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Abstract

In this work, it is proved that the spectrum of an differ-
ential operator with unbounded operator coefficients in elliptic
type with partial derivatives is pure discrete and an asymptotic
formula is found for the number of eigenvalues of this operator.
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1. Introduction

The asymptotic behavior of the spectrum of Sturm-Liouville operator
with operator coefficient had been firstly studied by A.G. Kostyuchenko
and B.M. Levitan, [1]. Some works about this subject had been done
later by M.L. Gorbacuk ,[2], V.. Gorbacuk and M.L. Gorbacuk ,[3], [4],
M. Otelbayev ,[5], M.Z. Solomyak ,[6], F.G. Maksudov, M. Bairamoglu
and E.E. Adiguzelov ,[7], and etc. In this work, the spectrum of self
adjoint operator L forming with differential expression
(1.1)

l(u) = −Σn
i,j=1

∂

∂xi

(aij(x)
∂u

∂xi

)+Q(x)u, (x = (x1, x2, . . . , xn) ∈ IRn)

defined in H1 = L2(H; IRn) is studied and an asymptotic formula
for the number of eigenvalues of L is found , where H denotes the
Hilbert space. Here, we will accept that the coefficients aij(x) (i, j =
1, . . . , n) and Q(x) in (1.1) satisfy the following conditions:
1) Real valued functions aij(x) = aji(x) have bounded derivatives
∂aij(x)

∂xk
(i, j, k = 1, . . . , n) in IRn.

2) There are positive numbers ν and µ such that

νΣn
i=1ξ

2
i ≤ Σn

i,j=1aij(x)ξiξj ≤ µΣn
i=1ξ

2
i .

3) Q(x) : D(Q(x)) → H is a self adjoint operator, where D(Q(x)) ⊂
H for each x ∈ IRn. The set D = ∩x∈IRnD(Q(x)) is dense in H.
Q(x) ≥ I and Q−1(x) ∈ σ∞(H).
4) There are constants 0 < a < 3

2
and B > 0 such that

||[Q(x)−Q(ξ)]Q−a(x)|| ≤ B|x− ξ|

for |x− ξ| ≤ 1.
5) There is a constant l > 0 satisfying Q−l(x) ∈ σ1(H) and∫

IRn ||Q−l(x)||1dx < ∞ for x ∈ IRn.
6) There is a positive valued function f satisfying

||e−ctQ(ξ)||1 ≤ ||e−f(c)tQ(x)||1
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for c > 0, t > 0 and |x− ξ| ≤ 1.
7) For every M > 0

∫

IRn
tre−MtQ(x)dx = O(1)

∫

IRn
tre−tQ(x)dx.

Here, trA = traceA is the sum of the eigenvalues of a kernel operator
A.
8) Let α1(x) ≤ α2(x) ≤ . . . ≤ αm(x) ≤ . . . be eigenvalues of opera-
tor Q(x). Assume that the functions α1(x), α2(x), . . . are measurable
functions. Let

ρ(λ) = Σi

∫

αi(x)<λ
φ(x)(λ− αi(x))

n
2 dx,

φ(x) =
∫

IRn
e−Σn

i,j=1aij(x)ξiξjdξ, (ξ = (ξ1, . . . , ξn)).

Suppose that there is a constant a0 > 0 such that

λρ′(λ) ≤ a0ρ(λ)

for positive big values of λ. Let D′ denotes the set of elements in the
form Σm

k=1ϕk(x)fk of the space H1, where ϕ1(x), ϕ2(x), . . . , ϕm(x), are
scaler functions having compact support and continuous derivatives
of second order defined in IRn and {fk}m

k=1 ⊂ D. It is known that
D′ = H1. The linear operator L′ defined in the form

L′u = l(u) = −Σn
i,j=1

∂

∂xi

(aij(x)
∂u

∂xj

) + Q(x)u, u ∈ D′

is a symmetric and positive operator in H1. Suppose that the operator
L which is closure of L′ is pure discrete. Let

L0(η,
∂

∂x
) = −Σn

i,j=1aij(η)
∂2

∂xi∂xj

L1(x,
∂

∂x
) = −Σn

i,j=1

∂aij(x)

∂xi

∂

∂xj

.

