S’.

Proof : We have aλb if and only if xRxa⇒ xa = xb and
yLay ⇒ ay = by for x, y ∈ S; we have for any a ∈ S, xR x a⇒ xa = xa and
yLay ⇒ ay = ay so that aλa for aya ∈ S. Now, let aλb and bλa(a, b ∈ S),
so that xRxa ⇒ xa = xb and yLay ⇒ ay = by and xRxa ⇒ xb = xa,
yLbyy ⇒ by = ay, taking x = a0 (where a’ is inverse of a), we have a0a = a0b,
and by taking y = b, we have ab = bb and therefore a = aa0a = aa0b (as
a0a = a0b) = aa0bbb (where bis any inverse of b) = aa0abb (as a0b = a0a) =
abb = bbb (as ab = bb) = b. Now, let aλb and bλc for any a, b, c ∈ S. Let
4xRxa and y Lay for x, yx ∈ S, then since aλb, we have xa = xb and
ay = by. Since bλc, we have xb = xc (since xa = xb and x R xa) and there
fore xa = xc. We also have by = cy (since ay = by and yLay). Now, let
aλb for any c ∈ S, We have to show that a cλbc and caλcb. Let xRxac and
yLacys! o that xac = xbc. yLacy we have Sy = Sacy, so that y= zacy for
z ∈ S, then cy = czacy so that Scy = Sczacy ⊆ Sacy ⊆ Scy. Therefore
Scy = Sacy and hence cyLacy implies that acy = bcy so that acλbc. Now
let xRxca and yLcay, so that cay = cby. Since xRxca, we have x = xcaz
for z ∈ S, so that xc = xcazc, impliesthatxcS = xcazcS ⊆ xcaS ⊆ xcS
and hence xcS = xcaS so that xRxca. Therefore xcRxca implies xca = xcb
and hence caλcb, so that ’λ’ is compatible on ’S’ under multiplication.

Corollary 2.11 : Suppose ’S’ is a regular semigroup and if (e, f) ∈ λ
for e, f ∈ E(S), then e ≤ f i.e, e.f = f.e = e.

Proof : Let eλf for e, f ∈ E(S), so that xRxe implies xe = xf and
xLey implies ey = fy. Taking x = y = e, then e = ef = fe.

The following is an example to show that (e, f) 6∈ λ , even though
e.f = f.e = e.

Example 2.12 : Let S = a, b, c, d, Define . On ’S’ by the composition
table as follows : E(S) = a, b, c, d, since b.d = d.b = b so that b ≤ d, but
a = bc 6= dc = d, and hence (b, d) 6∈ λ. .. a b c d a a b a a b a b a b c a b c
c d a b d d

Lemma 2.13 : Suppose ale for e ∈ E(S)thena ∈ E(S)

Proof : It is obvious The following theorem is due to [2]. For the sake
of definiteness, we stated the following.
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Theorem 2.14 : Suppose S is a regular semigroup with set E of Idem-
potents and let the relation λ’ defined by the rule that aλ0b iff
∀a0 ∈ V (a), ∀e ∈ E ∩ aa0S, ∀f ∈ ESa0a, ea = eb, af = bf4, then the
following holds
a. λ ⊆ λ0

b. Suppose (a, b) ∈ λ0, then xRxa implies that ga = gb where g is the
sandwich set S(x0x, aa0) and yLay implies that ah = bhwhere h ∈ S(a0a, yy0)
c. λ = λ0

d. If ∀S∀ is orthodox then λ = (a, b) ∈ SS : ∀a0 ∈ V (a),∀b0 ∈ V (b),
a0ea = a0eb and aea0 = bea0.

Theorem 2.15 : Suppose S is an orthodox semigroup then the restric-
tion of Lallement order ’λ0 to B(S) is the usual order on B(S) iff B(S) is
a normal band.

Proof : Suppose S is an orthodox semigroup and the restriction to
B(S) is the usual order on B(S). As ’λ’ is compatible partial order and
hence the restriction to B(S) is a compatible partial order. So we have A
band B(S) is a normal band iff it is compatible w.r.t multiplication, so that
B(S) is a normal band. Hence restriction of ’λ’ to B(S) is the usual order
on B(S). Conversly suppose that the restriction ’λ’ to B(S) is a normal
band and if for any a, b ∈ E(S)witha.b = b.a = a.

