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1. Introduction

In 1897 Hadamard, J., proved the following fundamental theorem, [10]: ”If
there exists an isometric immersion from a n—dimensional connected and
compact Riemannian manifold M into the Euclidean space R"*1 (n > 2),
in such a way that the sectional curvatures K of M (or the eigenvalues of
the Gauss normal application) are strictly bigger than zero, therefore the
image of M in R™*! is the boundary of a convex body. Precisely, M is
diffeomorfic to a sphere”

Several hypothesis on the sectional curvatures, or on the eigenvalues of
the second quadratic form, or even on different notions of convexity give rise
to new versions of this theorem. In the sequel, we mention some of these
generalizations. In 1936 Stokes J. J. [19] proved an analogous results when
M is complete instead of compact. In 1960, Sacksteader, R. [17] proved
that: "If f : M™ — R"*! is an isometric inmersion from a n—dimensional
connected, compact and orientable manifold in R"*!, (n > 2), such that
the sectional curvature K of M is non negative and there exists a point
p € M with K, > 0, then, f is an imbedding and f(M) is the boundary of
a convex body”.

By using differential topology, do Carmo, M. and Lima, E. [4] proved
in a independent way an analogous results of Sacksteader. This Theorem
was published only in 1972.

In 1970, do Carmo, M. and Warner, F. [5] obtain a new generalization of
the Hadamard “s Theorem by replacing the Euclidean space by a sphere or
even by the hyperbolic space and adapting the hypothesis on the curvatures.

In 1977 Alexander, [1] obtain a new generaliaztion replacing R"*! by
a simply connected Riemannian manifold H of dimension n + 1 (n > 2),
where the sectional curvatures are non positives (Hadamard manifold), as
follows: ”"Let x : M — H be a hypersurface inmersion of a compact,
connected, orientable manifold M of dimension n > 2, and £ be a continuous
unit normal. If £ may be chosen so that S¢ is positive definite, then M is
imbedded in H as the boundary of a convex body”.

In 1978, Tribuzy, 1., [22] obtained a new generalization of the Hadamard
Theorem by considering a connected, non compact, complete, orientable
Riemannian manifold N of dimension n + 1, (n > 2) with sectional curva-
tures k > Ky > 0 where k is a constant. Due the existence of cut locus,
in this case it was neccesary to impose restriction on the curvature of the
inmersion. The result reeds as follows:

Let x: M — N be an isometric immersion of a Riemannian orientable
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manifold M of dimension n. Suppose that is possible to choose a unit nor-
mal vector field ¢ in M so that each eigenvalue A of the second fundamental
form of x satisfies A > 2v/k. Therefore, x is embedding and z(M) is the
boundary of a convex body in N. In particular, M is diffeomorphic to a
sphere.

In order to obtain this extension there was neccesary to establish the
following results:

Theorem 1. Suppose that NV is simply connected manifold with Ky <
0 and M is a compact hypersurface of N such that Kj; > K. Then, there
exists a point p € M and orthonormal vectors V and W in T),M such that
Ky (V, W), > 0.

Theorem 2. Let M be a convex and compact submanifold of V. As-
sume that N is not compact and K > 0. Then, M is a homologic sphere.

On the other hand, it was obtained a characterization of the Euclidean
space R" among the Hadamard manifolds, in the following sense: if a
straight line  of R™ meets the point A of the segment AB and forms with
AB an angle 6 with 0 < 6 < 7, therefore, there exists just one point C' in r
such that the triangle with vertices ABC' is isosceles with base the segment
AB. Tt was proved that R" is the only one Riemannian complete manifold
with the mention property.

In the same spirit, it was proved that the sphere S”, is the only one
n—dimensional Riemannian complete manifold in R"*1, (n > 2) which al-
lows to construct two triangle isosceles.

The considerations stated below can be founded in, [3], [7], [12].

1.1 - Let N be a Riemannian manifold. We say that K C N is strongly
convex if for any pair of points p,q € K there exists a unique minimal
geodesic v of N connecting p to ¢ and « is contained in K. We say that
K C N is convex, if for each point p of the closure K of K there exists
a number 0 < r(p) < ¢(p) such that K N B,,)(p) is strongly convex; here
c(p) is the convexity radius and B,.(,)(p) denotes the open ball with center
in p and radius 7(p). We say that K is totally convex if whenever p,q € K
and v is a geodesic segment from p to ¢, then v is contained in K. If K
is convex and its interior, int(K), is non empty we say that K is a convex



116 1. Tribuzy, V. Ayala, M. M. Diniz and J. M. M. Veloso

body. The fundamental properties about convex sets can be found in [7].

1.2 - We will represent by (,) and V the Riemannian an metric and
Riemannian connexion of N, respectively. We will denote by Kn(X,Y),
the sectional curvature of IV at the point p relative to the plane generated
by the vectors X and Y of the tangent space T, N of N. When clear from
the context, we will only use K.

Let x : M — N be a isometric of a Riemannian manifold M into
N. We will identify a vector V' of T, M with dwz,(V) of Ty, )N, and for
V, W in Ty M we will identify Ky (V, W), with Ky (dz,(V'), dry(W))40)-
The notation Kjp; > Ky will express that for every point p € M and
for every pair of linearly independent vectors V,W € T,M we have that
KM(‘/, W)p > KN(V, W):Jc(p)

1.3 Let g(t) be a geodesic in M such that g(t9) = p and g(t1) = g,
where ¢y < t;. We will represent the segment g([to,t1]) of g(t) by [p, qlg; if
g(t") =p' and ty < t' < t1, we will say that p’ ocurres after p and before ¢
along g.

In this work we will also assume all geodesics are parametrized by arc
lenght.

Three geodesic segments [p,qly, [¢,7]s and [r,p], connecting distinct
points p, g and r in M make a figure that we call a geodesic triangle which
will be simply represented by {[p, q]~; [¢,7]s; [rDlg}-

We say that a geodesic triangle is simple when the union of its sides is a
curve homeomorphic to S*, or when its vertexes lie in a unique segment free
of self-intersections. A simple geodesic triangle is isosceles when it has two
sides with same length, in this case the third side which could eventually
have different size is called the base.

We notice that if r is the medium point of a geodesic segment [p, ¢, free
of self-intersections, then the triangle {[p, 7]y, [r,qlq,[q,p]¢} is an isosceles
simple triangle.

1.4 Let g(t) = exp(tv) the geodesic in M which goes through the point
p € M, in the direction of the unit vector v € T,M. The set Cy(p) =
{t € [0,00);d(p,g(t)) =t} can be [0,00) or [0,%p] for some ¢ty > 0. When
Cy(p) = [0,00), we say that g(t) is a geodesic ray, in the other case we will
say that ¢ = g(tp) is the minimal point of p along the geodesic g.

Geometrically, this means that if » = g(¢1) with ¢; > ¢¢ then the seg-
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ment [p,r], is not minimal. The set made up of the minimal points of p
along all geodesics that pass through p is called the cut locus of p and is
represented by C(p).