To solve our main problem, we shall firstly study the Green function
of Cauchy problem in the following:
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



∂u
∂t

= −Lu = −[L0(x, ∂
∂x

) + L1(x, ∂
∂x

) + Q(x)]u

u(x, 0) = ψ(x); u = u(x, t), ψ(x) ∈ L2(H, IRn)
(1.2)

We shall look this for the Green function given by the form

G(x, y, t) = G1(x− y, y, t)e−tQ(y)+

(1.3)
∫ t

0
dτ

∫

IRn
G1(x− ξ, ξ, t− τ)e−(t−τ)Q(ξ)ϕ(ξ, y, τ)dξ

We will use parametric method for this. Here G1(x − y, y, t) is a
function of the form

(1.4) G1(x− y, y, t) = R(x− y)G0(x− y, y, t),

which has continuous derivatives of second order, where

R(x) =





1 |x| ≤ 1
2

0 |x| > 1
(1.5)

And G0(x− y, η, t) denotes the Green function of the problem





∂u
∂t

= −L0(η, ∂
∂x

)u

u(x, 0) = ψ(x); ψ(x) ∈ L2(H, IRn)
(1.6)

The function ϕ(x, y, t) in (1.3) is an unknown operator function
that it must be here found. If the equality

(1.7)
∂G

∂t
= −LG = −[L0(x,

∂

∂x
) + L1(x,

∂

∂x
) + Q(x)]G

is true, then we can take G(x, y, t) as a Green function of problem
(1.2). And so, the integral equation

(1.8) ϕ(x, y, t) = K(x, y, t) +
∫ t

0
dτ

∫

IRn
K(x, ξ, t− τ)ϕ(ξ, y, τ)dξ
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is obtained, where

(1.9)

K(x, y, t) = −e−tQ(y)[ ∂
∂t

+ L0(x, ∂
∂x

)]G1(x− y, y, t)+

+[Q(y)−Q(x)]e−tQ(y)G1(x− y, y, t)−

−e−tQ(y)L1(x, ∂
∂x

)G1(x− y, y, t).

2. Preliminaries

Now, before we give main results, we remind some of its definitions
used in this paper as below:

About Measurability
Let f(x) and {fi(x)}∞i=1 be any functions defined on Euclidean space
IRn that their values belong to a separable Hilbert space H.
Definition 2.1 A function defined on IRn whose range is a countable
set, is said to be countable valued if it takes on a measurable set its
all values except zero.
Definition 2.2 A function f(x) is said to be strong measurable if
there exists a sequence {fi(x)}∞i=1 of countable valued functions such
that limi→∞||fi(x)− f(x)||H = 0 in almost every where on IRn.
The space H1 = L2(H; IRn)
Let us denote with H1 = L2(H; IRn) the set of strong measurable
functions f of satisfying the condition

∫

IRn
||f(x)||2Hdx < ∞ x = (x1, x2, ..., xn) ∈ IRn

If the inner product of two element f and g of the set H1 is defined
by the formula

(f, g) =
∫

IRn
(f(x), g(x))Hdx

then the set H1 forms a separable Hilbert space, [8].
The spaces σ∞(H) and σ1(H)
The set of all complete continuous operators from H to H is denoted
with σ∞. Let A ∈ σ∞(H) be an operator which is different from zero
and A∗ be adjoint operator of A. Let s1 ≥ s2 ≥ ... ≥ si ≥ ... be the
eigenvalues which is different from zero of positive self-adjoint operator
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(A∗A)1/2. Here every eigenvalues is repeated according to multiplicity
number. Moreover,s1, s2, ..., si, ... are the positive numbers. These are
called the s-numbers of operator A. We can write the s-numbers of
A in the form si(A) and show the number of the s-numbers of A with
ν(A). Not that ν(A) can be finite or infinite. We shall denote the
union of the operator ”0” and the set of all operators A ∈ σ∞(H)
satisfying

ν(A)∑

i=1

si(A) < ∞

with σ1 or σ1(H). σ1 is a Banach space, [9]. In this space, every
operator A 6= 0 is defined by

‖A‖σ1(H) =
ν(A)∑

i=1

si(A)

and we accept that ‖0‖σ1(H) = 0, [9].
Along this study, we shall denote positive constants with c which may
not be same and the norm of the kernel operator from H to H in space
σ1(H) with ‖ ·‖1 as in [9]. Moreover, here we shall use the inequalities

||AB||1 ≤ ||A||1||B||

||BA|| ≤ ||A||1||B|| (A ∈ σ1(H), B ∈ L(H, H))

and

(2.1) ||D(k)
x G0(x− y, y, t)|| ≤ ct

n+k
2 exp(−c

|x− y|2
t

), (k = 0, 1, 2)

which were proved in [9,10] respectively and we shall suppose t ∈ (0, 1).