Now we claim that aλb i.e. aea0 = bea0 and a0ea = a0eb∀e ∈ E,
a0 ∈ V (a). Consider bea0 = bea0aa0 = bea0(ab)a0(asab = a) = [b(ea0)ab]a0 =
b(a)(ea0)ba0(asabca = acba) = aea0ba0 (asb.a = a) = aea0ba0aa0 = aea0ba0aa0 =
aba0ea0aa0 (by using normality) = aba0ea0 = aa0ea0(asa.b = a) = aa0ea0aa0 =
aa0ea0aa0 = aea0a0aa0 (by using normality) = aea0a0 = aea0asaea0 ∈ E.
Hence for all e ∈ E, aea0 = bea0. Now we have to show that a0ea = a0eb.

Consider a0eb = a0aa0eb = a0aba0eb(asab = a) = a0aba0eb = a0baa0eb
(normality) = a0ba0eab = a0ba0ea(asa.b = a) = a0ba0eaa0a = a0ba0eaa0a =
a0aba0ea0a (normality) = a0aa0ea0a(asa.b = a) = a0ea0e = a0aa0ea0a =
a0aa0ea0a = a0eaa0a0a (by using normality) = a0eaa0a = a0ea. Hence
λ = (a, b) ∈ SS : ∀a0 ∈ V (a),∀b0 ∈ V (b), a0ea = a0eb and aea0 = bea0 Hence
λ restricted to B(S) is the usual order on B(S) (by using theorem 2.14)

Corollary 2.16 : A band B is a normal band iff λ is equal to usual
partial order on B(S).

Proof : Suppose B is a normal band, then B is an orthodox and
by theorem 2.15 λ restricted to B(S) is the usual partial order on B(S).
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Conversely if λ restricted to B(S) is the usual partial order on B(S) and
λ is compatible, hence the usual partial order on B(S) is also compatible.
Hence B(S) is a normal band.

Theorem 2.17 : Suppose R is a partial order relation on a semigroup
’S’. Then Rb is defined by the rule that a Rbb if (xay, xby) ∈ R∀x, y,∈ S1,
then Rb is the largest compatible relation contained in R.

Proof : We have a Rbb for any a, b ∈ S ⇒ (xay, xby) ∈ R∀x, y ∈ S1.

Reflexive : We have (a, a) ∈ R imply that (a, a) ∈ Rb as a = 1.a.1
and b = 1.b.1. Antisymmetric : Let aRbb and bRba, for any a, b ∈ S.
Since aRbb ⇒ (xay, xby) ∈ R∀x, y ∈ S1.Sinceb Rba ⇒ (xby, xay) ∈ R. In
particular if x = y = 1, then (a, b) ∈ R(b, a) ∈ R so that a = b as R is
antisymmetirc.

Transitive : Let (a, b) ∈ Rb and (b, c) ∈ Rb for any a, b, c ∈ S. Since
(a, b) ∈ Rb so that (xay, xby) ∈ R and (b, c) ∈ Rb so that
(xay, xby) ∈ R∀x, y ∈ S1. As R is transitive, (xay, xcy) ∈ R. Hence R is
a partially order relation on ’S’. For (a, b) ∈ Rb imply that (xay, xby) ∈
R∀x, y ∈ S1 so that (a, b) ∈ Rforx = y = 1, Hence Rb ⊆ R.

Compatibility: Let (a, b) ∈ Rb so that (xay, xby) ∈ R for all x, y ∈ S1

imply that (xcay, xcby) ∈ R and hence (ca, cb) ∈ Rb so that left compati-
bility holds. Similarly for (a, b) ∈ R imply that (xay, xby) ∈ R∀x, y ∈ S1

so that (xacy, xbcy) ∈ R. Hence (ac, ca) ∈ Rb. Here Rbis a compatible
relation on ’S’ contained in R. Let be any compatible partial order rela-
tion on ’S’ which is contained in R. For (a, b) ∈ r ⇒ (a, b) ∈ R. Since
r in compatible so that (xay, xby) ∈ r and hence (xay, xby) ∈ R. Hence
(a, b) ∈ Rb so that r ⊆ Rb. Hence Rb is the largest compatible partial order
relation contained in R.