1.5 Let g and v geodesics of M parameterized by the arc length and
having a common point p € M. Without lost of generality we can assume
g(0) = p = ¥(0) and the angle between the geodesics being the angle
between the tangent vectors ¢’(0) and ~/(0).

The figure made up from the geodesic g and the geodesic segment of ~
linking the point p to a point ¢ = y(¢) with ¢ > 0, is called a configuration.
If 6 is the angle between g and  in the point p then the configuration is
represented by {g,7,0},.

1.6 M and N will indicate orientable complete and connected
C*°-Riemannian manifold with dimensions n and n + 1 (n > 2), respec-
tively.

Our results is as follows

Theorem A. ([22]) Let z : M — N be a isometric immersion. Sup-
pose that N is noncompact and that there exist a constant K such that
K > Ky > 0. Suppose further that it is possible to choose a unit normal
vector field & in M so that each eigenvalue A\ of the second fundamental
form of = with respect to ¢ satisfies A > 2v/K. Then z is a embedding,
and x(M) is the boundary of a convex body in N. In particular, M is
diffeomorphic to a sphere.

In order to state the Theorem B, is required the following axiom:

First Isosceles Triangle Axiom - FITA

For every configuration {g,v,0}, such that 0 < # < % and for every
point g = v(sg) with sg > 0, there exists a unique point r = g(ty) with
to > 0 and a unique geodesic segment [g, 7], linking the point ¢ to the point
r in such a way that {[p, ¢y, [q,7]s, [r,p]g} is the unique isosceles triangle
whose basis is [p, g|.

Theorem B. ([20],[23]) If M satisfies the first isosceles triangle axiom
then M is isometric to the Euclidean space R".

In order to state the Theorem C, is required the following axiom:
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Second Isosceles Triangle Axiom - SITA

For every configuration {g,v, 60}, and for each point ¢ = ~(s) # p =
g(0) = v(0) there exist only two real numbers ¢; and to with t3 < 0 < #;
such that the points r; = g(t1) and 7o = g(t2) determine the segments
[¢,71]0 and [g, 2] in such a way that the triangles {[p, q][q, 71]o[1, D]} and
{lp,qly[q, r2)-[r2,p]g} are isosceles triangles whose common basis is [p, gl.

Remark. In the case of SITA the angle 6 can be given arbitrarily, thus
we our notation for a configuration will dismiss the angle 6, that is {g,v},.

Theorem C. ([23])If M satisfies the second isosceles triangle axiom
then M is isometric to the Euclidean sphere S™.

2. Proof of Theorem A

Lemma 2.1 Let A be a convex body of a Riemannian manifold L such that
its boundary S is a submanifold of L. If ~(t) is a geodesic of L tangent to
S in p = 7(0), there exists 0 > 0 such that y(t) € L — A for all t € (=6, 0).

Proof : Let &, be the unit normal vector of S at p, such that for s >0
and sufficiently small expy(s &) € L — A. Suppose that for all 6 > 0,
there exists t € (—d,0) such that v(t) € A. Since A is a convex body of
L, there exist a number r = r(p) > 0 such that C = B,(p) N A is open
and strongly convex. Let «(¢9) be a point of v inside C. Since C is open,
there exists € > 0 such that B.(vy(t9p)) C C. By continuity, there exists
a vector v in the 2-plane generated by the vectors &, and +/(0) such that
(v,&p) > 0, and the geodesic o(t) = expptv has a point ¢; = o(t1) in the
ball B((to)). By construction, o is transverse to S in p. Therefore, there
exists a neighborhood (—7,7) of 0 € R, such that ¢(0,7) is outside C, and
o(—7,0) is inside C. In particular if to € (—7,0), the point g = o(t2) € C.
Then o connects ¢; to g2 of C, but it is not contained in C'. This contradicts
the fact that C' is strongly convex, and completes the proof.

Proposition 2.1 Assume that M is submanifold of N and that M
separates N in two connected components. Assume further that the eigen-
values of the second fundamental form of M do not change sign. Then M
is the boundary of convex body in N.
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Proof : Let A and B be the connected components of N — M. We can
choose an unit normal vector field in M such that the second fundamental
form is semidefinite positive. By [2], M is locally convex. This means that
for every p € M there exists a neighborhood V), of the origin in 7, N such
that exp,(V,NT, M) is contained in the closure of one of the two connected
components of N — M, (here exp, denotes the exponential map of V). Let
us assume that this connected component is B. In this case, we will show
that A is a convex body of N. In fact, it is enough to show that A is convex.

The argument to be used is an adaptation of the method used by E.
Schmidt to show that the simple locally convex curves of the plane are
boundaries of convex bodies.

If A is not convex, then there exists a point p € A such that, for
every € > 0 AN B.(p) is not strongly convex. It is clear that such p
must be in M. Let ¢g > 0 be such that B, (p) is strongly convex and
that C = AN Be,(p) is connected. Then there are points p and g in C
that cannot be connected by a minimal geodesic contained in C'. Since
int C #, there exists distinct points p1 = P,p2, ..., Pm = ¢ in int C and
there exists a unique minimal geodesic joining p; to p;+1 which is contained
in C. However, there exists an index k such that for ¢ < k, p; can be joined
to p; by a minimal geodesic contained in ¢nt C' but p; cannot be joined to
Pk+1 by a minimal geodesic contained in int C. Let g(t) be the minimal
geodesic joining pr = ¢(0) to pr+1 = g(l), and let 1:(s) be the minimal
geodesic joining p1 to g(t). Set L = {t € [0,1] | #(s) is contained in int C'}.
Since L is bounded and nonempty, there exists ¢y such that tg = sup L.
The geodesic 7o = vy, connecting p; to g(tg) is contained in C, because g
is limit of geodesics contained in int C. Furthermore, 7o is tangent to M.
In fact, since tg = sup L, 7o has a point in common with the boundary 9C
of C. Since Be,(p) is strongly convex and vy has points in int Be,(p), by
Lemma 2.1, cannot be tangent to 0B, (p). Therefore ~yy is tangent to M.
Let ¢ = vo(s1) be the first point of M where 7, issuing from p; is tangent
M. Then the geodesic o(s) = vo(s1 — s) that starts at ¢ and passes through
p1 is contained in A, for 0 < s < s1. This contradicts the fact that M is
locally convex. Therefore A is a convex body. This completes the proof of
Proposition 2.1.

Proposition 2.2 Let A be a convex body in N. Suppose that the
boundary M = 0A of A is a compact and connected submanifold of N. If
M is contained in a normal neighborhood of an interior point of A, then
M is diffeomorphic to a sphere.
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Proof: Let U be a normal neighborhood of a point p € int A, such
that M C U. Then, any geodesic that issues from p leaves U, hence A.
Since M is the boundary of a convex body, by Lemma 2.1, the geodesics
that issue from p must meet M transversely. On the other hand, since U
is a normal neighborhood of the point p, the geodesics that issue from p do
not meet in U. Thus, we can define a map

¢: M — S" C T,N
by
_ ewy'@
lexpp ' (q)|

Clearly ¢ is a diffeomorphism, and this concludes the proof.