3. The spectrum of operator L asymptotic for-
mula for the number of its eigenvalues

In this section, the spectrum of operator L is studied and an asymp-
totic formula is found for the number of eigenvalues which is less then
λ, where λ is a positive variable. First of all, to solve integral equation
(1.8), we need to estimate the operator function K(x, y, t).
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Theorem 3.1. If the conditions 1), 4) are satisfied and for every
t > 0, x ∈ IRn e−tQ(x) ∈ σ1(H) then

||K(x, y, t)||1 ≤ const.t−b||exp(−ctQ(y))||1exp[−c
|x− y|2

t
],

where b = max{n+1
2

, n−1
2

+ a}.
Proof. From the relations (1.4), (1.6), (2.1) and the functions

aij(x) satisfy the condition 1), for |x− y| ≤ 1
2

we obtain

[
∂

∂t
+L0(x,

∂

∂x
)]G1(x−y, y, t) = ||L0(x,

∂

∂x
)−L0(y,

∂

∂x
)]G0(x−y, y, t)||

= ||Σn
i,j=1[aij(x))− aij(y)]

∂2G0(x− y, y, t)

∂xi∂xj

||

≤ const.t−
n+2

2 |x− y|exp[−c
|x− y|2

t
]

(3.1) ≤ const.t−
n+2

2 exp[− c

2

|x− y|2
t

].

If we use again (1.4) and (2.1), for 1
2

< |x− y| ≤ 1 we find

||L0(x,
∂

∂x
)G1(x− y, y, t))|| ≤ const.t−

n+2
2 exp[−c

|x− y|2
t

],

|| ∂
∂t

G1(x− y, y, t))|| = |R(x, y)||| ∂
∂t

G0(x− y, y, t)||

= |R(x, y)|||L0(y, ∂
∂x

)G0(x− y, y, t)||

≤ const.t−
n+2

2 exp[−c |x−y|2
t

] ,

(3.2) ||[ ∂

∂t
+ L0(x,

∂

∂x
)]G1(x− y, y, t)|| ≤ const.exp[− c

2

|x− y|2
t

].

On the other hand, recall for |x − y| > 1 G1(x − y, y, t) ≡ 0 and
from (3.1) and (3.2) we obtain
(3.3)

||[ ∂

∂t
+ L0(x,

∂

∂x
)]G1(x− y, y, t)|| ≤ const.t−

n+1
2 exp[− c

2

|x− y|2
t

].
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By the hypothesis, since for t > 0, x ∈ IRn e−tQ(x) ∈ σ1(H) we
write

||(Q(y)−Q(x))e−tQ(y)G1(x− y, y, t))||1 ≤ const.||(Q(y)−Q(x))·

(3.4) e−
t
2
Q(y)|| ||e− t

2
Q(y)||1t−n

2 exp[−c
|x− y|2

t
].

Since Q(x) satisfies the condition 4) we have

||(Q(y)−Q(x))e−
t
2
Q(y)|| ≤ ||(Q(y)−Q(x))Q−a(y)|| ||Qa(y)e−

t
2
Q(y)||

≤ B|x− y|t−a||taQa(y)e−
t
2
Q(y)||

≤ const.t−a|x− y|.
If we consider this last relation for (3.4), then we obtain

||(Q(y)−Q(x))e−tQ(y)G1(x− y, y, t))||1 ≤ const.t−
n−1

2
−a·

(3.5) ||e− t
2
Q(y)||1exp[− c

2

|x− y|2
t

].

Since the derivatives of second order of R(x) are continuous, from
(1.4) and (2.1) we find

||e−tQ(y)L1(x,
∂

∂x
)G1(x− y, y, t))||1

(3.6) ≤ const.t−
n+1

2 ·||e−tQ(y)||1exp[−c
|x− y|2

t
].