Theorem 2.18 : Suppose ’S’ is a regular semigroup, then λ = νb where
’ν’ is Nambooripads order on ’S’.

Proof : Let (a, b) ∈ nb then (xay, xby) ∈ ν for all x, y ∈ S1. Now, for
x = u, y = 1, (ua, ub) ∈ ν and so that ue = eub and e ∈ Rua...(1). We have
Ru = Rua ≤ Ru so that Ru = Rua and hence uS = uaS. Since e ∈ Rua so
that Rua = Re as Ru = Rua = Re, we have uS = uaS = ubS ⊆ uS.SothatuS
= uaS = ubS.HenceRub = Reimplythat(e, ub) ∈ R so that eub = eb. But
from (1), eub = ua and hence ua = ub. Similarly vLav ⇒ av = bv. Hence
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(a, b) ∈ νb, we have (a, b) ∈ λ so that nb ⊆ λ...(2). On the other hand, let
(a, b) ∈ λ, we have xRxa ⇒ xa = xb For x = a0, we have (a0, a0a) ∈ R.
Now xa = xb so that a0a = a0b. Since yLay ⇒ ay = by, Choose y = a0, so
that aa0 = ba0. Now, a =aa’a=ba’a∈ bS, sothata ∈ bS.Butfora ∈ bS and
a0 ∈ V (a). So that (a, b) ∈ ν. Hence λ ⊆ ν. Hence ’λ’ is compatible partial
order which is contained in ν. But nb is the largest compatible partial order
relation which is contained in ν. Hence λ ⊆ νb...(3). From (2) and (3) we
have λ = νb

Theorem 2.19 : Suppose ’S’ is a regular semigroup, then the following
conditions are equivalent. (1) (xey, xfy) ∈ ν where (e, f) ∈ ν ∪ (E(S) ×
E(S)) for all x, y ∈ S1. (2) ’ν’ is compatible with multiplication. (3) ’S’ is
a locally inverse semigroup. (4) λ = ν. (5)Restriction of Lallement order λ
to E(S) is the usual order on E(S)

Proof : (1) ⇒ (2)Assume(1)holdsi.e.(xey, xfy)∈ ν whenever (e, f) ∈
νE(S)E(S) for all x, y ∈ S1. Let (a, b) ∈ ν, by using [N1], for every
f ∈ E(Rb), there exists e ∈ Ra such that e.f = f.e = e and a = eb. By
the assumption (xey, xfy) ∈ ν for all x, y ∈ S1 so that (xeb, xfb) ∈ ν for
all x, y ∈ S1 so that (xeb, xfb) ∈ ν (by taking y = b)andhence(xa, xb)
∈ ν...(∗). And also we have (a, b) ∈ ν, by using proposition [3] for each
f ∈ E(Lb) there exists e0 ∈ E(La) such that e0.f 0 = e0 = f 0e0 and a = be0

since (e0, f 0) ∈ ν and (xe0y, xf 0y) ∈ ν such that (be0y, bf 0y) ∈ ν (by taking
x = b) and hence (ay, by) ∈ ν (Since a = be0 and f 0 ∈ E(Lb)). Therefore
(ay, by) ∈ ν...(∗∗). From (*) and (**) we have (xay, xby) ∈ ν for any
(a, b) ∈ ν and hence ’ν’ is compatible with multiplication.

(2) ⇒ (3) : (2) and (3) are equivalent from [3] (3) ⇒ (4) Assume (3),
since ’S’ is a locally inverse semigroup by using (Exercise 6.4; 3 of [2])
λ = nb where νb is the largest compatible relation on ’S’ which is contained
in ν and by using [2] λ = ν. (4) ⇒ (5)Supposeλ = ν, since the restriction
of νtoE(S) is the usual order on E(S) and hence the restriction of λtoE(S)
is also usual order on E(S). (5)⇒ (1). Assume (5), i.e the restriction of to
E(S) in the usual order on E(S) and let (e, f) ∈ ν ∩ E(S)xE(S) so that
e.f = f.e = e and hence e ≤ finλ. Since the restriction of λ to E(S) is
the usual order on E(S), we have (e, f) ∈ nb. Hence (xey, xfy) ∈ ν for
all x, y ∈ S1. Hence the given conditions on any regular semigroup ’S’ are
equivalent.
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