The Proposition 2.2 has how consequence the THEOREM 1, in fact,

Corollary 2.1. Suppose that N is simply connected and Ky < 0.
If M is a compact hypersurface of N such that Kj; > Ky then, there
exists a point p € M and orthonormal vectors V' and W in T),M such that
K M(V, W)p > 0.

Proof: Since K); > Ky, the eigenvalues of the second fundamental
form do not change sign. Since N is simply connected and M is a com-
pact hypersurface of N, M separates N in two connected components. By
Proposition 2.1, M is the boundary of a convex body and by Proposition
2.2, M is diffeomorphic to a sphere. If K < 0, there M is covered by R",
which is a contradiction.

Let L be an orientable (n + 1)-dimensional Riemannian manifold and
let f: L — R be a differentiable functions without critical points. We will
denote by S; = f~1(t) the level hypersurface of f at t. We will denote by
ny a unit normal vector field of Sy, and by p(p) the greatest eigenvalue of
the second fundamental form of S; at p along 7;. Let H be an orientable
n—dimensional Riemannian manifold, and let  : H — L be an isometric
immersion. We will denote by ¢ a unit normal vector field of H, and by A,
the smallest eigenvalue of the second fundamental form of x at p along &.

Proposition 2.3. With the above notation, assume that at each criti-
cal point p of fox
Ap > iz (p)-

Then, f oz is a Morse function that has no saddle points.
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Proof. We denote by h = f oz the restriction of f to x(H). If h has
no critical points the result is trivial. Assume that pg € H is critical point
of h. Let S, be the level hypersurface of h which passes through z(pp).
We must show that pg is a nondegenerate critical point of h and that pg is
not a saddle point of h.

By Nash’s Theorem [15], we may assume that L is isometrically em-
bedded in R", for large. We consider the orthogonal decomposition of R"
given by

R" = Tu’ﬂ(po)L ® (Tx(po)L)J_

and let P : R" — Tx(pO)L be the corresponding orthogonal projection.
Because the result is local, we can restrict ourselves to a neighborhood V'
of x(po) in L where the restriction P|y is a diffeomorphism onto P(V'). To
simplify the notation, we will assume that z is an embedding and we will
identify H with z(H). We will also denote H = HNV and Sy, = S, NV

By projecting orthogonally V' onto T}, by P, we will obtain subman-
ifolds H = P(u) and Sy, = P(W) in Ty, L, where u and W are, respec-
tively, neighborhoods of pgp in H and S;,, with the property that the
restrictions P|, and Py are embeddings. Since po is a critical point
of h,TyH = Tp,Sy,. Thus is clear that H and Sy, are contained in
Ty, H & {t6, | t€ R},

Denote by Ay, the smallest eigenvalue of the second fundamental form
of H at py along &po» and by fip, the greatest eigenvalue of 5}0 at pg, with
respect to §o. Since Ap, > px(p), We have that 5\p0 > [flpg-

Consider the function F'= fo P~!: P(V) — R. It is clear that F is
differentiable. Moreover, the level hypersurfaces of F' are manifolds S, =
P(VNSy).

Claim 1. If X € T, H, then d?f,,(X, X) = d*F,, (X, X).
In fact, by the definition of F,
dFpy(X) = df p-1(py)-dBps (X)
and
d*Fpo (X, X) = d® fp-1(py) (AP (X)), dP, (X)) + df p-1pg) d° Pyt (X, X).

Since pp is a critical point of h, dhp,(v) = dfy(pe)dTp, (v) = 0 for every
vector v € Ty, H. But x(pg) = P~1(po) = po. Then df,,(w) = 0 for every
w € Ty H. Therefore,

BPFpy (X, X) = d2 fe (X, X).
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Claim 2. pyp = P(po) is a nondegenerate critical point of F| 5, which is not
saddle point.

Since pg is a critical point of h, T, pOI:I = Tp, S’to. We may assume that H
and S are graphs of functions « and 5 defined in TpI;[ , respectively. Thus,

‘EI = {(xlv"'amnaxn—‘rl) | LTn+1 = Oé($1, ,{En)}

gto = {(xla () $n7$n+1) | Tn+l = /6(:317 71'”)}
Now, we will express the second derivative of F' at the point pg, by
. 2 . ~ ~
computing %TI; with respect to H and Sy,.
Along H, we obtain:

a—2F(a: T, (T 3:))—82F+ °F 8_a _8F 82_oz
Ox? Lyeeey Sms AL ooy S ) = 0x?  Orpi10w; Ox;  Oxpyr 022

But, at pg, g—; = (. Therefore

52 O*F  OF &«
(2.1) a—w%F(azl,...,xn,a(ﬂil,...,mn)) =57t oo 002

Similarly, along S;, we have

82 82F aF 825
(22) 8—$?F<(El,...,fl?n,,B(xl,...,xn)) - 8.’1312 8£En+1 8:1;12

Since F(Sy) is constant, because Sy, is a level hypersurface of F,
aa—ng(xl, eory Ty B(x1, oty 25)) = 0. Thus, (2.2) becomes

O*F OF 0°B
0x?  Oxpi1 0x?

It follows from (2.1) and (2.3), that, at the point py,

(2.3) 0.

0*F oF 0?
02 —<—2(a—5)) =0.
x; O0Tp41 \Ox;
Since f has no critical point in V, F' has no critical point in P(V'). Since
g—g(po) =0, for i =1,2,...,n, we have that 85;11 (po) # 0.
Now, observe that

62_a_31<8 6)
Po

oz = B \awr o
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and

2’8 B2<a a>
8w Ox;” 0x; ) p,

where B! ( T 82 ) (resp. B2 ( T 8(2: ) ) denotes the value for the pair
Po Po

(8%2,, 8%1-) of the second fundamental form of H (resp. 5’,50) at pg, along

&py (resp. ﬂpo)-
Since Ay > flpg,
82
Ox 2
This completes the proof of Proposition 2.3.

Lemma 2.2. K > 4K.

(a—p) >

Proof. It’s a straightforward consequence.

We denote by (V) the injectivity radius of N, that is to say, i(N) is the
largest number p > 0 such that, for all p € N, the exponential map, exp,,
is an embedding in the open ball of radius p in T,N. In [14], M. Maeda

s

proved that, under the hypothesis of Teorema A, i(N) > T

Let D be a compact totally convex set of IV, such that

D> J B (2(p).

peM

(the proof of existence of such sets can be found in [7].
Set

a=inf{Ky(X,Y),|peD; X,Y € T,N and (X,Y) = 0}.

Since Ky > 0 and D is compact, a > 0.
Now , we will make use of the following fact, whose proof can be found
n [11].