From (1.9),(3.3),(3.5) and (3.6) we obtain

||K(x, y, t)||1 ≤≤ const.t−b||exp(−ctQ(y))||1exp[−c
|x− y|2

t
].
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This proves theorem.
In a similar form of the proof of this theorem, the inequality

(3.7) ||K(x, y, t)|| ≤ const.t−bexp[−c
|x− y|2

t
]

can be shown.
From theorem 3.1, (3.7) and the inequalities

∫ ∞

−∞
exp[−c

(ξ − z)2

t− τ
− c

(z − η)2

τ
][(t− τ)τ ]

1
2 dz

(3.8) ≤ c(ε)t
1
2 exp[−(c− ε)

(ξ − η)2

t
],

(ξ − z)2

t− τ
+

(z − η)2

t
≥ (ξ − η)2

t

which were proved in [10], it can be proved that the series

ϕ(x, y, t) =
∞∑

m=1

Km(x, y, t)

which is a solution of the equation (1.8), is convergent with respect to
the norm in σ1(H) of such that Q−l(x) ∈ σ1(H) for every x ∈ IRn and
the inequalities

||ϕ(x, y, t)||1 ≤ const.exp[−c
|x− y|2

t
]

||Q−l(y)||1 + t−b||exp(−ctQ−l(y))||1}(3.9)

(3.10) ||ϕ(x, y, t)||1 ≤ const.||Q−l(y)||1exp[−c
|x− y|2

t
], (|x−y| > 1)

(3.11) ||ϕ(x, y, t)|| ≤ const.t−bexp[−c
|x− y|2

t
].

are satisfied.
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Theorem 3.2. If the coefficients of differential expression (1.1)
satisfy the conditions 1),3),4),6) and for every x ∈ IRn Q−l(x) ∈
σ1(H), then while t → +0

G(x, y, t) = G1(x−y, y, t)e−tQ(y)+t1−bexp[−c
|x− y|2

t
]·{||Q−l(y)||1+

+||exp(−ctQ(y)||1}O(1),

where O(1) is an operator function which is bounded with respect to
the norm σ1(H) in variables x, y and t and b = max{n+1

2
, n−1

2
+ a}.

Proof. From (1.3), (1.4), (1.5) and (2.1) we obtain

||G(x, y, t)− etQ(y)G1(x− y, y, t)||1 ≤

≤ A1

∫ t

0
(t− τ)−

n
2 dτ

∫

IRn
exp[−c

|x− ξ|2
t− τ

]

||exp[−(t− τ)Q(ξ)]ϕ(ξ, y, τ)||1dξ

= A1

∫ t

0
(t− τ)−

n
2 dτ

∫

|y−ξ|≤1
exp[−c

|x− ξ|2
t− τ

]||

exp[−(t− τ)Q(ξ)]ϕ(ξ, y, τ)||1dξ

+A1

∫ t

0
(t− τ)−

n
2 dτ

∫

|y−ξ|>1
exp[−c

|x− ξ|2
t− τ

]||

exp[−(t− τ)Q(ξ)]ϕ(ξ, y, τ)||1dξ

(3.12) = B1 + B2

where A1 is a positive constant. By using the inequalities (3.9) and
(3.11) we shall estimate the integral B1:

B1 = A1

∫ t

0
(t− τ)−

n
2 dτ

∫

|y−ξ|≤1
exp[−c

|x− ξ|2
t− τ

]·||

exp[−(t− τ)Q(ξ)]ϕ(ξ, y, τ)||1dξ

≤ const.
∫ t

2

0
(t−τ)−

n
2 τ−bdτ

∫

|y−ξ|≤1
exp[−c

|x− ξ|2
t− τ

]||exp[−(t−τ)Q(ξ)]||1·
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exp[−c
|ξ − y|2

τ
]dξ + sabit

∫ t

t
2

(t− τ)−
n
2 dτ

∫

|y−ξ|≤1
exp[−c

|x− ξ|2
t− τ

]·

exp[−(t−τ)α1(ξ)]exp[−c
|ξ − y|2

τ
]{τ−b||exp[−cτQ(y)]||1+||Q−l(y)||1}dξ

(3.13) = B
(1)
1 + B

(2)
1 .

Since Q(x) satisfies the condition 6) and from the inequality (3.8)
and the formula

∫ t

0
τα(t− τ)βdτ = tα+β+1B(α + 1, β + 1) (α > −1, β > −1),

where

B(m, k) =
Γ(m)Γ(k)

Γ(m + k)
, Γ(m) =

∫ ∞

0
xm−1e−xdx

for B
(1)
1 we find

B
(1)
1 = const.

∫ t
2

0
(t− τ)−

n
2 τ−bdτ

∫

|y−ξ|≤1
exp[−c

|x− ξ|2
t− τ

]·

||exp[−(t− τ)Q(ξ)]||1exp[−c
|ξ − y|2

τ
]dξ

≤ const.||exp[−c1tQ(y)]||1
∫ t

2

0
τ

n
2
−bdτ ·

∫

IRn
exp[−c

|x− ξ|2
t− τ

− c
|ξ − y|2

τ
][τ(t− τ)]−

n
2 dξ

(3.14) ≤ const.t1−b||exp[−c1tQ(y)]||1exp[−c1
|x− y|2

t
].

