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VÍCTOR AYALA ∗
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1. Introduction

In 1897 Hadamard, J., proved the following fundamental theorem, [10]: ”If
there exists an isometric immersion from a n−dimensional connected and
compact Riemannian manifold M into the Euclidean space Rn+1, (n ≥ 2),
in such a way that the sectional curvatures K of M (or the eigenvalues of
the Gauss normal application) are strictly bigger than zero, therefore the
image of M in Rn+1 is the boundary of a convex body. Precisely, M is
diffeomorfic to a sphere”

Several hypothesis on the sectional curvatures, or on the eigenvalues of
the second quadratic form, or even on different notions of convexity give rise
to new versions of this theorem. In the sequel, we mention some of these
generalizations. In 1936 Stokes J. J. [19] proved an analogous results when
M is complete instead of compact. In 1960, Sacksteader, R. [17] proved
that: ”If f : Mn → Rn+1 is an isometric inmersion from a n−dimensional
connected, compact and orientable manifold in Rn+1, (n ≥ 2), such that
the sectional curvature K of M is non negative and there exists a point
p ∈M with Kp > 0, then, f is an imbedding and f(M) is the boundary of
a convex body”.

By using differential topology, do Carmo, M. and Lima, E. [4] proved
in a independent way an analogous results of Sacksteader. This Theorem
was published only in 1972.

In 1970, do Carmo, M. and Warner, F. [5] obtain a new generalization of
the Hadamard´s Theorem by replacing the Euclidean space by a sphere or
even by the hyperbolic space and adapting the hypothesis on the curvatures.

In 1977 Alexander, [1] obtain a new generaliaztion replacing Rn+1 by
a simply connected Riemannian manifold H of dimension n + 1 (n ≥ 2),
where the sectional curvatures are non positives (Hadamard manifold), as
follows: ”Let x : M −→ H be a hypersurface inmersion of a compact,
connected, orientable manifold M of dimension n ≥ 2, and ξ be a continuous
unit normal. If ξ may be chosen so that Sξ is positive definite, then M is
imbedded in H as the boundary of a convex body”.

In 1978, Tribuzy, I., [22] obtained a new generalization of the Hadamard
Theorem by considering a connected, non compact, complete, orientable
Riemannian manifold N of dimension n+ 1, (n ≥ 2) with sectional curva-
tures k ≥ KN > 0 where k is a constant. Due the existence of cut locus,
in this case it was neccesary to impose restriction on the curvature of the
inmersion. The result reeds as follows:

Let x: M −→ N be an isometric immersion of a Riemannian orientable
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manifold M of dimension n. Suppose that is possible to choose a unit nor-
mal vector field ξ in M so that each eigenvalue λ of the second fundamental
form of x satisfies λ ≥ 2

√
k. Therefore, x is embedding and x(M) is the

boundary of a convex body in N . In particular, M is diffeomorphic to a
sphere.

In order to obtain this extension there was neccesary to establish the
following results:

Theorem 1. Suppose that N is simply connected manifold with KN ≤
0 andM is a compact hypersurface of N such that KM > KN . Then, there
exists a point p ∈M and orthonormal vectors V and W in TpM such that
KM(V,W )p > 0.

Theorem 2. Let M be a convex and compact submanifold of N . As-
sume that N is not compact and KN > 0. Then, M is a homologic sphere.

On the other hand, it was obtained a characterization of the Euclidean
space Rn among the Hadamard manifolds, in the following sense: if a
straight line r of Rn meets the point A of the segment AB and forms with
AB an angle θ with 0 ≤ θ < π

2 , therefore, there exists just one point C in r
such that the triangle with vertices ABC is isosceles with base the segment
AB. It was proved that Rn is the only one Riemannian complete manifold
with the mention property.

In the same spirit, it was proved that the sphere Sn, is the only one
n−dimensional Riemannian complete manifold in Rn+1, (n ≥ 2) which al-
lows to construct two triangle isosceles.

The considerations stated below can be founded in, [3], [7], [12].

1.1 - Let N be a Riemannian manifold. We say that K ⊂ N is strongly
convex if for any pair of points p, q ∈ K there exists a unique minimal
geodesic γ of N connecting p to q and γ is contained in K. We say that
K ⊂ N is convex, if for each point p of the closure K of K there exists
a number 0 < r(p) ≤ c(p) such that K ∩ Br(p)(p) is strongly convex; here
c(p) is the convexity radius and Br(p)(p) denotes the open ball with center
in p and radius r(p). We say that K is totally convex if whenever p, q ∈ K
and γ is a geodesic segment from p to q, then γ is contained in K. If K
is convex and its interior, int(K), is non empty we say that K is a convex
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body. The fundamental properties about convex sets can be found in [7].

1.2 - We will represent by h, i and ∇ the Riemannian an metric and
Riemannian connexion of N , respectively. We will denote by KN(X,Y )p
the sectional curvature of N at the point p relative to the plane generated
by the vectors X and Y of the tangent space TpN of N . When clear from
the context, we will only use KN .

Let x : M → N be a isometric of a Riemannian manifold M into
N . We will identify a vector V of TpM with dxp(V ) of Tx(p)N , and for
V,W in TpM we will identify KN (V,W )x(p) with KN(dxp(V ), dxp(W ))x(p).
The notation KM > KN will express that for every point p ∈ M and
for every pair of linearly independent vectors V,W ∈ TpM we have that
KM(V,W )p > KN(V,W )x(p).

1.3 Let g(t) be a geodesic in M such that g(t0) = p and g(t1) = q,
where t0 < t1. We will represent the segment g([t0, t1]) of g(t) by [p, q]g; if
g(t0) = p0 and t0 < t0 < t1, we will say that p

0 ocurres after p and before q
along g.

In this work we will also assume all geodesics are parametrized by arc
lenght.

Three geodesic segments [p, q]γ , [q, r]σ and [r, p]g connecting distinct
points p, q and r in M make a figure that we call a geodesic triangle which
will be simply represented by {[p, q]γ ; [q, r]σ; [r, p]g}.

We say that a geodesic triangle is simple when the union of its sides is a
curve homeomorphic to S1, or when its vertexes lie in a unique segment free
of self-intersections. A simple geodesic triangle is isosceles when it has two
sides with same length, in this case the third side which could eventually
have different size is called the base.

We notice that if r is the medium point of a geodesic segment [p, q]g free
of self-intersections, then the triangle {[p, r]g, [r, q]g, [q, p]g} is an isosceles
simple triangle.

1.4 Let g(t) = exp(tv) the geodesic in M which goes through the point
p ∈ M , in the direction of the unit vector v ∈ TpM . The set Cg(p) =
{t ∈ [0,∞); d(p, g(t)) = t} can be [0,∞) or [0, t0] for some t0 > 0. When
Cg(p) = [0,∞), we say that g(t) is a geodesic ray, in the other case we will
say that q = g(t0) is the minimal point of p along the geodesic g.

Geometrically, this means that if r = g(t1) with t1 > t0 then the seg-



On Characterization of Riemannian Manifolds 117

ment [p, r]g is not minimal. The set made up of the minimal points of p
along all geodesics that pass through p is called the cut locus of p and is
represented by C(p).

1.5 Let g and γ geodesics of M parameterized by the arc length and
having a common point p ∈M . Without lost of generality we can assume
g(0) = p = γ(0) and the angle between the geodesics being the angle θ
between the tangent vectors g0(0) and γ0(0).

The figure made up from the geodesic g and the geodesic segment of γ
linking the point p to a point q = γ(t) with t > 0, is called a configuration.
If θ is the angle between g and γ in the point p then the configuration is
represented by {g, γ, θ}p.