Lemma 2.3. Let (t) a geodesic in int D with |7/(¢)| = 1, and let Y (¢)
be a Jacobi field along v, such that Y (0) = 0 and (Y'(¢),~/(t)) = 0. Then,
forall 0 <t < # one has:

cos\/_ (t cos\kt
sm\/_ Y ()] > VK sinVkt
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Proof. See [11]

We will denote by B(p) the open ball of N with center at p and radius
equal to ﬁ, and by S(p) the geodesic sphere which is the boundary of

B(p).

Lemma 2.4. We can choose a unit normal vector field 7 in S(p), such
that each eigenvalues u of the second fundamental form of S(p) with respect
to n satisfies

VK > w>0.

Proof. We can consider D sufficiently large, so that S(p) C int D.
Let X be a differentiable unit tangent vector field in S(p) defined in a
neighborhood of a point ¢q. Let a : (—¢,€) — S(p) be the solution of X
such that a(0) = ¢ and &/(0) = X,,.

Let o:(—¢€€) x |0, #] — N be the variation defined by
capy ! (a(s))

o(s,t) = expy ta(s) where a(s) = m.

Since B(p) is contained in a normal neighborhood, & is well-defined and
o is differentiable.
Denote by J(t) = %(O,t) = (d expp)ia0)td’(0) the Jacobi field along

the geodesic o(0,t). It is clear that J(0) = 0 and J(zk) = X,. Denote

by Z(t) = %(O,t) = (d expp)ia(0)@(0) the velocity vector of the geodesic
a(0,1).
Choose a unit normal vector field 1 such that

Then

wq) = (VxX.n)g=—(Vxn,X)g=(Vx(-n),X)q =
D do Oo Do Oo

<E§’ ENO,Z;?) = <E£’ ENO,Z;E) =
1d 0o Oo 1

= 55(@» @N%k) - §<J(t),<](t)>2§?
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(where D is covariant derivative of N).
Observe that

@I _ @), S (@) 1), J{)

T®F @) I@) 2 (@), 1)

and that in ¢ = #, (J(t),J(t)) = 1. It follows from Lemma 3.2 that

s

WK
_ Janx

By taking u = T2 one has

Va cot\/a

> (VxX,n)y >0, 0<a<K.

2VvK =
\T/F_ucotuz (VxX,mq >0, O<u<g.

Now, set f(u) =ucot u, 0 <wu < 7. Observe that
i)1= lir% f(u)

i) f/(u) = Sm2u_2u (0 if ¢ > (.

2sin?u

Hence, 1 > wu cot u, and therefore,
2VE > (TxXm)y 2 0.
We finally conclude that
VE > 2VE > p>0,

and this completes the proof of Lemma 2.4.

Lemma 2.5. For all p € N the open ball B(p) is strongly convex.

Proof: Since i(N) > #, S(p) is contained in a normal neighborhood

u of p. Furthermore, if ¢; and ¢y are points of B(p) there exists a unique
minimal geodesic connecting ¢q; to g2. Since u is simply connected, S(p)
separates u into two connected components ([13]). By Lemma 3.4, the
eigenvalues of the second fundamental of S(p) do not change sign. By
Proposition 2.1, S(p) is then a boundary of a convex body of N.

It is enough to show that the minimal geodesic that joins two points
of B(p) is contained in B(p). This follows by using the same adaptation
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of the E. Schimidt’s method used in the proof of Proposition 2.2. This
concludes the proof of Lemma 2.5.

Assertion 1. There exists a Morse function defined in M that has only
two critical points, one maximum and one minimum.

Let pp be a point of N, and let v(¢) be a geodesic of N passing through
po. Reparametrize 7 so that |y/(¢)] = 1 and ’y(%) = pp.

We will denote by T,y the parallel translation of N along from v(0) to
7(t). Consider the set:

- T
¥ (0)={veT ,7'(0)) >0 and |v| = —=}.

’Y( ) { ~v(0)N | <U ’7( )> | ’ 2\/?}
Thus, ¥+ (t) = expy )T +(3,(0)) is a hemisphere of the geodesic sphere with
center in y(t) and radius =%

VK’

Lemma 2.6. For 0 <t < #, the family {¥, ()} is a foliation of B(po).

Proof. First, we claim that if 0 < ¢; < {2 < #, then ¥, (t1)NE,(t2)N
B(po) = 0. In fact, Suppose there exists ¢ € X, (t1) N X, (t2) N B(po). Then
d(g,7(t1)) = d(g,7(t2)) = 375, and d(g, po) < 3T

Consider the open ball B(g) with center in ¢ and radius 2&?' By
Lemma 2.5, B(q) is strongly convex. It is clear that py € B(q). Let
oi(s) (i = 1,2) be the minimal geodesic connecting v(¢;) (i = 1,2) to
q. By definition of X,(t), (07(0),~'(t;)) > 0, hence, = is transverse at y(t;)
to the geodesic sphere S(q), boundary of B(q), (i =1,2). This implies that
there exist disjoint neighborhoods V; and V5 of 1 and to, respectively, such
that v(V;) has points inside B(q) and outside B(q) near (t;) (i = 1,2).
Now, let v(tg) be a point of y(v1) N B(q). Then (), to <t < #, is a
segment of a minimal geodesic connecting 7(to) to po inside B(q), and ~(t)
leaves B(q). This contradicts the fact that B(q) is strongly convex, and
proves our claim.

Now, let ¢ be any point of B(pg). Consider the geodesic sphere S(q).
Since po is inside B(q), the geodesic (t) has points inside B(q). By ([7]),

7 goes to infinite, hence it leaves the closure B(q) of B(q).
Let ~(t1) be the point where v enters B(q) for first time before passing
s

through po. Then, ¢ € ¥,(t1). In fact, by construction, d(g,v(t1)) = N
Furthermore, since 7 is transverse to S(q) at y(¢1), if o(s) is the minimal
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geodesic joining y(¢1) to ¢, then (¢(0),~/(¢1)) > 0. This fact completes the
proof of Lemma 2.6.

Let fy: B(po) — R be the function defined by

(@ =t & qge X, (t).

By Lemma 2.6, f, is well-defined and by definition of the family {¥,(¢)} f,
is differentiable.
Since Kj; > 4K > 0, by Bonnet-Myers’ Theorem, M is compact and

diam M < 2% (diam M denotes diameter of M). Since Kj; > Ky, no

curve of z(M) can be a geodesic in N, and so

0

diam x(M) < diam M < ——=,

) 3R
then, for every point p € M, z(M) C B(z(p)). Now, by fixing p € M
and a geodesic v in N passing through z(p); we can construct a function f,
as above. Therefore, we can define the function hy : M — R by h, = fyox.

Lemma 2.7. h, is a Morse function that has two critical points, one
maximum and one minimum.

Proof: It is clear that h. is well-defined and is differentiable. Observe
now, that f, has no critical points in B(z(p)). On the other hand, the
maximum eigenvalues p; of the second fundamental form of each level sur-
face ¥, (t), with respect to the unit normal vector field as in Lemma 2.4, is
strictly less that the minimum eigenvalue of the second fundamental form
of x with respect to § according to Lemma 2.4. By Proposition 2.3, h., is
a Morse function without saddle points. Since M is compact, h, has only
two critical points, one maximum and one minimum ([4]). This completes
the proof of the Lemma 2.7 and of the Assertion 1.

