Proyecciones Vol. 27, N^o 2, pp. 145–153, August 2008. Universidad Católica del Norte Antofagasta - Chile DOI:10.4067/S0716-09172008000200002

CHARACTERIZATION OF LALLEMENT ORDER ON A REGULAR SEMIGROUP

K. V. R. SRINIVAS REGENCY INSTITUTE OF TECHNOLOGY, ADAVIPOLAM - YANAM

Received : July 2007. Accepted : March 2008

Abstract

In this paper a study of properties of the Mitsch order relation ' μ ' on a regular semigroup and Nambooripads order ' ν ' on any arbitrary regular semigroup is made. Mainly a characterization of Lallement order on a regular semigroup is obtained. The necessary and sufficient condition for the restriction of Lallement order ' λ ' to B(S) to be usual order on an orthodox semigroup is also obtained.

Key Words : Nambooripads Order ν , Mitsch Order ' μ ', Lallement order λ .

AMS Subject Classification 2000 : 20 M 18.

1. Introduction

In this paper a study of properties of the Mitsch Order relation ' μ ' on a regular semigroup S, Lallement order ' λ ' on a regular semi group and Nambooripads order ν on a regular semigroup of 'S is made. The common property enjoyed by all the three partial orders λ , ' μ ' and ν is that the set E (S) is an initial segment (See def. 1.5) of 'S' under each of these partial orders. It is interesting to note that λ is a compatible partial order on a regular semigroup such that $\lambda \cap [E(S)XE(S)]$ is contained in the usual order on E(S), where as Nambooripads partial order ' ν ' is not in general compatible but $\nu \cap [E(S)xE(S)]$ is the usual order on E(S). It is obtained in theorem (2.15) that the restriction of Lallement order λ to E(S) is the usual order on E(S). Nambooripad himself proved that on a regular semi group ' ν ' is compatible iff 'S' is a locally inverse semigroup (See def. 1.4). A necessary and sufficient condition for restriction of Lallement order λ to E(S) is the usual order on E(S) is also the same i.e., 'S' is a locally inverse semi group is also obtained and in this case both λ and ν are same. It is also observed that in order to show that ν is compatible on 'S' it is enough to show that $(xey, xfy) \in \nu$ whenever $\forall (e, f) \in \nu \forall$ and $\forall x, y \in S^1$. The necessary and sufficient condition for the restriction of lallement order ' λ ' to B(S) to be the usual order on B(S) is that B(S) is a normal band. It is also obtained as a corollary that a band B is narmal band if and only if λ is equal to usual partial order on B(S).

First we start with the following preliminaries

Definition 1.0 : Suppose 'S' is a semigroup. An element $a \in S$ is said to be regular if there exists $x \in S$ such that axa = a. If every element of 'S' is regular then 'S' is called a regular semigroup.

Definition 1.1 : On a semigroup 'S' define the relation ' \leq ' on 'S' by $a \leq b$ if there exists two idempotents e, f in S^1 (S^1 is the monoid obtained from 'S' by adjoining an identity 1) such that a = eb = bf.

Definition 1.2 : Suppose (S,.) is a regular semigroup. Then the Lallement order λ on 'S' is defined by the rule that $a\lambda b$ iff for all x, y in 'S' $x\mathbf{R}xa \Rightarrow xa = xb$ and $y\mathcal{L}ay \Rightarrow ay = by$.

Definition 1.3 : Suppose (S,.) is a regular semigroup and E(S) is the set of all Idempotents of 'S'. For any two elements a, b of S, define a relation ν on 'S' by $a\nu b$ if $R_a \leq R_b$ and (there exist $e \in E \cap Ra)a = eb$. ' ν ' is called Nambooripads order on 'S', Ra is the principal right ideal containing a.

Definition 1.4 : A regular semigroup S with set E of Idempotents will be called locally inverse if eSe is an inverse semigroup for every e in E.

Definition 1.5 : Suppose (X, \leq) is a partially order set. Then a subset A of X is called an initial segment of $Xifx \in A$ whenever $x \leq a \in A$.