In the similar form, we can estimate B
(2)
1 :

B
(2)
1 = const.

∫ t

t
2

(t−τ)−
n
2 dτ

∫

|y−ξ|≤1
exp[−c

|x− ξ|2
t− τ

]exp[−(t−τ)α1(ξ)]·
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exp[−c
|x− ξ|2
t− τ

− c
|ξ − y|2

τ
]{τ−b||exp[−cτQ(y)]||1 + ||Q−l(y)||1}dξ

≤ const.{t−b||exp[−c1tQ(y)]||1 + ||Q−l(y)||1}·
∫ t

0
τ

n
2 dτ

∫

IRn
exp[−c

|x− ξ|2
t− τ

− c
|ξ − y|2

τ
][τ(t− τ)]−

n
2 dξ

≤ const.t{t−b||exp[−c1tQ(y)]||1 + ||Q−l(y)||1}exp[−c1
|x− y|2

t
].

From (3.13), (3.14) and the last relation we find

B1 ≤ const.t{t−b||exp[−c1tQ(y)]||1+||Q−l(y)||1}exp[−c1
|x− y|2

t
] ≤

(3.15)

≤ const.t1−bexp[−c1
|x− y|2

t
]{||exp[−c1tQ(y)]||1 + ||Q−l(y)||1}.

This time, let us estimate the expression B2 in (3.12) using the in-
equalities (3.8) and (3.10).

B2 = A1

∫ t

0
(t− τ)−

n
2 dτ

∫

|y−ξ|>1
exp[−c

|x− ξ|2
t− τ

]

||exp[−(t− τ)Q(ξ)]ϕ(ξ, y, τ)||1dξ

≤ A1

∫ t

0
(t− τ)−

n
2 dτ

∫

|y−ξ|>1
||exp[−(t− τ)Q(ξ)]||

exp[−c
|x− ξ|2
t− τ

]||ϕ(ξ, y, τ)||1dξ

≤ const.||Q−l(y)||1
∫ t

0
τ

n
2 dτ

∫

IRn

exp[−c
|x− ξ|2
t− τ

− c
|ξ − y|2

τ
][τ(t− τ)]−

n
2 dξ

(3.16) ≤ const.t||Q−l(y)||1exp[−c1
|x− y|2

t
].



An asymptotic formula for the number of eigenvalues of a ... 77

From (3.12), (3.15) and (3.16) we obtain

||G(x, y, t)− e−tQ(y)G1(x− y, y, t)||1 ≤

≤ const.t1−bexp[−c1
|x− y|2

t
]{||exp[−c1tQ(y)]||1 + ||Q−l(y)||1}

or

G(x, y, t) = G1(x− y, y, t)e−tQ(y) + t1−bexp[−c1
|x− y|2

t
]·

{||exp[−c1tQ(y)]||1 + ||Q−l(y)||1}O(1).

This completes the proof.

Now, we can prove that the spectrum of L is pure discrete and find
an asymptotic formula for the number of its eigenvalues.

Theorem 3.3. If the coefficients of differential expression (1.1) satisfy
the conditions 1) -7) then the spectrum of L is pure discrete.
Proof. The operator function G0(x− y, y, t) is in the form

G0(x− y, y, t) =
I

(2π)n

∫

IRn
exp[−tΣn

i,j=1aij(y)sisj + i(s, x− y)]ds,

where I : H → H is an identity operator. By translating si = t−
1
2 ξi

we have

G0(x−y, y, t) =
I

(2π
√

t)n

∫

IRn
exp[−Σn

i,j=1aij(y)ξiξj +it−
1
2 (ξ, x−y)]dξ.

From here, we find
(3.17)

G0(0, x, t) =
I

(2π
√

t)n

∫

IRn
exp[−Σn

i,j=1aij(x)ξiξj]dξ =
Φ(x)

(2π
√

t)n
I.

From the formulas (1.4), (3.17) and theorem 3.2 we obtain
(3.18)

trG(x, x, t) =
Φ(x)

(2π
√

t)n
tre−tQ(x) + O(1)t1−b[||e−ctQ(x)||1 + ||Q−l(x)||1].
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By hypothesis, for every x ∈ IRn, Q(x) ≥ I and hence

||e−ctQ(x)||1 = tre−ctQ(x).