1.6 M and N will indicate orientable complete and connected
C∞-Riemannian manifold with dimensions n and n + 1 (n ≥ 2), respec-
tively.

Our results is as follows

Theorem A. ([22]) Let x : M → N be a isometric immersion. Sup-
pose that N is noncompact and that there exist a constant K such that
K ≥ KN > 0. Suppose further that it is possible to choose a unit normal
vector field ξ in M so that each eigenvalue λ of the second fundamental
form of x with respect to ξ satisfies λ ≥ 2

√
K. Then x is a embedding,

and x(M) is the boundary of a convex body in N . In particular, M is
diffeomorphic to a sphere.

In order to state the Theorem B, is required the following axiom:

First Isosceles Triangle Axiom - FITA

For every configuration {g, γ, θ}p such that 0 ≤ θ < π
2 and for every

point q = γ(s0) with s0 > 0, there exists a unique point r = g(t0) with
t0 > 0 and a unique geodesic segment [q, r]σ linking the point q to the point
r in such a way that {[p, q]γ , [q, r]σ, [r, p]g} is the unique isosceles triangle
whose basis is [p, q]γ.

Theorem B. ([20],[23]) If M satisfies the first isosceles triangle axiom
then M is isometric to the Euclidean space Rn.

In order to state the Theorem C, is required the following axiom:
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Second Isosceles Triangle Axiom - SITA

For every configuration {g, γ, θ}p and for each point q = γ(s) 6= p =
g(0) = γ(0) there exist only two real numbers t1 and t2 with t2 < 0 < t1
such that the points r1 = g(t1) and r2 = g(t2) determine the segments
[q, r1]σ and [q, r2]τ in such a way that the triangles {[p, q]γ [q, r1]σ[r1, p]g} and
{[p, q]γ [q, r2]τ [r2, p]g} are isosceles triangles whose common basis is [p, q]γ .

Remark. In the case of SITA the angle θ can be given arbitrarily, thus
we our notation for a configuration will dismiss the angle θ, that is {g, γ}p.

Theorem C. ([23])If M satisfies the second isosceles triangle axiom
then M is isometric to the Euclidean sphere Sn.

2. Proof of Theorem A

Lemma 2.1 Let A be a convex body of a Riemannian manifold L such that
its boundary S is a submanifold of L. If γ(t) is a geodesic of L tangent to
S in p = γ(0), there exists δ > 0 such that γ(t) ∈ L−A for all t ∈ (−δ, δ).

Proof : Let ξp be the unit normal vector of S at p, such that for s > 0
and sufficiently small expp(s ξp) ∈ L − A. Suppose that for all δ > 0,
there exists t ∈ (−δ, δ) such that γ(t) ∈ A. Since A is a convex body of
L, there exist a number r = r(p) > 0 such that C = Br(p) ∩ A is open
and strongly convex. Let γ(t0) be a point of γ inside C. Since C is open,
there exists � > 0 such that B�(γ(t0)) ⊂ C. By continuity, there exists
a vector v in the 2-plane generated by the vectors ξp and γ0(0) such that
hv, ξpi > 0, and the geodesic σ(t) = expptv has a point q1 = σ(t1) in the
ball B�(γ(t0)). By construction, σ is transverse to S in p. Therefore, there
exists a neighborhood (−τ, τ) of 0 ∈ R, such that σ(0, τ) is outside C, and
σ(−τ, 0) is inside C. In particular if t2 ∈ (−τ, 0), the point q2 = σ(t2) ∈ C.
Then σ connects q1 to q2 of C, but it is not contained in C. This contradicts
the fact that C is strongly convex, and completes the proof.

Proposition 2.1 Assume that M is submanifold of N and that M
separates N in two connected components. Assume further that the eigen-
values of the second fundamental form of M do not change sign. Then M
is the boundary of convex body in N .



On Characterization of Riemannian Manifolds 119

Proof : Let A and B be the connected components of N −M . We can
choose an unit normal vector field in M such that the second fundamental
form is semidefinite positive. By [2], M is locally convex. This means that
for every p ∈ M there exists a neighborhood Vp of the origin in TpN such
that expp(Vp∩TpM) is contained in the closure of one of the two connected
components of N −M ,(here expp denotes the exponential map of N). Let
us assume that this connected component is B. In this case, we will show
that A is a convex body of N . In fact, it is enough to show that A is convex.

The argument to be used is an adaptation of the method used by E.
Schmidt to show that the simple locally convex curves of the plane are
boundaries of convex bodies.

If A is not convex, then there exists a point p ∈ A such that, for
every � > 0 A ∩ B�(p) is not strongly convex. It is clear that such p
must be in M . Let �0 > 0 be such that B�0(p) is strongly convex and
that C = A ∩ B�0(p) is connected. Then there are points p and q in C
that cannot be connected by a minimal geodesic contained in C. Since
int C 6=, there exists distinct points p1 = p, p2, ..., pm = q in int C and
there exists a unique minimal geodesic joining pi to pi+1 which is contained
in C. However, there exists an index k such that for i ≤ k, p1 can be joined
to pi by a minimal geodesic contained in int C but p1 cannot be joined to
pk+1 by a minimal geodesic contained in int C. Let g(t) be the minimal
geodesic joining pk = g(0) to pk+1 = g(l), and let γt(s) be the minimal
geodesic joining p1 to g(t). Set L = {t ∈ [0, l] | γt(s) is contained in int C}.
Since L is bounded and nonempty, there exists t0 such that t0 = sup L.
The geodesic γ0 = γt0 connecting p1 to g(t0) is contained in C, because γ0
is limit of geodesics contained in int C. Furthermore, γ0 is tangent to M .
In fact, since t0 = sup L, γ0 has a point in common with the boundary ∂C
of C. Since B�0(p) is strongly convex and γ0 has points in int B�0(p), by
Lemma 2.1, cannot be tangent to ∂B�0(p). Therefore γ0 is tangent to M .
Let q = γ0(s1) be the first point of M where γ0, issuing from p1 is tangent
M . Then the geodesic σ(s) = γ0(s1−s) that starts at q and passes through
p1 is contained in A, for 0 < s ≤ s1. This contradicts the fact that M is
locally convex. Therefore A is a convex body. This completes the proof of
Proposition 2.1.

Proposition 2.2 Let A be a convex body in N . Suppose that the
boundary M = ∂A of A is a compact and connected submanifold of N . If
M is contained in a normal neighborhood of an interior point of A, then
M is diffeomorphic to a sphere.
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Proof: Let U be a normal neighborhood of a point p ∈ int A, such
that M ⊂ U . Then, any geodesic that issues from p leaves U , hence A.
Since M is the boundary of a convex body, by Lemma 2.1, the geodesics
that issue from p must meet M transversely. On the other hand, since U
is a normal neighborhood of the point p, the geodesics that issue from p do
not meet in U . Thus, we can define a map

φ :M → Sn ⊂ TpN

by

φ(q) =
exp−1p (q)

|exp−1p (q)|
.

Clearly φ is a diffeomorphism, and this concludes the proof.

The Proposition 2.2 has how consequence the THEOREM 1, in fact,

Corollary 2.1. Suppose that N is simply connected and KN ≤ 0.
If M is a compact hypersurface of N such that KM > KN then, there
exists a point p ∈M and orthonormal vectors V and W in TpM such that
KM(V,W )p > 0.

Proof: Since KM > KN , the eigenvalues of the second fundamental
form do not change sign. Since N is simply connected and M is a com-
pact hypersurface of N , M separates N in two connected components. By
Proposition 2.1, M is the boundary of a convex body and by Proposition
2.2, M is diffeomorphic to a sphere. If KM ≤ 0, there M is covered by Rn,
which is a contradiction.