Definition 1.6 : Suppose (S,.) is a semigroup. Then the Mistch order relation " μ " on 'S' is defined for any a, b $\in S, a'\mu$ ' b, iff there exists $s, t \in S^1$ such that sa = sb = a = at = bt. Now we start with the following lemma

Lemma 2.0 : Suppose " μ " is a Mitsch order relation on 'S'. Then the restriction of " μ " to the set of Idempotents of 'S' coincides with the usual order on E(S).

Proof: Let $(e, f) \in '\mu'$, where $e, f \in E(S)$, so that se = sf = e = et = ft for some $s, t \in S^1$ and hence ef = sef = sf2 = sf = e so that fe = ef = e therefore $e \leq f$. Conversely if $e, f \in E(s)$ and e.f = f.e = e, then by choosing s = t = e, we have se = sf = e = et = ft and hence $(e, f) \in '\mu'$, so that the restriction of the

order ' μ ' to E(S) coincides with the usual order on E(S).

Lemma 2.1 : Suppose 'S' is a semigroup and a me where e is an Idempotent of 'S' then a is also an Idempotent of 'S'. In other words, the set of all Idempotents of 'S' is an Initial segment of 'S' under ' μ '.

Proof : Let $a\mu e$, where $e \in E(S)$, so that there exists $s, t \in S^1$ such that sa = se = a = at = et, and now $a^2 = seet = set = sa = a$ and hence a is an Idempotent of 'S'.

Theorem 2.2: Suppose a is a regular element of a semigroup 'S' and if $(a, b) \in' \mu$ ' then $a \leq bi.e.a = eb = bf$ for $e, f \in E(S1)$.

Proof: Let $(a, b) \in '\mu'$ so that there exists $s, t \in S^1$ such that sa = sb = a = at = bt. For any inverse a' of a, we have aa' and a'a are Idempotents of 'S'. Now, a = aa'a = bta'a (as a = bt) = b (ta'a). Also (ta'a) (ta'a) = ta'ata'a = ta'aa'a = ta'a so that $ta'a \in E(S^1)$. Similarly $aa's \in E(S^1)$ for $s \in S^1$ and hence a = aa'a = aa'sb = (aa's)b. Thus a = eb = bf, Where e = aa's and f = ta'a and hence $a \leq b$.

Remark 2.3 : It can be easily observed that on any semigroup'S'; we have as a relation $\leq \subseteq' \mu'$. \leq is not in general a transitive relation. However if a is a regular element of 'S' and $a \leq b, b \leq c$ then $a \leq c$.

Corollary 2.4 : Suppose 'S' is a semigroup and a is a regular element of 'S' such that a = eb = bf and b = gc = ch for $e, f, g, h \in E(S1)$ then $a \leq c$.

Proof: We have obviously $\leq \subseteq' \mu'$. Since $(a, b) \in \leq \subseteq' \mu'$ and $(b, c) \in \leq \subseteq' \mu'$ hence $(a, c) \in' \mu'$ as ' μ ' is transitive and hence $(a, c) \in \leq$.

Corollary 2.5: The Mitsch order relation μ' on a semigroup 'S' is such that its restriction to the set E(S) of Idempotents of 'S' is the usual order on E(s).

Proof : Proof is obvious.

Remark 2.6 : If ' \leq ' is the binary relation defined on a semigroup 'S' by $a \leq b$ if and only if a = b or a = eb = bf for some Idempotents e, f of 'S' and if the Idempotents form a subsemigroup of 'S' then it can be easily verified that ' \leq ' is a partial order relation on 'S'.

Lemma 2.7 : Suppose 'S' is a semigroup and ' \leq ' on 'S' is defined by $a \leq b$ if either a = b or a = eb = bf for some Idempotents e, f of 'S'. If to each $c \in Sande \in E(S)$ there exists g, $h \in E(S)$ such that ce = gc and fc = ch, then ' \leq ' is compatible with multiplication.