Assertion 2. z is a embedding.

Proof of Assertion 2: Suppose, by contradiction, that x is not an
embedding. Then, there exists distinct points p and g of M, such that
z(q) = z(p).

Consider the geodesic (t) that passes through z(p) = ’y(\/%) and that
~' (\/LF) = £, is the unit normal vector field & of M at p.

Now, consider the function h, = f, o z. By Lemma 2.7 h, is a Morse
function that has only two critical points, one maximum and one minimum.
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By construction of h,, p is a critical point of h., which we assume to
be a point of minimum, with h(p) = to. (the case where p is a point of
maximum can be treated similarly).

Let v and v be disjoint neighborhoods of p and ¢, respectively, such
that x restricted to u or to v is an embedding. we will consider two cases:

1%t case. z(u) is not transverse to x(v) at x(p). In this case, ¢ is
also critical point of h, and so, is a point of maximum. Furthermore,
hy(q) = hy(p) = to. Since ¢ is a point of maximum of h,, there exists a
neighborhood vy of ¢ in M such that if » € v; and r # ¢, then h,(r) < to.
This implies that there exists a point of minimum if h, in M distinct of p.
This contradicts Lemma 2.7.

274 case. w(u) is transverse to z(v) at z(p). In this case, there exist
points of z(V') contained in the level below z(p). This implies that there ex-
ists another point of minimum distinct from p. This contradicts Lemma 2.7.

Then, x is embedding, thereby proving Assertion 2.

Now, since B(z(p)) is simply connected and z is an embedding, (M)
separates B(z(p)) in two connected components ([13], p. 72). Since the
eigenvalues of the second fundamental form do not change sign, by Propo-
sition 2.1, x(M) is the boundary of a convex body of N. Since z(M) is
contained in a normal neighborhood of pg, by Proposition 2.2, z(M) is dif-
feomorphic to a sphere. Therefore M is diffeomorphic to a sphere. This
completes the proof of Theorem A.

In 1978 was proved in [21] Theorem 2. The proof is based on a series
of lemmas. In the context of this survey we are going to prove just some of
them.

Theorem 2. Let M be a convex and compact submanifold of V. As-
sume that N is not compact and K > 0. Then, M is a homological sphere.

Lemma 2.8. Let A be a convex body of N with non empty boundary
0A. Let v :[0,I] — N a geodesic of N such that (t) € intA for t € [0,1)
and ~y(l) € 0A. Then, there exists € > 0 such that for every s: 0 < s < ¢,
the curve (I + s) it does not “belongs to A.
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Lemma 2.9. Let M be a convex submanifold of N and A convex body
of N with boundary M. Let v(t) be a geodesic of N which is tangent to
M at the point p = v(0). Therefore, there exists € > 0 such that v(—e,€)
is contained in the closure of N — A.

Lemma 2.10. Let A and B convex bodies of N. Assume A is a strongly
convex set and A N B is not empty. Then, any connected component of
AN B is a strongly convex set.

Proof. Let U be a connected component of AN B. Since U is a subset
of A, given two points in U there exists just one geodesic of N, entirely
contained in A, joining them. Suppose U is not a strongly convex set.
There are points p, ¢ € U such that the geodesic v join p with ¢ leaves U.
It is possible to assume p, ¢ ¢ U, the boundary of U. In fact, if p € U
since B is convex there are positive numbers 0 < ¢(p) < 7(p) such that
BN By (p) is strongly convex. Furthermore, since B and B.(p) are open
sets it follows that BN B.(p) is open. By extending v we are able to obtain
points in B N Be(p) N~y which are not in OU. Since M is a convex and open
set we can join p to ¢ by a broken geodesic in U — OU. By the hypothesis
of local convexity, we get a geodesic in B with ending points in the interior
of B and with a common point with 0B. This fact is in contradiction with
Lemma 2.8 and the proof is complete.

Lemma 2.11. Let M be a submanifold of N, such that both connected
components of N — M are convex sets. Then, M is totally geodesic.

Proof. Let us denote by A and B the connected components of N — M.
Let p be an arbitrary point of M. Since A and B are convex sets, their
closures A and B are also convex. In particular, there are positive numbers
0 < €(p) < r(p) such that AN B, (p) and BN B, (p) are strongly convex
sets. Let ¢ # p a point in M N By (p). By the definition of e, there
exists just one minimal geodesic v of IV joining p to q. Since AN By (p)
and BN Be(p) (p) are strongly convex sets, 7 must be contained in their
intersection. Then, v is included in M N B¢(p). Since g is arbitrary, it
follows that M N B¢(p) is totally geodesic in p. Since p is arbitrary, M is
totally geodesic in V.

Now, we are able to prove Theorem A.
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Proof. Denotes by A the convex component of N — M and by B the
other component. First, we show that A is bounded. Since M is compact
and N is diffeomorphic to R, either A or B is bounded. Let us de-
note by X the bounded component. We need to prove X = A. For that
assume X is convex and X = B. By Lemma 2.11, M is totally geodesic.
Since M is compact, it must exists a closed geodesic in M which is also a
closed geodesic in N. But, this is a contradiction. Next, we show that X is
convex. Since X is compact, there exists a compact subset Cy of N which
contains X with the following property: each geodesic joining point of Cj
is contained in Cy. This kind of sets are called totally convex. We observe
that a totally convex set is convex. From the next Theorem it turns out
that there exists a totally convex subset C3° of N, in such a way that C{°
contains X and OC{° intersect the boundary of X in M .

Proposition 2.4. (Cheeger and Gromoll). Let N be a Riemannian
manifold with non negatives sectional curvatures. Let C be a convex subset
(totally convex) closed in N such that the boundary 0C of C' is not empty.
Therefore,

1) For each a, the set

C* = {p € C;d(p,0C) > a}

is convex (totally convex).
2) If ™% = NoarpC® then dimC™* < dimC.

Proof. See [7]. Consider the set

L={ac[0,];X C Co}.

Since L is not empty and bounded there exists infL = ag. By definition,
X C C§° and My = 9C° N M # D. If My = M then X = C§°. Thus X is
convex. If My # M consider a point ¢ € My — intMy.

Since C’go is convex, every geodesic of N which is tangent to M at q
has a neighborhood of q in the closure of N — Cj°. But Cj° contains X, so
there exists a geodesic y(t) of N, tangent to M at ¢ = v(0) : for 0 < ¢t < ¢,
v(t) ¢ X. In particular, from Lemma 2.9, N — X can not be convex. Then,
X is a convex set.