Let L be an orientable (n + 1)-dimensional Riemannian manifold and
let f : L→ R be a differentiable functions without critical points. We will
denote by St = f−1(t) the level hypersurface of f at t. We will denote by
nt a unit normal vector field of St, and by μt(p) the greatest eigenvalue of
the second fundamental form of St at p along ηt. Let H be an orientable
n−dimensional Riemannian manifold, and let x : H → L be an isometric
immersion. We will denote by ξ a unit normal vector field of H, and by λp
the smallest eigenvalue of the second fundamental form of x at p along ξ.

Proposition 2.3. With the above notation, assume that at each criti-
cal point p of f ◦ x

λp > μx(p).

Then, f ◦ x is a Morse function that has no saddle points.
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Proof. We denote by h = f ◦ x the restriction of f to x(H). If h has
no critical points the result is trivial. Assume that p0 ∈ H is critical point
of h. Let St0 be the level hypersurface of h which passes through x(p0).
We must show that p0 is a nondegenerate critical point of h and that p0 is
not a saddle point of h.

By Nash’s Theorem [15], we may assume that L is isometrically em-
bedded in Rr, for large. We consider the orthogonal decomposition of Rr

given by

Rr = Tx(p0)L⊕ (Tx(p0)L)⊥

and let P : Rr → Tx(p0)L be the corresponding orthogonal projection.
Because the result is local, we can restrict ourselves to a neighborhood V
of x(p0) in L where the restriction P |V is a diffeomorphism onto P (V ). To
simplify the notation, we will assume that x is an embedding and we will
identify H with x(H). We will also denote H = H ∩ V and St0 = St0 ∩ V .

By projecting orthogonally V onto Tp0 by P , we will obtain subman-
ifolds H̃ = P (u) and S̃t0 = P (W ) in Tp0L, where u and W are, respec-
tively, neighborhoods of p0 in H and St0 , with the property that the
restrictions P |u and P |W are embeddings. Since p0 is a critical point
of h, Tp0H = Tp0St0 . Thus is clear that H̃ and S̃t0 are contained in
Tp0H ⊕ {tξp0 | t ∈ R}.

Denote by λ̃p0 the smallest eigenvalue of the second fundamental form
of H̃ at p0 along ξp0 , and by μ̃p0 the greatest eigenvalue of S̃t0 at p0, with
respect to ξ0. Since λp0 > μX(p0), we have that λ̃p0 > μ̃p0 .

Consider the function F = f ◦ P−1 : P (V ) → R. It is clear that F is
differentiable. Moreover, the level hypersurfaces of F are manifolds S̃t =
P (V ∩ St).

Claim 1. If X ∈ Tp0H, then d2fp0(X,X) = d2Fp0(X,X).
In fact, by the definition of F ,

dFp0(X) = dfP−1(p0).dP
−1
p0 (X)

and

d2Fp0(X,X) = d2fP−1(p0)(dP
−1
p0 (X), dP

−1
p (X)) + dfP−1(p0) d

2P−1p0 (X,X).

Since p0 is a critical point of h, dhp0(v) = dfx(p0)dxp0(v) = 0 for every
vector v ∈ Tp0H. But x(p0) = P−1(p0) = p0. Then dfp0(w) = 0 for every
w ∈ Tp0H. Therefore,

d2Fp0(X,X) = d2fp0(X,X).
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Claim 2. p0 = P (p0) is a nondegenerate critical point of F |H̃ , which is not
saddle point.

Since p0 is a critical point of h, Tp0H̃ = Tp0S̃t0 . We may assume that H̃
and S̃t are graphs of functions α and β defined in TpH̃, respectively. Thus,

H̃ = {(x1, ..., xn, xn+1) | xn+1 = α(x1, ..., xn)}

S̃t0 = {(x1, ..., xn, xn+1) | xn+1 = β(x1, ..., xn)}

Now, we will express the second derivative of F at the point p0, by
computing ∂2F

∂x2
with respect to H̃ and S̃t0 .

Along H̃, we obtain:

∂2

∂x2i
F (x1, ..., xn, (x1, ..., xn)) =

∂2F

∂x2i
+

∂2F

∂xn+1∂xi
.
∂α

∂xi
+

∂F

∂xn+1
.
∂2α

∂x2i

But, at p0,
∂α
∂xi

= 0. Therefore

∂2

∂x2i
F (x1, ..., xn, α(x1, ..., xn)) =

∂2F

∂x2i
+

∂F

∂xn+1

∂2α

∂x2i
(2.1)

Similarly, along S̃t, we have

∂2

∂x2i
F (x1, ..., xn, β(x1, ..., xn)) =

∂2F

∂x2i
+

∂F

∂xn+1

∂2β

∂x2i
(2.2)

Since F (S̃t0) is constant, because S̃t0 is a level hypersurface of F ,
∂2

∂x2i
F (x1, ..., xn, β(x1, ..., xn)) = 0. Thus, (2.2) becomes

∂2F

∂x2i
+

∂F

∂xn+1

∂2β

∂x2i
= 0.(2.3)

It follows from (2.1) and (2.3), that, at the point p0,

∂2F

∂x2i
=

∂F

∂xn+1

µ
∂2

∂x2i
(α− β)

¶
= 0.

Since f has no critical point in V, F has no critical point in P (V ). Since
∂F
∂xi
(p0) = 0, for i = 1, 2, ..., n, we have that

∂F
∂xn+1

(p0) 6= 0.
Now, observe that

∂2α

∂x2i
= B1

µ
∂

∂xi
,
∂

∂xi

¶
p0
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and
∂2β

∂x2i
= B2

µ
∂

∂xi
,
∂

∂xi

¶
p0

where B1
µ

∂
∂xi

, ∂
∂xi

¶
p0

(resp. B2
µ

∂
∂xi

, ∂
∂xi

¶
p0

) denotes the value for the pairµ
∂
∂xi

, ∂
∂xi

¶
of the second fundamental form of H̃ (resp. S̃t0) at p0, along

ξp0 (resp. ηp0).
Since λ̃p0 > μ̃p0 ,

∂2

∂x2i
(α− β) > 0.

This completes the proof of Proposition 2.3.

Lemma 2.2. KM > 4K.

Proof. It’s a straightforward consequence.

We denote by i(N) the injectivity radius of N , that is to say, i(N) is the
largest number ρ > 0 such that, for all p ∈ N, the exponential map, expp,
is an embedding in the open ball of radius ρ in TpN . In [14], M. Maeda
proved that, under the hypothesis of Teorema A, i(N) ≥ π√

K
.

Let D be a compact totally convex set of N , such that

D ⊃
[
p∈M

B π√
K
(x(p)).

(the proof of existence of such sets can be found in [7].
Set

a = inf{KN(X,Y )p | p ∈ D; X,Y ∈ TpN and hX,Y i = 0}.

Since KN > 0 and D is compact, a > 0.
Now , we will make use of the following fact, whose proof can be found

in [11].

Lemma 2.3. Let γ(t) a geodesic in int D with |γ0(t)| = 1, and let Y (t)
be a Jacobi field along γ, such that Y (0) = 0 and hY (t), γ0(t)i = 0. Then,
for all 0 ≤ t < π√

K
one has:

√
a
cos
√
at

sin
√
at
≥ |Y (t)|

0

|Y (t)| ≥
√
K
cos
√
kt

sin
√
kt
.
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Proof. See [11]

We will denote by B(p) the open ball of N with center at p and radius
equal to π

2
√
K
, and by S(p) the geodesic sphere which is the boundary of

B(p).