Proof : If e, f are Idempotents of 'S', then from the given condition there exists an Idempotent g of 'S' such that ef = ge so that efe = ge2 = ge = ef and hence ef. ef = ef2 = ef. Thus the set of Idempotents of 'S' is a subsemigroup of 'S'. Hence by remark 2.6, ' \leq ' is a partial order relation on 'S'. For $a, b \in S$ with $a \leq b$, then a = eb = bf. Since a = eb = bf so that ac = ebc = bfc. We have from the given condition fc = ch for some Idempotent h and therefore, ac = e(bc) = (bc)h so that $ac \leq bc$. Similarly it can be shown that $ca \leq cb$.

Remark 2.8 : The above condition is only sufficient but not necessary because of the following example

Example 2.9 : Let S = a, b, c, d, e, f Define . on 'S' as follows : ... a b c d e f a b b e e e b b b b e e e b c f f d d d f d f f d d d f e b b e e e b f f f d d d f In this example, the above condition is not satisfied one can easily verify that ' \leq ' is compatible with multiplication and b < a, d < c where a and c are not regular elements of 'S'. In this example, idempotents form a subsemigroup of 'S'.

Theorem 2.10 : Suppose 'S' is a regular semigroup then Lallement order ' λ ' on 'S' is a compatible partial order on 'S'.

Proof: We have $a\lambda b$ if and only if $x\mathbf{R}xa \Rightarrow xa = xb$ and $yLay \Rightarrow ay = by$ for $x, y \in S$; we have for any $a \in S$, $x \mathbf{R} \times a \Rightarrow xa = xa$ and $yLay \Rightarrow ay = ay$ so that $a\lambda a$ for $aya \in S$. Now, let $a\lambda b$ and $b\lambda a(a, b \in S)$, so that $x\mathbf{R}xa \Rightarrow xa = xb$ and $yLay \Rightarrow ay = by$ and $x\mathbf{R}xa \Rightarrow xb = xa$, $y\mathcal{L}byy \Rightarrow by = ay$, taking x = a' (where a' is inverse of a), we have a'a = a'b, and by taking y = b, we have ab = bb and therefore a = aa'a = aa'b (as a'a = a'b = aa'bbb (where b is any inverse of b) = aa'abb (as a'b = a'a = a'ab) abb = bbb (as ab = bb) = b. Now, let $a\lambda b$ and $b\lambda c$ for any $a, b, c \in S$. Let $4x\mathbf{R}xa$ and y Lay for $x, yx \in S$, then since $a\lambda b$, we have xa = xb and ay = by. Since $b\lambda c$, we have xb = xc (since xa = xb and $x \mathbf{R} xa$) and there fore xa = xc. We also have by = cy (since ay = by and yLay). Now, let $a\lambda b$ for any $c \in S$, We have to show that a $c\lambda bc$ and $ca\lambda cb$. Let $x\mathbf{R}xac$ and $y\mathcal{L}acys!$ o that xac = xbc. $y\mathcal{L}acy$ we have Sy = Sacy, so that y = zacy for $z \in S$, then cy = czacy so that $Scy = Sczacy \subseteq Sacy \subseteq Scy$. Therefore Scy = Sacy and hence $cy \mathcal{L}acy$ implies that acy = bcy so that $ac\lambda bc$. Now let $x\mathbf{R}xca$ and $y\mathcal{L}cay$, so that cay = cby. Since $x\mathbf{R}xca$, we have x = xcazfor $z \in S$, so that xc = xcazc, implies that $xcS = xcazcS \subseteq xcaS \subseteq xcS$ and hence xcS = xcaS so that $x\mathbf{R}xca$. Therefore $xc\mathbf{R}xca$ implies xca = xcband hence $ca\lambda cb$, so that ' λ ' is compatible on 'S' under multiplication.

Corollary 2.11 : Suppose 'S' is a regular semigroup and if $(e, f) \in \lambda$ for $e, f \in E(S)$, then $e \leq f$ i.e, $e \cdot f = f \cdot e = e$.

Proof: Let $e\lambda f$ for $e, f \in E(S)$, so that $x\mathbf{R}xe$ implies xe = xf and xLey implies ey = fy. Taking x = y = e, then e = ef = fe.