Now, the closed set A is convex, thus by applying Theorem 2.1 to A we
obtain

A" = {p € A;d(p, M) > a}
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is convex. Furthermore, if Ay = N Aa#ﬂ“ then dimAy < dimA. Next, we
show that A reduces to the singleton {pp}. For that, we need the following
results:

Let ¢ : C — R a function defined by % (p) = d(p,dC). Then, for any
geodesic segment v contained in C the function v o« is weakly convex. In
other words

Y oy(aty 4 Bta) > apoy(t1) + By o y(ta),

where , 5 > 0 and a+ = 1. On the other hand, let us assume 9 o~y(s) = d
is constant on the interval [a,b]. Denotes by V(s) the parallel vector field
throughout v, ~such that V(a) = 74(0). Here, v, is a minimal geodesic
from 7(a) to OC. Therefore, for every s

eXPy(5) 1V (5) .
is a minimal geodesic from 7(s) to dC. The rectangle
¢ :la,b] x [0,d] — N

defined by
p(s,t) = expy (s 0V (s)
is flat and totally geodesic.

If Ay contains more than one point, by an convexity argument there
exists a geodesic segment o in Ag. By definition of Ay it turns out that
1 oo = constant. By Theorem 2.1, there exists a totally geodesic flat rect-
angle in A, which is a contradiction with the fact Ky > 0.

Lemma 2.12. 4 is a retract of deformation of A.

Proof. Since A is compact and convex there exists a positive number
€1 such that for any p € A, the set AN B, (p) is strongly convex. On the
other hand, there exists e > 0 such that if B,(q) is the open ball of N,
with center ¢ € A and radio 0 < r < g, the curve C : [0,77] — B,(q) is a
non constant geodesic and Cj : [0, 1] — B,(q) is a minimal geodesic from ¢
to C(0) with (C'(0),Cy(1)) > 0. In particular, the function S — d(C(s), q)
is strictly increasing in [0, 7).

Let 0 < € < min{er, e2}.
We claim: if p € A and an B(p) # o for some b > 0, then AN B(p)
is strongly convex. In fact, by Lemma 2.9 and Proposition 2.4, it is enough
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to prove that AN Be(p) is connected. If not, let r, s two points of different

connected component of A’ B(p). Let v a geodesic segment joining r to
s and
C={acl0,b]:vcA}.

Since C is not empty and bounded there exists ¢ = supC. So, 7 is
contained in A°. Furthermore, since ¢ = supC, v has a common point
with the boundary of A°. But this is a contradiction with Lemma 2.8. In

fact, A% is convex and r and s belong to the interior of A°. Thus, ZbﬂB€ (p)
18 connect which prove our claim.

Let b > a and b — a < ¢, then A’ is a retract of deformation of A*. In
fact, let

f(’;:Z"HZb

defined by fo(p) =p, p € A”, where p satisfy

d(p,A") = d(p, p).

The function f° is well defined. Letp € A" then fo(p) =p. Ifp € A" —Zb,
assume the existence of two different points py and py in A~ which realize

the distance from p to A, Since b—a < e, d(p, Ab) < €. So, p1 and
p2 belong to the ball B.(p). But, AN B(p) is not empty, it follows that
A'n Be(p) is strongly convex. Thus, there exists just one minimal geodesic
v(t) in N joining p1 = v(0) to p2 = y(I) and (t) is contained in ZbﬂBe(p).
Let

h:[0,l]] = R

defined by

h(t) = d*(p,~(t)).
Thus,

h0) = d*(p,p1) = d*(p, P2) = h(l).

Since h is differentiable, there exists to € (0,1) such that h'(ty) = 0.

Since y(t) is contained in N B(p), it follows that ty is the only one
minimum of h. So, h(ty) < h(0), which is in contradiction with the fact
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that p1 realizes the distance from p to AN Bc(p). Therefore, f° is well
defined.

Next, we prove that f° is a continuous function. Let p be an arbitrary
element of A" and (pn) a convergent sequence of points in A" such that:

lim p,, = p.

Denotes by p, = f2(pn) and for p = f2(p). We show that lim p,, = p.
By the own definition of fCIl’, we get

| d(pns D) — d(p,B) |=| d(pn, &) — d(p, A) |< d(pn, p).

Since A" is compact, the sequence (P,) admit a convergent subsequence
(ﬁnk) Let ]70 = limﬁnk. Then,

So, for any ng

| (p, o) — d(p, p) |<| d(p, po) — d(p1k, P1k) | + | (Prk, Prk) — d(p, D) |

Then,

Since py € A’ and 1l is well defined it follows that py = p. So, f° is
continuos. ,
Let i : A° — B" the inclusion application. It is clear that i o fbis a

identity z'dzb in A" So, A’ is a retract of deformation of A”. Let
F:[0,1] x A* - A"
the application defined by

F(t,p) = expptexpgl(f;’(p)).

We know that b—a < € and f° is continuous. So,
F is well defined and

F(0,p) =p, F(1,p) = fi(p).
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Thus, i o fé’ is homotopic to the identity of A", which prove that A s a
retract of deformation of A”, as we claimed.

Consider the ball Be(po), where {po} = Ag. Since {po} = ﬂAa#@Za,
there exists a positive value ¢ such that A° is contained in B(po). Clearly,
{po} is a retract of deformation of A°. It is possible, to decompose the in-
terval [0, c] in a finite number of points: 0 =ty < t1 < ... < t, = ¢ in such
a way that t; — t;_1 < €. Therefore, since A" s a retract of deformation
of Zti, by transitivity the singleton {po} is a retract of deformation of A,
which ends the proof.

Remark. By the Poincaré-Lefschetz Duality Theorem, we have
HF(A) = H, 1 1(A, M). Since {po} is a retract of deformation of A,
we get that
H*(A) = H*({po})-

It follows that
Hn+1(zv M) =7

and Hq(z, M) = 0,q < n+ 1. By considering the exact sequence M —
A — (A, M), we get:
w— Hy1(A, M) — Hy(M) — Hy(A) — ...

So, for 0 < q <n, we have

0 — Hy(M) — 0.

Therefore, Hy(M) = 0, for 0 < ¢ < n. Since M is a connected manifold
Hy(M) = Z. Since M is compact, orientable without boundary we have
H,(M)=Z. Thus, H.(M) = H.(S™).

At the present, the Poincare’s Conjecture has already been solved and
consequently this fact proves that M is homeomorphic to a sphere.

3. Proof of Theorem B

Lemma 3.1. If M satisfies FITA then every metric ball is strongly convex

Proof.Let us suppose by contradiction that there exists a point pg € M
and a real number p > 0 such that the open ball B = B,(po) is not strongly
convex. Then there are points m; and mgy such that the segment [mq,ms]
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of the geodesic (t) joining the points m; and mg has points outside the
closure B of the set B. Let p and ¢ be the points in B where (t) get in
and get out respectively.

Consider the configuration {g, v, 8}, given by the geodesics g and which
get out of the point pg and pass through p and q respectively. We consider
them parameterized so that g(—p) = po = (—p), 9(0) = p and (0) = ¢q. The
angle between [p, g, and g is 6.

By the Gauss lemma we have 6§ < %, thus by FITA there is a point
r = g(t) with ¢ > 0 such that {[p, ql,, [p, 7]y, [r,q]-} is an isosceles triangle
with basis [p,q]y. On the other hand, {[p,qly, [po,plg, [Po,qls} is also an
isosceles triangle and this contradicts the FITA.