Lemma 2.4. We can choose a unit normal vector field η in S(p), such
that each eigenvalues μ of the second fundamental form of S(p) with respect
to η satisfies √

K > μ ≥ 0.

Proof. We can consider D sufficiently large, so that S(p) ⊂ int D.
Let X be a differentiable unit tangent vector field in S(p) defined in a
neighborhood of a point q. Let α : (−�, �) → S(p) be the solution of X
such that α(0) = q and α0(0) = Xq.

Let σ : (−�, �)× [0, π
2
√
K
]→ N be the variation defined by

σ(s, t) = expp tα̃(s) where α̃(s) =
exp−1p (α(s))

|exp−1p (α(s))|
.

Since B(p) is contained in a normal neighborhood, α̃ is well-defined and
σ is differentiable.

Denote by J(t) = ∂σ
∂s (0, t) = (d expp)tα̃(0)tα̃

0(0) the Jacobi field along
the geodesic σ(0, t). It is clear that J(0) = 0 and J( π

2
√
K
) = Xq. Denote

by Z(t) = ∂σ
∂t (0, t) = (d expp)tα̃(0)α̃(0) the velocity vector of the geodesic

σ(0, t).
Choose a unit normal vector field η such that

ηq = −Z(
π

2
√
K
).

Then

μ(q) = h∇XX, ηiq = −h∇Xη,Xiq = h∇X(−η),Xiq =

= hD
ds

∂σ

∂t
,
∂σ

∂s
i(0, π

2
√
K
) = h

D

dt

∂σ

∂s
,
∂σ

∂s
i(0, π

2
√
K
) =

=
1

2

d

dt
h∂σ
∂s

,
∂σ

∂s
i(0, π

2
√
K
) =

1

2
hJ(t), J(t)i π

2
√
K
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(where D is covariant derivative of N).
Observe that

|J(t)|0
|J(t)| =

hJ(t), J 0(t)i
hJ(t), J(t)i =

1

2

hJ(t), J(t)i0
hJ(t), J(t)i .

and that in t = π
2
√
K
, hJ(t), J(t)i = 1. It follows from Lemma 3.2 that

√
a cot

√
a

π

2
√
K
≥ h∇XX, ηiq ≥ 0, 0 < a < K.

By taking u =
√
a√
K

π
2 , one has

2
√
K

π
u cot u ≥ h∇XX, ηiq ≥ 0, 0 < u <

π

2
.

Now, set f(u) = u cot u, 0 < u < π
2 . Observe that

i) 1 = lim
u→0

f(u)

ii) f 0(u) = sin 2u− 2u
2sin2u < 0, if u > 0.

Hence, 1 ≥ u cot u, and therefore,

2

π

√
K ≥ h∇XX, ηiq ≥ 0.

We finally conclude that

√
K >

2

π

√
K ≥ μ ≥ 0,

and this completes the proof of Lemma 2.4.

Lemma 2.5. For all p ∈ N the open ball B(p) is strongly convex.

Proof: Since i(N) ≥ π√
K
, S(p) is contained in a normal neighborhood

u of p. Furthermore, if q1 and q2 are points of B(p) there exists a unique
minimal geodesic connecting q1 to q2. Since u is simply connected, S(p)
separates u into two connected components ([13]). By Lemma 3.4, the
eigenvalues of the second fundamental of S(p) do not change sign. By
Proposition 2.1, S(p) is then a boundary of a convex body of N .

It is enough to show that the minimal geodesic that joins two points
of B(p) is contained in B(p). This follows by using the same adaptation
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of the E. Schimidt’s method used in the proof of Proposition 2.2. This
concludes the proof of Lemma 2.5.

Assertion 1. There exists a Morse function defined inM that has only
two critical points, one maximum and one minimum.

Let p0 be a point of N , and let γ(t) be a geodesic of N passing through
p0. Reparametrize γ so that |γ0(t)| = 1 and γ( π√

K
) = p0.

We will denote by Tγ(t) the parallel translation of N along from γ(0) to
γ(t). Consider the set:

Σ̃γ(0) = {v ∈ Tγ(0)N | hv, γ0(0)i > 0 and |v| =
π

2
√
K
}.

Thus, Σγ(t) = expγ(t)Tt(Σ̃γ(0)) is a hemisphere of the geodesic sphere with
center in γ(t) and radius π

2
√
K
.

Lemma 2.6. For 0 < t < π√
K
, the family {Σγ(t)} is a foliation ofB(p0).

Proof. First, we claim that if 0 < t1 < t2 <
π√
K
, then Σγ(t1)∩Σγ(t2)∩

B(p0) = ∅. In fact, Suppose there exists q ∈ Σγ(t1)∩Σγ(t2) ∩B(p0). Then
d(q, γ(t1)) = d(q, γ(t2)) =

π
2
√
K
, and d(q, p0) <

π
2
√
K
.

Consider the open ball B(q) with center in q and radius π
2
√
K
. By

Lemma 2.5, B(q) is strongly convex. It is clear that p0 ∈ B(q). Let
σi(s) (i = 1, 2) be the minimal geodesic connecting γ(ti) (i = 1, 2) to
q. By definition of Σγ(t), hσ0i(0), γ0(ti)i > 0, hence, γ is transverse at γ(ti)
to the geodesic sphere S(q), boundary of B(q), (i = 1, 2). This implies that
there exist disjoint neighborhoods V1 and V2 of t1 and t2, respectively, such
that γ(Vi) has points inside B(q) and outside B(q) near γ(ti) (i = 1, 2).
Now, let γ(t0) be a point of γ(v1) ∩ B(q). Then γ(t), t0 ≤ t ≤ π√

K
, is a

segment of a minimal geodesic connecting γ(t0) to p0 inside B(q), and γ(t)
leaves B(q). This contradicts the fact that B(q) is strongly convex, and
proves our claim.

Now, let q be any point of B(p0). Consider the geodesic sphere S(q).
Since p0 is inside B(q), the geodesic γ(t) has points inside B(q). By ([7]),
γ goes to infinite, hence it leaves the closure B(q) of B(q).

Let γ(t1) be the point where γ enters B(q) for first time before passing
through p0. Then, q ∈ Σγ(t1). In fact, by construction, d(q, γ(t1)) = π

2
√
K
.

Furthermore, since γ is transverse to S(q) at γ(t1), if σ(s) is the minimal
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geodesic joining γ(t1) to q, then hσ0(0), γ0(t1)i > 0. This fact completes the
proof of Lemma 2.6.

Let fγ : B(p0)→ R be the function defined by

fγ (q) = t ⇔ q ∈ Σγ(t).

By Lemma 2.6, fγ is well-defined and by definition of the family {Σγ(t)} fγ
is differentiable.

Since KM > 4K > 0, by Bonnet-Myers’ Theorem, M is compact and
diam M ≤ π

2
√
K
(diam M denotes diameter of M). Since KM > KN , no

curve of x(M) can be a geodesic in N, and so

diam x(M) < diam M ≤ π

2
√
K
,

then, for every point p ∈ M, x(M) ⊂ B(x(p)). Now, by fixing p ∈ M
and a geodesic γ in N passing through x(p); we can construct a function fγ
as above. Therefore, we can define the function hγ :M → R by hγ = fγ ◦x.

Lemma 2.7. hγ is a Morse function that has two critical points, one
maximum and one minimum.

Proof: It is clear that hγ is well-defined and is differentiable. Observe
now, that fγ has no critical points in B(x(p)). On the other hand, the
maximum eigenvalues μt of the second fundamental form of each level sur-
face Σγ(t), with respect to the unit normal vector field as in Lemma 2.4, is
strictly less that the minimum eigenvalue of the second fundamental form
of x with respect to ξ according to Lemma 2.4. By Proposition 2.3, hγ is
a Morse function without saddle points. Since M is compact, hγ has only
two critical points, one maximum and one minimum ([4]). This completes
the proof of the Lemma 2.7 and of the Assertion 1.