The following is an example to show that $(e, f) \notin \lambda$, even though e.f = f.e = e.

Example 2.12 : Let S = a, b, c, d, Define . On 'S' by the composition table as follows : E(S) = a, b, c, d, since b.d = d.b = b so that $b \leq d$, but $a = bc \neq dc = d$, and hence $(b, d) \notin \lambda$ a b c d a a b a b a b a b c a b c c d a b d d

Lemma 2.13 : Suppose all for $e \in E(S)$ then $a \in E(S)$

Proof: It is obvious The following theorem is due to [2]. For the sake of definiteness, we stated the following.

Theorem 2.14 : Suppose S is a regular semigroup with set E of Idempotents and let the relation λ' defined by the rule that $a\lambda'b$ iff

 $\forall a' \in V(a), \ \forall e \in E \cap aa'S, \ \forall f \in ESa'a, \ ea = eb, \ af = bf4$, then the following holds

a. $\lambda \subseteq \lambda'$

b. Suppose $(a, b) \in \lambda'$, then $x \mathbf{R} x a$ implies that ga = gb where g is the sandwich set S(x'x, aa') and $y \mathcal{L} ay$ implies that ah = bh where $h \in S(a'a, yy')$ c. $\lambda = \lambda'$

d. If $\forall S \forall$ is orthodox then $\lambda = (a, b) \in SS : \forall a' \in V(a), \forall b' \in V(b), a'ea = a'eb$ and aea' = bea'.

Theorem 2.15 : Suppose S is an orthodox semigroup then the restriction of Lallement order ' λ' to B(S) is the usual order on B(S) iff B(S) is a normal band.

Proof: Suppose S is an orthodox semigroup and the restriction to B(S) is the usual order on B(S). As ' λ ' is compatible partial order and hence the restriction to B(S) is a compatible partial order. So we have A band B(S) is a normal band iff it is compatible w.r.t multiplication, so that B(S) is a normal band. Hence restriction of ' λ ' to B(S) is the usual order on B(S). Conversely suppose that the restriction ' λ ' to B(S) is a normal band and if for any a, b $\in E(S)$ with a.b = b.a = a.

Now we claim that $a\lambda b$ i.e. aea' = bea' and $a'ea = a'eb \forall e \in E$, $a' \in V(a)$. Consider $bea' = bea'aa' = bea'(ab)a'(asab = a) = [b(ea')ab]a' = b(a)(ea')ba'(asabca = acba) = aea'ba'(asb.a = a) = aea'ba'aa' = aea'ba'aa' = aba'ea'aa' (by using normality) = aba'ea' = aa'ea'(asa.b = a) = aa'ea'aa' = aa'ea'aa' = aa'ea'aa' = aea'a'aa' (by using normality) = aea'a' = aea'a'aa' \in E$. Hence for all $e \in E$, aea' = bea'. Now we have to show that a'ea = a'eb.

Consider a'eb = a'aa'eb = a'aba'eb(asab = a) = a'aba'eb = a'baa'eb(normality) = a'ba'eab = a'ba'ea(asa.b = a) = a'ba'eaa'a = a'ba'eaa'a = a'aba'ea'a (normality) = a'aa'ea'a(asa.b = a) = a'ea'e = a'aa'ea'a = a'aa'ea'a = a'eaa'a'a (by using normality) = a'eaa'a = a'ea. Hence $\lambda = (a, b) \in SS : \forall a' \in V(a), \forall b' \in V(b), a'ea = a'eb$ and aea' = bea' Hence λ restricted to B(S) is the usual order on B(S) (by using theorem 2.14)

Corollary 2.16 : A band *B* is a normal band iff λ is equal to usual partial order on B(S).

Proof: Suppose B is a normal band, then B is an orthodox and by theorem 2.15 λ restricted to B(S) is the usual partial order on B(S).

Conversely if λ restricted to B(S) is the usual partial order on B(S) and λ is compatible, hence the usual partial order on B(S) is also compatible. Hence B(S) is a normal band.