The following results are immediate consequences of Lemma 3.1

Lemma 3.2. If M satisfies FITA then every geodesic of M realizes the
distance between every pair of its points.

Lemma 3.3. If M satisfies FITA then for every p € M the expo-
nential map expy, : T,M — M is a homeomorphism. This means that M
is diffeomorphic to R™ and in particular M is simply connected and so is
orientable.

Lemma 3.4. If M satisfies FITA then every geodesic of M cannot lie
iside any compact set.

Lemma 3.5. Let M satisfies FITA. If distinct metric spheres S1 and
Sy of M are tangent to each other then the set S1 N Sy is unitary.

The following two lemmas are immediate consequences.

Lemma 3.6. If M satisfies FITA then the closure of a strongly convex
body in M 1is strongly convex.

Lemma 3.7. Let M satisfies FITA. If H and K are strongly convex
intersecting subsets of M then H N K is also strongly convez.

Proof of Theorem B:

By using that M satisfies FITA and Lemma 3.2 we have that all geodesic
of M are lines and consequently for every point p € M, the exponential map
expp : TyM — M is a difeomorfism ( Lemma 3.3) .

Gwen an arbitrary point p € M and a unit vector v € T,M, let us
consider the sets:
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L, ={w e T,M;(w,v) = 0},
Ly ={w € TyM; (w,v) > 0},

L, = {w € T,M; (w,v) < 0}.

These sets allow us to define the following subsets of M :

Y =expy(Ly),
HT = e:ﬂpp(L;;),

H™ = expy(L, ).

We consider the geodesic ray r(t) = exp,(tv) starting at p in the direc-
tion v and By = UsoBi(r(t)), where By(r(t)) is the open ball centered at
the point r(t) and radius t.

The Lemma 3.5 assures that if t1 < to then By (r(t1)) C Bi,(r(t2)).
Moreover, as for each t the set By(r(t)) is strongly convex (Lemma 3.1)
and By, (r(t1)) C By, (r(t2)) when t; < ta, we have that By is strongly

convez (c.f. [12])
Let us denote by B, the closure of B,. We will prove that B, = HT.

Using that for each t > 0, By(r(t)) C H', by convexity and the equality

B, = U0 Bi(r(t)) = U0 Bi(r (1)),

we conclude that B, C HT.

Let ¢ € HT be an arbitrary point and let g, be a convergent sequence
made up of interior points in HT such that limgq, = q. Let p, be the
geodesic segment connecting the points p and q,. As qn is an interior point
then (r'(0), p,(0)) > 0. The manifold M satisfies FITA so there exists
rn = 1r(ty) in such a way that the geodesic triangle whose vertices are the
POINLS P, qn, and T, is an isosceles triangle with basis p,. Therefore

qn € By, (r(tn)) C By

As B, is closed we have q € B,. Thus, HT C B,. This way we have proved
that B, = H™.
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According to Lemma 3.6 the set B, is strongly convex and consequently
HT is also strongly convex.

By using a similar construction with the radius s(t) = exppt(—v), we
obtain that the set H— = By s strongly convex.

According to the Lemma 3.7 the set X = HT N H~ is strongly convex.
Since expy 1s a diffeomorphism we have that ¥ is a complete submanifold of
M without boundary with dimension n — 1. This means that 3 is a totally
geodesic submanifold of M.

Let us assume that n > 3. Since the points p and q are given arbitrarily,
the manifold M satisfies p axiom of r-planes, forr =n—12> 2. It follows
from the r-planes Theorem due to Cartan ( see [6]) that M has constant
sectional curvature (see [16]). As M is not compact it can only be isometric
to the Fuclidean space R™ or to the hyperbolic space H".

Since the set ¥ = 0B, is a horosphere in M and M is a space form,
then all sectional curvatures of ¥ vanish ([18]). On the other hand, the set
> s totally geodesic and consequently all sectional curvatures of M must
vanish. Therefore M is isometric to R™.

Let us assume now that n = 2. Let g be a geodesic (a line) in M. We
say that a geodesic is an asymptote at g passing through the point ¢ = ~y(0)
if there exists a sequence of minimal geodesics oy, : [0, 8,] — M such that
for every real value s, the sequence oy,(s) converges to the restriction of to
the interval [0,00) and we have oy (sy) = g(ty) with t, — oo.

When there exists another sequence T, : [0, s,] — M such that for every
real value s, the sequence T,(s) converges to the restriction of y(s) to the
interval (—o0,0] and we have 7,(sn) = g(tn) with t,, — —oo, we say that
v(s) is a bi-asymptote at g passing through the point q.

Let g be a geodesic of M and p = g(t1) and ¢ = g(t2) points on
the geodesic g. By constructing horospheres ¥, and ¥, starting from the
geodesic g, we notice that they both meet g orthogonally. On the other hand
as FITA 1is satisfied we can immediately conclude that 3, is a bi-asymptote
at Xp.

Eschenburg proves that there is an isometric immersion F : [t1,ta] X
RtoM such that ¥, = Fl|y, x R and ¥4 = F|i, x R (see [8]). This implies
that the region of M limited by 3, and ¥, has curvature zero. Since M is
simply connected, the curve g is an arbitrary geodesic and the points g(t1)
and g(t3) are also arbitrary, we conclude that M = R2.
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4. Proof of Theorem C

Proposition 4.1. If the Riemannian manifold M satisfies SITA than it is
compact.

Proof.To show the compactness, it suffices to find a point pg of M such
that every geodesic g : [0,00) — M, leaving pg, has a cut point with respect
to po, see [7]. Let us fix a point pg € M. Choose § > 0 such that the open
ball Bs(pp) with center pp and radius ¢ is convex. Denote by S,(po) the
geodesic sphere of center pg and radius r, for some 6 > r > 0.

Let g be a geodesic leaving pg and p the point where ¢ first crosses
Sr(po), we reparameterize g in such a way that g(0) = p and g(r) = po.
Finally, we construct a configuration {g,v}, by choosing a point ¢ # p
in Sy(po) and v a geodesic arc within Bs(pp) joining p = v(0) = ¢(0) to
q = (s). SITA assures the existence of exactly two real numbers t5 < 0 < t;
such that 7; = ¢(t;) determine geodesic segments [g,71], and [g, 2], that
are the sides of two simple isosceles triangles whose common basis is [p, g|.
By construction, t; = r, i.e., po = g(r) = g(t1) = r1, since p and ¢ belong
to the geodesic sphere S, (pg). Therefore,

1([po, m2]g) = U[po dlo) + U([g,72]7) -

Hence, the geodesic g has a cut point p’ = g(t’) with respect to pg, which
concludes the proof.

Proposition 4.2. If a Riemannian manifold M satisfies SITA then it
has no geodesic loop.