Assertion 2. x is a embedding.

Proof of Assertion 2: Suppose, by contradiction, that x is not an
embedding. Then, there exists distinct points p and q of M , such that
x(q) = x(p).

Consider the geodesic γ(t) that passes through x(p) = γ( π√
K
) and that

γ0( π√
K
) = ξp is the unit normal vector field ξ of M at p.

Now, consider the function hγ = fγ ◦ x. By Lemma 2.7 hγ is a Morse
function that has only two critical points, one maximum and one minimum.
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By construction of hγ , p is a critical point of hγ , which we assume to
be a point of minimum, with hγ(p) = t0. (the case where p is a point of
maximum can be treated similarly).

Let u and v be disjoint neighborhoods of p and q, respectively, such
that x restricted to u or to v is an embedding. we will consider two cases:

1st case. x(u) is not transverse to x(v) at x(p). In this case, q is
also critical point of hγ and so, is a point of maximum. Furthermore,
hγ(q) = hγ(p) = t0. Since q is a point of maximum of hγ , there exists a
neighborhood v1 of q in M such that if r ∈ v1 and r 6= q, then hγ(r) < t0.
This implies that there exists a point of minimum if hγ in M distinct of p.
This contradicts Lemma 2.7.

2nd case. x(u) is transverse to x(v) at x(p). In this case, there exist
points of x(V ) contained in the level below x(p). This implies that there ex-
ists another point of minimum distinct from p. This contradicts Lemma 2.7.

Then, x is embedding, thereby proving Assertion 2.

Now, since B(x(p)) is simply connected and x is an embedding, x(M)
separates B(x(p)) in two connected components ([13], p. 72). Since the
eigenvalues of the second fundamental form do not change sign, by Propo-
sition 2.1, x(M) is the boundary of a convex body of N . Since x(M) is
contained in a normal neighborhood of p0, by Proposition 2.2, x(M) is dif-
feomorphic to a sphere. Therefore M is diffeomorphic to a sphere. This
completes the proof of Theorem A.

In 1978 was proved in [21] Theorem 2. The proof is based on a series
of lemmas. In the context of this survey we are going to prove just some of
them.

Theorem 2. Let M be a convex and compact submanifold of N . As-
sume that N is not compact andKN > 0. Then,M is a homological sphere.

Lemma 2.8. Let A be a convex body of N with non empty boundary
∂A. Let γ : [0, l] → N a geodesic of N such that γ(t) ∈ intA for t ∈ [0, l)
and γ(l) ∈ ∂A. Then, there exists � > 0 such that for every s : 0 < s < �,
the curve γ(l + s) it does not´belongs to A.
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Lemma 2.9. LetM be a convex submanifold of N and A convex body
of N with boundary M . Let γ(t) be a geodesic of N which is tangent to
M at the point p = γ(0). Therefore, there exists � > 0 such that γ(−�, �)
is contained in the closure of N −A.

Lemma 2.10. Let A and B convex bodies ofN . Assume A is a strongly
convex set and A ∩ B is not empty. Then, any connected component of
A ∩B is a strongly convex set.

Proof. Let U be a connected component of A∩B. Since U is a subset
of A, given two points in U there exists just one geodesic of N , entirely
contained in A, joining them. Suppose U is not a strongly convex set.
There are points p, q ∈ U such that the geodesic γ join p with q leaves U .
It is possible to assume p, q /∈ ∂U, the boundary of U . In fact, if p ∈ ∂U
since B is convex there are positive numbers 0 < �(p) < r(p) such that
B ∩B�(p)(p) is strongly convex. Furthermore, since B and B�(p) are open
sets it follows that B∩B�(p) is open. By extending γ we are able to obtain
points in B∩B�(p)∩γ which are not in ∂U . Since M is a convex and open
set we can join p to q by a broken geodesic in U − ∂U . By the hypothesis
of local convexity, we get a geodesic in B with ending points in the interior
of B and with a common point with ∂B. This fact is in contradiction with
Lemma 2.8 and the proof is complete.

Lemma 2.11. LetM be a submanifold of N , such that both connected
components of N −M are convex sets. Then, M is totally geodesic.

Proof. Let us denote by A and B the connected components of N−M .
Let p be an arbitrary point of M . Since A and B are convex sets, their
closures A and B are also convex. In particular, there are positive numbers
0 < �(p) < r(p) such that A∩B�(p)(p) and B∩B�(p)(p) are strongly convex
sets. Let q 6= p a point in M ∩ B�(p)(p). By the definition of �, there

exists just one minimal geodesic γ of N joining p to q. Since A ∩ B�(p)(p)

and B ∩ B�(p)(p) are strongly convex sets, γ must be contained in their
intersection. Then, γ is included in M ∩ B�(p). Since q is arbitrary, it
follows that M ∩ B�(p) is totally geodesic in p. Since p is arbitrary, M is
totally geodesic in N .

Now, we are able to prove Theorem A.
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Proof. Denotes by A the convex component of N −M and by B the
other component. First, we show that A is bounded. Since M is compact
and N is diffeomorphic to Rn+1, either A or B is bounded. Let us de-
note by X the bounded component. We need to prove X = A. For that
assume X is convex and X = B. By Lemma 2.11, M is totally geodesic.
Since M is compact, it must exists a closed geodesic in M which is also a
closed geodesic in N. But, this is a contradiction. Next, we show that X is
convex. Since X is compact, there exists a compact subset C0 of N which
contains X with the following property: each geodesic joining point of C0
is contained in C0. This kind of sets are called totally convex. We observe
that a totally convex set is convex. From the next Theorem it turns out
that there exists a totally convex subset Ca0

0 of N , in such a way that Ca0
0

contains X and ∂Ca0
0 intersect the boundary of X in M .

Proposition 2.4. (Cheeger and Gromoll). Let N be a Riemannian
manifold with non negatives sectional curvatures. Let C be a convex subset
(totally convex) closed in N such that the boundary ∂C of C is not empty.
Therefore,

1) For each a, the set

Ca = {p ∈ C; d(p, ∂C) ≥ a}

is convex (totally convex).

2) If Cmax = ∩Ca 6=ØC
a then dimCmax < dimC.

Proof. See [7]. Consider the set

L = {a ∈ [0, l];X ⊂ Ca
0}.

Since L is not empty and bounded there exists infL = a0. By definition,
X ⊂ Ca0

0 and M0 = ∂Ca0
0 ∩M 6= Ø. If M0 =M then X = Ca0

0 . Thus X is
convex. If M0 6=M consider a point q ∈ M0 − intM0.

Since C0a0 is convex, every geodesic of N which is tangent to M at q
has a neighborhood of q in the closure of N −Ca0

0 . But C
a0
0 contains X, so

there exists a geodesic γ(t) of N , tangent to M at q = γ(0) : for 0 < t < �,
γ(t) /∈ X. In particular, from Lemma 2.9, N −X can not be convex. Then,
X is a convex set.