Theorem 2.17 : Suppose R is a partial order relation on a semigroup 'S'. Then Rb is defined by the rule that a $\mathbb{R}^{b}b$ if $(xay, xby) \in \mathbb{R} \forall x, y, \in S^{1}$, then \mathbb{R}^{b} is the largest compatible relation contained in R.

Proof: We have a $R^b b$ for any $a, b \in S \Rightarrow (xay, xby) \in R \forall x, y \in S^1$.

Reflexive : We have $(a, a) \in R$ imply that $(a, a) \in R^b$ as a = 1.a.1and b = 1.b.1. Antisymmetric : Let aRbb and bRba, for any $a, b \in S$. Since $aR^bb \Rightarrow (xay, xby) \in R \forall x, y \in S1.Sinceb R^ba \Rightarrow (xby, xay) \in R$. In particular if x = y = 1, then $(a, b) \in R(b, a) \in R$ so that a = b as R is antisymmetric.

Transitive : Let $(a, b) \in Rb$ and $(b, c) \in R^b$ for any $a, b, c \in S$. Since $(a, b) \in R^b$ so that $(xay, xby) \in R$ and $(b, c) \in R^b$ so that $(xay, xby) \in R \forall x, y \in S^1$. As R is transitive, $(xay, xcy) \in R$. Hence R is a partially order relation on 'S'. For $(a, b) \in R^b$ imply that $(xay, xby) \in R \forall x, y \in S^1$ so that $(a, b) \in Rforx = y = 1$, Hence $R^b \subseteq R$.

Compatibility: Let $(a, b) \in \mathbb{R}^b$ so that $(xay, xby) \in \mathbb{R}$ for all $x, y \in S^1$ imply that $(xcay, xcby) \in \mathbb{R}$ and hence $(ca, cb) \in \mathbb{R}^b$ so that left compatibility holds. Similarly for $(a, b) \in \mathbb{R}$ imply that $(xay, xby) \in \mathbb{R} \forall x, y \in S^1$ so that $(xacy, xbcy) \in \mathbb{R}$. Hence $(ac, ca) \in \mathbb{R}^b$. Here \mathbb{R}^b is a compatible relation on 'S' contained in \mathbb{R} . Let be any compatible partial order relation on 'S' which is contained in \mathbb{R} . For $(a, b) \in r \Rightarrow (a, b) \in \mathbb{R}$. Since r in compatible so that $(xay, xby) \in r$ and hence $(xay, xby) \in \mathbb{R}$. Hence $(a, b) \in \mathbb{R}^b$ so that $r \subseteq \mathbb{R}^b$. Hence \mathbb{R}^b is the largest compatible partial order relation contained in \mathbb{R} .

Theorem 2.18 : Suppose 'S' is a regular semigroup, then $\lambda = \nu^b$ where ' ν ' is Nambooripads order on 'S'.

Proof: Let $(a, b) \in nb$ then $(xay, xby) \in \nu$ for all $x, y \in S^1$. Now, for $x = u, y = 1, (ua, ub) \in \nu$ and so that ue = eub and $e \in \mathbf{R}_u a...(1)$. We have $R_u = R_u a \leq R_u$ so that $R_u = R_u a$ and hence uS = uaS. Since $e \in Rua$ so that Rua = Re as Ru = Rua = Re, we have $uS = uaS = ubS \subseteq uS.SothatuS = uaS = ubS.HenceRub = Reimplythat(e, ub) \in \mathbf{R}$ so that eub = eb. But from (1), eub = ua and hence ua = ub. Similarly $\nu \mathcal{L}av \Rightarrow av = bv$. Hence