On the other hand, since Q(x) satisfies the conditions 5) -7) and from
(3.18) we find

∫

IRn
trG(x, x, t)dx =

1

(2π
√

t)n

∫

IRn
Φ(x)tre−tQ(x)dx + O(1)t1−b·

(3.19)
∫

IRn
Φ(x)tre−tQ(x)dx + O(1)t1−b.

Since the expression Σn
i,j=1aij(x)ξiξj satisfies the condition 2) there

exist positive constants M1 and M2 such that

(3.20) M1 < Φ(x) < M2.

Thus, from (3.19) we obtain
∫

IRn
trG(x, x, t)dx < ∞.

Since u = e−tLψ(x) and u =
∫
IRn G(x, y, t)ψ(y)dy, G(x, y, t) is the

kernel of positive bounded operator e−tL (t > 0). In this case, for
every t > 0, e−tL is the kernel operator, [8]. For the spectrums of
operators e−tL and L

s{e−tL} = e−ts{L}.

Since for every t > 0, e−tL is a complete continuous operator and from
the last formula we obtain that the spectrum of L is pure discrete.

Let λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . ., be eigenvalues of L and let

N(λ) = Σλn<λ1,

where λ > 0.

Theorem 3.4. If the coefficients of differential expression (1.1) satisfy
the conditions 1)-8) then while λ →∞ the asymptotic formula

N(λ) ∼ 1

(2π)nΓ(n+2
2

)
Σi

∫

αi(x)<λ
Φ(x)(λ− αi(x))

n
2 dx
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is satisfied.
Proof. The following equality holds:

(3.21) tre−tL =
∫ ∞

0
e−λtdN(λ).

From (3.19) and (3.20) while t → +0 we obtain the asymptotic formula

(3.22)
∫

IRn
trG(x, x, t)dx = F (t) + o(1)F (t),

where

(3.23) F (t) =
1

(2π
√

t)n

∫

IRn
Φ(x)tre−tQ(x)dx

and o(1) is a function of t satisfying the condition limt→+0 o(1) = 0.
On the other hand, in [8] it is given

tre−tL =
∫

IRn
trG(x, x, t)dx.

From this last, (3.21) and (3.22) we find

(3.24)
∫ ∞

0
e−λtdN(λ) =

∫

IRn
trG(x, x, t)dx = F (t) + o(1)F (t).

Moreover,

F (t) =
1

(2π
√

t)n

∫

IRn
Φ(x)[Σ∞

i=1e
−tαi(x)]dx

=
1

(2π
√

t)n
Σ∞

i=1

∫

IRn
Φ(x)e−tαi(x)dx.

On the other hand, in [11] it is shown that

1

(2π
√

t)n

∫

IRn
Φ(x)e−tαi(x)dx =

∫ ∞

0
e−λtdρi(λ),

where

ρi(λ) =
1

(2π)nΓ(n+2
2

)

∫

αi(x)<λ
Φ(x)(λ− αi(x))

n
2 dx.
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Hence, from the last three equalities we obtain

(3.25) F (t) =
∫ ∞

0
e−λtdρ(λ),

where

ρ(λ) =
1

(2π)nΓ(n+2
2

)
Σi

∫

αi(x)<λ
Φ(x)(λ− αi(x))

n
2 dx.

From (3.24) and (3.25), while t → +0 we find

(3.26)
∫ ∞

0
e−λtdN(λ) ∼

∫ ∞

0
e−λtdρ(λ).

By hypothesis, we have

λρ′(λ) < a0ρ(λ)

Thus, from (3.26) and according to [12], while λ →∞ we obtain

N(λ) ∼ ρ(λ)

or

N(λ) ∼ 1

(2π)nΓ(n+2
2

)
Σi

∫

αi(x)<λ
Φ(x)(λ− αi(x))

n
2 dx.

Example 3.1. Here we will give an example of scaler functions
aij(x) (i, j = 1, 2, .., n) and an operator function Q(x) satisfying the
conditions 1)− 8). Now, let

aij(x) =
{

1 , i = j
0 , i 6= j

(i, j = 1, 2, 3, ..., n)

These functions obviously satisfy the conditions 1)− 2).
For an orthonormal basis {ei}∞i=1 of separable Hilbert space H, we
define the operator function in the form

Q(x)f = Σ∞
i=1(f, ei)i

4(1 + |x|5/4)ei , (f ∈ D(Q(x)))

It can be easily shown that the operator function Q(x) satisfies the
conditions 3)− 8).
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