Now, the closed set A is convex, thus by applying Theorem 2.1 to A we
obtain

A
a
= {p ∈ A; d(p,M) ≥ a}
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is convex. Furthermore, if A0 = ∩Aa 6=ØA
a
then dimA0 < dimA. Next, we

show that A reduces to the singleton {p0}. For that, we need the following
results:

Let ψ : C → R a function defined by ψ(p) = d(p, ∂C). Then, for any
geodesic segment γ contained in C the function ψ ◦ γ is weakly convex. In
other words

ψ ◦ γ(αt1 + βt2) ≥ αψ ◦ γ(t1) + βψ ◦ γ(t2),

where α, β ≥ 0 and α+β = 1. On the other hand, let us assume ψ◦γ(s) ≡ d
is constant on the interval [a, b]. Denotes by V (s) the parallel vector field
throughout γ|[a,b] such that V (a) = γa(0). Here, γa is a minimal geodesic

from γ(a) to ∂C. Therefore, for every s

expγ(s) tV (s)|[0,d]

is a minimal geodesic from γ(s) to ∂C. The rectangle

ϕ : [a, b]× [0, d]→ N

defined by
ϕ(s, t) = expγ(s)t ◦V (s)

is flat and totally geodesic.
If A0 contains more than one point, by an convexity argument there

exists a geodesic segment σ in A0. By definition of A0 it turns out that
ψ ◦ σ ≡ constant. By Theorem 2.1, there exists a totally geodesic flat rect-
angle in A, which is a contradiction with the fact KN > 0.

Lemma 2.12. A0 is a retract of deformation of A.

Proof. Since A is compact and convex there exists a positive number
�1 such that for any p ∈ A, the set A ∩ B�1(p) is strongly convex. On the
other hand, there exists �2 > 0 such that if Br(q) is the open ball of N ,
with center q ∈ A and radio 0 < r ≤ �2, the curve C : [0, η] → Br(q) is a
non constant geodesic and C0 : [0, 1]→ Br(q) is a minimal geodesic from q
to C(0) with hC(0), C0(1)i ≥ 0. In particular, the function S → d(C(s), q)
is strictly increasing in [0, η].

Let 0 < � < min{�1, �2}.
We claim: if p ∈ A and A

b ∩B�(p) 6= ø for some b > 0, then A
b ∩B�(p)

is strongly convex. In fact, by Lemma 2.9 and Proposition 2.4, it is enough
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to prove that A
b∩B�(p) is connected. If not, let r, s two points of different

connected component of A
b ∩B�(p). Let γ a geodesic segment joining r to

s and

C = {a ∈ [0, b] : γ ⊂ A
a}.

Since C is not empty and bounded there exists c = supC. So, γ is
contained in A

c
. Furthermore, since c = supC, γ has a common point

with the boundary of A
c
. But this is a contradiction with Lemma 2.8. In

fact, A
c
is convex and r and s belong to the interior of A

c
. Thus, A

b∩B�(p)
is connect which prove our claim.

Let b > a and b− a < �, then A
b
is a retract of deformation of A

a
. In

fact, let

f ba : A
a → A

b

defined by f ba(p) = ep, p ∈ A
a
, where ep satisfy
d(p,A

b
) = d(p, ep).

The function f ba is well defined. Let p ∈ A
a
then f ba(p) = p. If p ∈ A

a−Ab
,

assume the existence of two different points ep1 and ep2 in A
b
which realize

the distance from p to A
b
. Since b − a < �, d(p,A

b
) < �. So, ep1 andep2 belong to the ball B�(p). But, A

b ∩ B�(p) is not empty, it follows that

A
b ∩B�(p) is strongly convex. Thus, there exists just one minimal geodesic

γ(t) in N joining ep1 = γ(0) to ep2 = γ(l) and γ(t) is contained in A
b∩B�(p).

Let

h : [0, l]→ R

defined by

h(t) = d2(p, γ(t)).

Thus,

h(0) = d2(p, ep1) = d2(p, ep2) = h(l).

Since h is differentiable, there exists t0 ∈ (0, l) such that h0(t0) = 0.

Since γ(t) is contained in A
b ∩ B�(p), it follows that t0 is the only one

minimum of h. So, h(t0) < h(0), which is in contradiction with the fact
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that ep1 realizes the distance from p to A
b ∩ B�(p). Therefore, f

b
a is well

defined.
Next, we prove that f ba is a continuous function. Let p be an arbitrary

element of A
a
and (pn) a convergent sequence of points in A

a
such that:

lim pn = p.

Denotes by epn = f ba(pn) and for ep = f ba(p). We show that lim epn = ep.
By the own definition of f ba, we get

| d(pn, epn)− d(p, ep) |=| d(pn, Ab
)− d(p,A

b
) |≤ d(pn, p).

Thus, lim | d(pn, epn)− d(p, ep) |= 0.
Since A

b
is compact, the sequence (epn) admit a convergent subsequence

(epnk). Let ep0 = lim epnk. Then,
lim | d(pnk, epnk)− d(p, ep0) |= 0.

So, for any nk

| (p, ep0)− d(p, ep) |≤| d(p, ep0)− d(p1k, p1k) | + | (pnk, epnk)− d(p, ep) |
Then,

d(p, ep0) = d(p, ep).
Since ep0 ∈ A

b
and f ba is well defined it follows that ep0 = ep. So, f ba is

continuos.
Let i : A

b → B
a
the inclusion application. It is clear that i ◦ f ba is a

identity id
A
b in A

b
. So, A

b
is a retract of deformation of A

a
. Let

F : [0, 1]×A
a → A

a

the application defined by

F (t, p) = expp t exp
−1
p (f

b
a(p)).

We know that b− a < � and f ba is continuous. So,
F is well defined and

F (0, p) = p, F (1, p) = f ba(p).
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Thus, i ◦ f ba is homotopic to the identity of A
a
, which prove that A

b
is a

retract of deformation of A
a
, as we claimed.

Consider the ball B�(p0), where {p0} = A0. Since {p0} = ∩Aa 6=ØA
a
,

there exists a positive value c such that A
c
is contained in B�(p0). Clearly,

{p0} is a retract of deformation of A
c
. It is possible, to decompose the in-

terval [0, c] in a finite number of points: 0 = t0 < t1 < ... < tk = c in such

a way that ti − ti−1 < �. Therefore, since A
ti−1 is a retract of deformation

of A
ti, by transitivity the singleton {p0} is a retract of deformation of A,

which ends the proof.

Remark. By the Poincaré-Lefschetz Duality Theorem, we have
Hk(A) ∼= Hn−k+1(A,M). Since {p0} is a retract of deformation of A,

we get that
Hk(A) ∼= Hk({p0}).

It follows that
Hn+1(A,M) ∼= Z

and Hq(A,M) ∼= 0, q < n + 1. By considering the exact sequence M −→
A −→ (A,M), we get:

...→ Hq+1(A,M)→ Hq(M)→ Hq(A)→ ...

So, for 0 < q < n, we have

0→ Hq(M)→ 0.

Therefore, Hq(M) ∼= 0, for 0 < q < n. Since M is a connected manifold
H0(M) ∼= Z. Since M is compact, orientable without boundary we have

Hn(M) ∼= Z. Thus, H∗(M) ∼= H∗(Sn).

At the present, the Poincare’s Conjecture has already been solved and
consequently this fact proves that M is homeomorphic to a sphere.

3. Proof of Theorem B

Lemma 3.1. IfM satisfies FITA then every metric ball is strongly convex

Proof.Let us suppose by contradiction that there exists a point p0 ∈M
and a real number ρ > 0 such that the open ball B = Bρ(p0) is not strongly
convex. Then there are points m1 and m2 such that the segment [m1,m2]
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of the geodesic (t) joining the points m1 and m2 has points outside the
closure B of the set B. Let p and q be the points in B where γ(t) get in
and get out respectively.

Consider the configuration {g, γ, θ}p given by the geodesics g and which
get out of the point p0 and pass through p and q respectively. We consider
them parameterized so that g(−ρ) = p0 = (−ρ), g(0) = p and (0) = q. The
angle between [p, q]γ and g is θ.