 $(a,b) \in \nu^b$, we have $(a,b) \in \lambda$ so that $nb \subseteq \lambda...(2)$. On the other hand, let $(a,b) \in \lambda$, we have $x\mathbf{R}xa \Rightarrow xa = xb$ For x = a', we have $(a',a'a) \in \mathbf{R}$. Now xa = xb so that a'a = a'b. Since $y\mathcal{L}ay \Rightarrow ay = by$, Choose y = a', so that aa' = ba'. Now, a =aa'a=ba'a $\in bS$, so that $a \in bS$. But for $a \in bS$ and $a' \in V(a)$. So that $(a,b) \in \nu$. Hence $\lambda \subseteq \nu$. Hence ' λ ' is compatible partial order which is contained in ν . But nb is the largest compatible partial order relation which is contained in ν . Hence $\lambda \subseteq \nu^b...(3)$. From (2) and (3) we have $\lambda = \nu^b$

Theorem 2.19 : Suppose 'S' is a regular semigroup, then the following conditions are equivalent. (1) $(xey, xfy) \in \nu$ where $(e, f) \in \nu \cup (E(S) \times E(S))$ for all $x, y \in S^1$. (2) ' ν ' is compatible with multiplication. (3) 'S' is a locally inverse semigroup. (4) $\lambda = \nu$. (5)Restriction of Lallement order λ to E(S) is the usual order on E(S)

Proof: (1) \Rightarrow (2)Assume(1)holdsi.e.(xey, xfy) $\in \nu$ whenever $(e, f) \in \nu E(S)E(S)$ for all $x, y \in S^1$. Let $(a, b) \in \nu$, by using [N1], for every $f \in E(Rb)$, there exists $e \in Ra$ such that e.f = f.e = e and a = eb. By the assumption $(xey, xfy) \in \nu$ for all $x, y \in S^1$ so that $(xeb, xfb) \in \nu$ for all $x, y \in S^1$ so that $(xeb, xfb) \in \nu$ for all $x, y \in S^1$ so that $(xeb, xfb) \in \nu$ (by taking y = b)andhence(xa, xb) $\in \nu$...(*). And also we have $(a, b) \in \nu$, by using proposition [3] for each $f \in E(Lb)$ there exists $e' \in E(La)$ such that e'.f' = e' = f'e' and a = be' since $(e', f') \in \nu$ and $(xe'y, xf'y) \in \nu$ such that $(be'y, bf'y) \in \nu$ (by taking x = b) and hence $(ay, by) \in \nu$ (Since a = be' and $f' \in E(Lb)$). Therefore $(ay, by) \in \nu$...(**). From (*) and (**) we have $(xay, xby) \in \nu$ for any $(a, b) \in \nu$ and hence ' ν ' is compatible with multiplication.

 $(2) \Rightarrow (3)$: (2) and (3) are equivalent from [3] $(3) \Rightarrow (4)$ Assume (3), since 'S' is a locally inverse semigroup by using (Exercise 6.4; 3 of [2]) $\lambda = nb$ where ν^b is the largest compatible relation on 'S' which is contained in ν and by using [2] $\lambda = \nu$. $(4) \Rightarrow (5)Suppose\lambda = \nu$, since the restriction of $\nu to E(S)$ is the usual order on E(S) and hence the restriction of $\lambda to E(S)$ is also usual order on E(S). $(5) \Rightarrow (1)$. Assume (5), i.e the restriction of to E(S) in the usual order on E(S) and let $(e, f) \in \nu \cap E(S)xE(S)$ so that e.f = f.e = e and hence $e \leq fin\lambda$. Since the restriction of λ to E(S) is the usual order on E(S), we have $(e, f) \in nb$. Hence $(xey, xfy) \in \nu$ for all $x, y \in S^1$. Hence the given conditions on any regular semigroup 'S' are equivalent.

References

- Higgins, Peter, M: The Mitsch order on a semigroup, semigroup Forum Vol. 49, pp. 261-66, (1994).
- [2] Howie J. M : Fundamentals of Semigroup theory Clarendon press, oxford (2003).
- [3] Nambooripad K. S. S: The Natural Partial order on a regular semigroup, Proceedings of the Edinburgh, Mathematical Society, 23, pp. 249-260, (1980).

Dr. K. V. R. Srinivas

Asst. Professor

Regency Institute of Technology,

Adavipolam, Yanam,

Near kakinada.

Andhra Pradesh

Pin 533 464

India

e-mail: srinivas_kandarpa06@yahoo.co.in