Proof. Let us suppose there exists a geodesic loop in M, that is, there
exists a geodesic g : R — M and points ty and tg in R, with ty # to such
that g(to) = p = g(to) and g'(to) # ¢'(to)-

We consider a strongly convex ball B(p). Let p; = g(t;) withi =1,2,3,4
be the points in the boundary OB(p) where g gets in and gets out and af-
terwards gets in and gets out of B(p).

Let ¢ = g(t) with t < ty be points obtained in such a way that d(q,ps) =
d(p2,p3). Joining q to p3 using the segment [q, p3], we obtain the configu-
ration {g,7,0},. According to SITA there is a point v = g(t) with t < t,
in such a way that the triangles {p2,q,ps} and {r,q,p3} are isosceles tri-
angles whose basis is the segment [q,ps]. Now, we observe that considering
the medium point D of the segment [q,psly, the triangle {q,D,p3} is also a
geodesic triangle distinct of the other two. This contradicts the SITA.
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Proposition 4.3. If M is a Riemannian manifold satisfying SITA then
every geodesic is closed.

Proof. We will prove that every geodesic of M is closed by showing
the existence of geodesics which are not closed lead us to a contradiction
to the SITA. Let ¢(p) denote the function which associates to every point
p € M the convexity radius of M at the point p, that is ¢(p) is the greatest
number such that the ball B, (p) centered at p and having radius r < ¢(p) is
strongly convex. According to the Whitehead Theorem c¢(p) is a continuous
function on M, (see [24] ). As M is compact and c is continuous there exists
a number > 0 such that for every p € M, the ball B(p) is strongly convex.

Let us consider the family of open sets {B,(p)}penm where 2r < 6. As
such a family covers M and M is compact, we can find a finite cover of M,
say {Br(p1), ..., Br(px) }-

Let us assume that there exists geodesic g which is not closed. In this
case, as M is complete, either g gets in and gets out twice in the same ball
of the family {B,(p1),..., Br(pr)}, or else there exists tg € R such that for
every t > tg the geodesic g is contained within open balls of the family
{Br(p1), s Brlpi)}-

In the first case, let us suppose that the geodesic g gets in and gets out
twice in the ball B, (p), as there not exist geodesic loops (Lemma 4.2), we
know there exist four distinct points which we will denote by p; = ¢(¢;) in
the boundary 0B, (p) where g gets in and gets out and this geodesic gets
in and gets out in B, (p).

Let us consider a point ¢ = g(t) with ¢ < t3 in such a way that d(q,p2) =
d(p2,p3). Joining g to ps we obtain an isosceles triangle {q, p2, p3} whose
basis is [q, p3]. Using SITA there exists a point p = g(%) with £ < tg such that
{D,q,ps} is an isosceles triangle whose basis is [g, p3]. On the other hand,
there is a point g(f) = p in the segment [pa, p3], so that d(ps, p) = d(p, ps).
From this we conclude that the triangle {pa,p,ps} is also isosceles whose
basis is [g, ps]. This contradicts SITA.

In the second case, let us assume there is a number ¢ty € R such that
for every t > to, g(t) is contained within the balls B, (p;). Let us fix a point
q = g(t) in B,(p;) and let us consider the strongly convex ball B(q) which
contains the set B, (p;). This means that g passes through the center of the
strongly convex ball Bs(q) and that for ¢ > £, the number g(t) is the radius
of the ball Bs(q). This is not possible for this ball has radius § < oco.

Now we are able to prove theorem C.
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Proof of Theorem C.

Let pg an arbitrary point in M and let g be an arbitrary geodesic starting
at pp and parameterized by the arc length. Using Lemma 3.1 we have
that g is a simple closed geodesic, therefore, there exists [ € R satisfying
9(21) = po = g(—2).

The point Py = g(I) will be called the antipode point of py with respect
to the geodesic g. In order to simplify our notation, we will denote by
g(t) = g(—t) the geodesic satisfying g(0) = p and g'(0) = —¢'(0).

We denote by pf, = g(to) the cut point of g with respect to pg. It is clear
that p{ cannot occur after the point py because I([po, glg) = I([po, Polg) -

We shall prove now that pg = Py. Let us suppose by contradiction
that pf # Dy. This means that I([py,Dy]y) > 0 and consequently we can
choose a real number £ such that tq < £ < [ and the point p = g(f) occurs
after pj and before py. The fact that g does not minimize the distance
from py to p implies the existence of a minimal geodesic v joining py to
p and satisfying {([po, plg) > I([po, ply). Moreover, if we denote by [p, polg
the segment joining p to pp and passing through the point p,, we have
([5,po)) > 1(po. Bl

In this case, we can find a point pj on g obtained from the point p in such
a way that I([p, p(]g) = U([po, ply)- Let us denote by [pg, po]a the segment of
the geodesic A joining pj to pg and let us consider the configuration {g, A},.
By construction we have the isosceles triangles

{10, pola, [Po, Bl [B: olg }s {16, Pola, [Po, Blg, [P, polg }

and their base is the segment [p(, po]x. Moreover, we also have the isosceles
triangle {[pg, pol, [po, Plg, [P, Polg} where p is the middle point of the segment
[P0, Pglg, joining the points pg, py and passing through the point py, which
contradicts the SITA. Therefore we have pf = .

Let us now consider a strongly convex ball B,(pg) chosen so that the
set By(po) be also strongly convex. We will denote by ¥ = 9B,(pg) the
boundary of B, (pg) and let us consider the points p = g(r) and p = g(—r) =
g(r) where the geodesic g meets 3.

We fix a point ¢ € 3 given arbitrarily and different from the points p and
P; We also consider the configuration {g,~}, where  is the geodesic joining
p to q. According to the SITA, there exist segments [po, q], and [Py, q] such
that the triangles {[po, ply; [Po; qlo, [P; 4} and {[p,Boly, [Pos 4]+ [p; gl } are
simple and isosceles.
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The fact U([po. Foly) = Ulpo,ply) + Ulp:ola) = Ulpo.als) + Ula.Boly)
implies that [po, ¢Jo and [g,Py]- are segments of the same geodesic joining
po to Py and passing through the point ¢, which we denote by ¢. Besides, if
1([po, Polg) = U([po, Pole) and Py is not the cut point of ¢ with respect to pg
there would exist a geodesic segment with length smaller than the length
of [po, Do)y joining pg to Py and this contradicts what we have shown before.

Using the fact that the point ¢ was taken arbitrarily we can conclude
that Py is the cut point of all geodesics passing through pg. Thus the cut
locus C(po) of pp is the set {Py} and since pg is arbitrary we have that
for every point p, the cut locus C(p) is a unitary set and therefore M is a
wiedersehen manifold.

If n = 2, the result follows from Green Theorem (see [9]) which says
that M is isometric to the Euclidean sphereS?. If n > 2 and is an odd
number, the result follows from the Yang Theorem (see [25]) which says
that M is isometric to the Euclidean sphere S™. If n > 2 and is an even
number, the result follows from the Kazdan Theorem (see [26]) which says
that M is isometric to the Euclidean sphere S™.
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