By the Gauss lemma we have θ < Π
2 , thus by FITA there is a point

r = g(t) with t > 0 such that {[p, q]γ , [p, r]g, [r, q]τ} is an isosceles triangle
with basis [p, q]γ . On the other hand, {[p, q]γ, [p0, p]g, [p0, q]σ} is also an
isosceles triangle and this contradicts the FITA.

The following results are immediate consequences of Lemma 3.1

Lemma 3.2. If M satisfies FITA then every geodesic of M realizes the
distance between every pair of its points.

Lemma 3.3. If M satisfies FITA then for every p ∈ M the expo-
nential map expp : TpM → M is a homeomorphism. This means that M
is diffeomorphic to Rn and in particular M is simply connected and so is
orientable.

Lemma 3.4. If M satisfies FITA then every geodesic of M cannot lie
inside any compact set.

Lemma 3.5. Let M satisfies FITA. If distinct metric spheres S1 and
S2 of M are tangent to each other then the set S1 ∩ S2 is unitary.

The following two lemmas are immediate consequences.

Lemma 3.6. If M satisfies FITA then the closure of a strongly convex
body in M is strongly convex.

Lemma 3.7. Let M satisfies FITA. If H and K are strongly convex
intersecting subsets of M then H ∩K is also strongly convex.

Proof of Theorem B:

By using thatM satisfies FITA and Lemma 3.2 we have that all geodesic
ofM are lines and consequently for every point p ∈M , the exponential map
expp : TpM →M is a difeomorfism ( Lemma 3.3) .

Given an arbitrary point p ∈ M and a unit vector v ∈ TpM , let us
consider the sets:
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Lp = {w ∈ TpM ; hw, vi = 0},

L+p = {w ∈ TpM ; hw, vi ≥ 0},

L−p = {w ∈ TpM ; hw, vi ≤ 0}.

These sets allow us to define the following subsets of M :

Σ = expp(Lp),

H+ = expp(L
+
p ),

H− = expp(L
−
p ).

We consider the geodesic ray r(t) = expp(tv) starting at p in the direc-
tion v and Br = ∪t>0Bt(r(t)), where Bt(r(t)) is the open ball centered at
the point r(t) and radius t.

The Lemma 3.5 assures that if t1 < t2 then Bt1(r(t1)) ⊂ Bt2(r(t2)).
Moreover, as for each t the set Bt(r(t)) is strongly convex (Lemma 3.1)
and Bt1(r(t1)) ⊂ Bt2(r(t2)) when t1 < t2, we have that Bt is strongly
convex (c.f. [12])

Let us denote by Br the closure of Br. We will prove that Br = H+.
Using that for each t > 0, Bt(r(t)) ⊂ H+, by convexity and the equality

Br = ∪t>0Bt(r(t)) = ∪t>0Bt(r(t)) ,

we conclude that Br ⊂ H+.
Let q ∈ H+ be an arbitrary point and let qn be a convergent sequence

made up of interior points in H+ such that lim qn = q. Let ρn be the
geodesic segment connecting the points p and qn. As qn is an interior point
then hr0(0), ρ0n(0)i > 0. The manifold M satisfies FITA so there exists
rn = r(tn) in such a way that the geodesic triangle whose vertices are the
points p, qn, and rn is an isosceles triangle with basis ρn. Therefore

qn ∈ Btn(r(tn)) ⊂ Br.

As Br is closed we have q ∈ Br. Thus, H
+ ⊂ Br. This way we have proved

that Br = H+.
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According to Lemma 3.6 the set Br is strongly convex and consequently
H+ is also strongly convex.

By using a similar construction with the radius s(t) = exppt(−v), we
obtain that the set H− = Bs is strongly convex.

According to the Lemma 3.7 the set Σ = H+ ∩H− is strongly convex.
Since expp is a diffeomorphism we have that Σ is a complete submanifold of
M without boundary with dimension n− 1. This means that Σ is a totally
geodesic submanifold of M .

Let us assume that n ≥ 3. Since the points p and q are given arbitrarily,
the manifold M satisfies p axiom of r-planes, for r = n− 1 ≥ 2. It follows
from the r-planes Theorem due to Cartan ( see [6]) that M has constant
sectional curvature (see [16]). As M is not compact it can only be isometric
to the Euclidean space Rn or to the hyperbolic space Hn.

Since the set Σ = ∂Br is a horosphere in M and M is a space form,
then all sectional curvatures of Σ vanish ([18]). On the other hand, the set
Σ is totally geodesic and consequently all sectional curvatures of M must
vanish. Therefore M is isometric to Rn.

Let us assume now that n = 2. Let g be a geodesic (a line) in M . We
say that a geodesic is an asymptote at g passing through the point q = γ(0)
if there exists a sequence of minimal geodesics σn : [0, sn] → M such that
for every real value s, the sequence σn(s) converges to the restriction of to
the interval [0,∞) and we have σn(sn) = g(tn) with tn →∞.

When there exists another sequence τn : [0, sn]→M such that for every
real value s, the sequence τn(s) converges to the restriction of γ(s) to the
interval (−∞, 0] and we have τn(sn) = g(tn) with tn → −∞, we say that
γ(s) is a bi-asymptote at g passing through the point q.

Let g be a geodesic of M and p = g(t1) and q = g(t2) points on
the geodesic g. By constructing horospheres Σp and Σq starting from the
geodesic g, we notice that they both meet g orthogonally. On the other hand
as FITA is satisfied we can immediately conclude that Σq is a bi-asymptote
at Σp.

Eschenburg proves that there is an isometric immersion F : [t1, t2] ×
RtoM such that Σp = F |t1 ×R and Σq = F |t2 ×R (see [8]). This implies
that the region of M limited by Σp and Σq has curvature zero. Since M is
simply connected, the curve g is an arbitrary geodesic and the points g(t1)
and g(t2) are also arbitrary, we conclude that M = R2.
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4. Proof of Theorem C

Proposition 4.1. If the Riemannian manifold M satisfies SITA than it is
compact.

Proof.To show the compactness, it suffices to find a point p0 ofM such
that every geodesic g : [0,∞)→M, leaving p0, has a cut point with respect
to p0, see [7]. Let us fix a point p0 ∈M. Choose δ > 0 such that the open
ball Bδ(p0) with center p0 and radius δ is convex. Denote by Sr(p0) the
geodesic sphere of center p0 and radius r, for some δ > r > 0.

Let g be a geodesic leaving p0 and p the point where g first crosses
Sr(p0), we reparameterize g in such a way that g(0) = p and g(r) = p0.
Finally, we construct a configuration {g, γ}p by choosing a point q 6= p
in Sr(p0) and γ a geodesic arc within Bδ(p0) joining p = γ(0) = g(0) to
q = γ(s). SITA assures the existence of exactly two real numbers t2 < 0 < t1
such that rj = g(tj) determine geodesic segments [q, r1]σ and [q, r2]τ that
are the sides of two simple isosceles triangles whose common basis is [p, q]γ .
By construction, t1 = r, i.e., p0 = g(r) = g(t1) = r1, since p and q belong
to the geodesic sphere Sr(p0). Therefore,

l([p0, r2]g) = l([p0, q]σ) + l([q, r2]τ ) .

Hence, the geodesic g has a cut point p0 = g(t0) with respect to p0, which
concludes the proof.

Proposition 4.2. If a Riemannian manifold M satisfies SITA then it
has no geodesic loop.

Proof. Let us suppose there exists a geodesic loop in M , that is, there
exists a geodesic g : R → M and points t0 and t0 in R, with t0 6= t0 such
that g(t0) = p = g(t0) and g0(t0) 6= g0(t0).

We consider a strongly convex ball B(p). Let pi = g(ti) with i = 1, 2, 3, 4
be the points in the boundary ∂B(p) where g gets in and gets out and af-
terwards gets in and gets out of B(p).

Let q = g(et) with et < t2 be points obtained in such a way that d(q, p2) =
d(p2, p3). Joining q to p3 using the segment [q, p3]γ we obtain the configu-
ration {g, γ, θ}q. According to SITA there is a point r = g(t̂) with t̂ < et,
in such a way that the triangles {p2, q, p3} and {r, q, p3} are isosceles tri-
angles whose basis is the segment [q, p3]. Now, we observe that considering
the medium point p of the segment [q, p3]g, the triangle {q, p, p3} is also a
geodesic triangle distinct of the other two. This contradicts the SITA.
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Proposition 4.3. IfM is a Riemannian manifold satisfying SITA then
every geodesic is closed.

Proof. We will prove that every geodesic of M is closed by showing
the existence of geodesics which are not closed lead us to a contradiction
to the SITA. Let c(p) denote the function which associates to every point
p ∈M the convexity radius of M at the point p, that is c(p) is the greatest
number such that the ball Br(p) centered at p and having radius r < c(p) is
strongly convex. According to the Whitehead Theorem c(p) is a continuous
function onM , (see [24] ). AsM is compact and c is continuous there exists
a number > 0 such that for every p ∈M , the ball B(p) is strongly convex.

Let us consider the family of open sets {Br(p)}p∈M where 2r < δ. As
such a family covers M and M is compact, we can find a finite cover of M ,
say {Br(p1), ..., Br(pk)}.

Let us assume that there exists geodesic g which is not closed. In this
case, as M is complete, either g gets in and gets out twice in the same ball
of the family {Br(p1), ..., Br(pk)}, or else there exists t0 ∈ R such that for
every t > t0 the geodesic g is contained within open balls of the family
{Br(p1), ..., Br(pk)}.

In the first case, let us suppose that the geodesic g gets in and gets out
twice in the ball Br(p), as there not exist geodesic loops (Lemma 4.2), we
know there exist four distinct points which we will denote by pi = g(ti) in
the boundary ∂Br(p) where g gets in and gets out and this geodesic gets
in and gets out in Br(p).

Let us consider a point q = g(t) with t < t2 in such a way that d(q, p2) =
d(p2, p3). Joining q to p3 we obtain an isosceles triangle {q, p2, p3} whose
basis is [q, p3]. Using SITA there exists a point p = g(t) with t < t0 such that
{p, q, p3} is an isosceles triangle whose basis is [q, p3]. On the other hand,
there is a point g(t̂) = p̂ in the segment [p2, p3]g so that d(p2, p̂) = d(p̂, p3).
From this we conclude that the triangle {p2, p̂, p3} is also isosceles whose
basis is [q, p3]. This contradicts SITA.

In the second case, let us assume there is a number t0 ∈ R such that
for every t > t0, g(t) is contained within the balls Br(pi). Let us fix a point
q = g(t̂) in Br(pi) and let us consider the strongly convex ball B(q) which
contains the set Br(pi). This means that g passes through the center of the
strongly convex ball Bδ(q) and that for t ≥ t, the number g(t) is the radius
of the ball Bδ(q). This is not possible for this ball has radius δ <∞.

Now we are able to prove theorem C.
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Proof of Theorem C.

Let p0 an arbitrary point inM and let g be an arbitrary geodesic starting
at p0 and parameterized by the arc length. Using Lemma 3.1 we have
that g is a simple closed geodesic, therefore, there exists l ∈ R satisfying
g(2l) = p0 = g(−2l).

The point p0 = g(l) will be called the antipode point of p0 with respect
to the geodesic g. In order to simplify our notation, we will denote by
g(t) = g(−t) the geodesic satisfying g(0) = p and g0(0) = −g0(0).

We denote by p00 = g(t0) the cut point of g with respect to p0. It is clear
that p00 cannot occur after the point p0 because l([p0, p0]g) = l([p0, p0]g) .

We shall prove now that p0 = p0. Let us suppose by contradiction
that p00 6= p0. This means that l([p

0
0, p0]g) > 0 and consequently we can

choose a real number t̂ such that t0 < t̂ < l and the point p̂ = g(t̂) occurs
after p00 and before p0. The fact that g does not minimize the distance
from p0 to p̂ implies the existence of a minimal geodesic γ joining p0 to
p̂ and satisfying l([p0, p̂]g) > l([p0, p̂]γ). Moreover, if we denote by [p̂, p0]g
the segment joining p̂ to p0 and passing through the point p0, we have
l([p̂, p0]) > l([p0, p̂]γ)

In this case, we can find a point p000 on g obtained from the point p̂ in such
a way that l([p̂, p000]g) = l([p0, p̂]γ). Let us denote by [p

00
0, p0]λ the segment of

the geodesic λ joining p000 to p0 and let us consider the configuration {g, λ}p.
By construction we have the isosceles triangles

{[p000, p0]λ, [p0, p̂]γ , [p̂, p0]g}, {[p000, p0]λ, [p0, ep]g, [ep, p000]g}
and their base is the segment [p000, p0]λ. Moreover, we also have the isosceles
triangle {[p000, p0], [p0, p̆]g, [p̆, p000]g} where p̆ is the middle point of the segment
[p0, p

00
0]g, joining the points p0, p

00
0 and passing through the point p0, which

contradicts the SITA. Therefore we have p00 = p0.

Let us now consider a strongly convex ball Br(p0) chosen so that the
set Br(p0) be also strongly convex. We will denote by Σ = ∂Br(p0) the
boundary of Br(p0) and let us consider the points p = g(r) and p = g(−r) =
g(r) where the geodesic g meets Σ.

We fix a point q ∈ Σ given arbitrarily and different from the points p and
p; We also consider the configuration {g, γ}p where γ is the geodesic joining
p to q. According to the SITA, there exist segments [p0, q]σ and [p0, q]τ such
that the triangles {[p0, p]g, [p0, q]σ, [p, q]γ} and {[p, p0]g, [p0, q]τ , [p, q]γ} are
simple and isosceles.
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The fact l([p0, p0]g) = l([p0, p]g) + l([p, p0]g) = l([p0, q]s) + l([q, p0]τ )
implies that [p0, q]σ and [q, p0]τ are segments of the same geodesic joining
p0 to p0 and passing through the point q, which we denote by φ. Besides, if
l([p0, p0]g) = l([p0, p0]φ) and p0 is not the cut point of φ with respect to p0
there would exist a geodesic segment with length smaller than the length
of [p0, p0]g joining p0 to p0 and this contradicts what we have shown before.

Using the fact that the point q was taken arbitrarily we can conclude
that p0 is the cut point of all geodesics passing through p0. Thus the cut
locus C(p0) of p0 is the set {p0} and since p0 is arbitrary we have that
for every point p, the cut locus C(p) is a unitary set and therefore M is a
wiedersehen manifold.

If n = 2, the result follows from Green Theorem (see [9]) which says
that M is isometric to the Euclidean sphereS2. If n > 2 and is an odd
number, the result follows from the Yang Theorem (see [25]) which says
that M is isometric to the Euclidean sphere Sn. If n > 2 and is an even
number, the result follows from the Kazdan Theorem (see [26]) which says
that M is isometric to the Euclidean sphere Sn.
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Brasil

e-mail : mdiniz@ufpa.br



144 I. Tribuzy, V. Ayala, M. M. Diniz and J. M. M. Veloso

and
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