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Abstract
We study the solvability of the problem
—Au = f(z,u)+h nQ; u=0 on 0N

when the nonlinearity f is assumed to lie asymptotically be-
tween two non- consecutive eigenvalues of —A. We show that
this problem is nonresonant.
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1. Introduction

In this paper, we will examine the existence of a solution of the prob-
lem:

—Au = f(z,u)+h inQ
(1.1)where { u - 0 on 99

Q) is a smooth bounded domain of ¥, N > 2. A denotes the laplacian
Au = div(Vu), f: Qx — is assumed to be a Carathéodory function
such that

(fo)and mg(z) = sup |f(z,s)| € L*(Q) for each R >0

IsI<R

h € L?(Q).

We are interested in the conditions to be imposed on f and on the
primitive F', F(z,s) = [5 f(x,t)dt in order to have the nonresonance
i.e. the solvability of (1.1) for every h in L*().

First we introduce some notations, the inequality

a(x)=X [(z) means that a(x) < f(z) for a.e. x € Q with a strict
inequality a(z) < [B(z) holding on subset of Q of positive measure.
Ai < Aix1 < Ay are the consecutive eigenvalues of the problem

—Au=Xu inQ;u=0 ondf

E();) is the subspace of H}(Q) spanned by the eigenfunctions corre-
sponding to \;. ||.|| denotes the norm in H}(€2) induced by the inner
product < u,v >= [, VuVuv; u,v € H}(Q).

Theorem 1.1. Assume (fy) and
(Hy) MN=I(x) =liminf f(z,s) < k(z) = limsup f<x’8)j it uni-

|s]—o0 S |s|]—+00 S

formly for

a.e. v €
(Hy)  for some j such that 2 < j < 4, \; is not simple i.e.
(Hy) L) = limin 25
then for any given h € L?(S2), there exists a weak solution of (1.1).

> A1 uniformly for a.e. x € €2
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Remark: We can replace (Hs), by one of the following conditions

1
lim /Fx,vx o Aag0? = 400,
[[v]|=+oo,ve®i<p<it1 E(Np) JOQ ( ( )) 9 +1 o0

2F
2) K(z)=limsup (Q; )
|s|—+o0 s

= g1

3) / (La@)=h)o [ (Lo(@)=Ai)e? > 05 v € B(Aisy) and

v<0
2F
v # 0 and Ly(z) = liminf (z,5)

s—=+o0 S

> Nig1-

4) / =K (@)t / =K (@)* > 0; v € B(Ai) and

2F
v # 0 and Ky (z) = limsup (z,5)

s—oo 52

< i1

these limits are taken uniformly for a.e. x € )

Corollary 1.1. Assume (fy), (H1), (Hs) and

(Hy) F(z,s)<0 for |s| <6 (6 > 0)

(Hs) F(z,s)<As> + B A, Be

then if h = 0 the problem (1.1) possesses a nontrivial solution.

Corollary 1.2. Assume (fy), (H1), (Hs) and
(He)  Flo,t+s) > Fla,t)+ Fr,s)+ B(x); B() € LY(Q)
1
H I / Flz, a0 de =
B) ottt paepn Jo T ) = GAiavTd = Hoo
then the problem (1.1) possesses a solution for any given h in E(\j41)™.

Where E(\i1)t ={h e L*(Q) : [ohp =0 Vo€ E(\y1)}

This generalizes many of the existing results for doubly resonant
problems. see e.g. [3]; [7]; [4]; ... Our approach to the problem (1.1)
is variational and uses the well-known saddle point theorem of P. Ra-
binowitz.
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2. Preliminary Lemmas

From the conditions (fy) and (H;), it follows that there exists con-
stants a, A > 0 and functions b(.) € L*(Q), B(.) € L*(2) such that

(1) |f(z,s)| < als| +b(x)
and
(2) |F(z,5)| < Als|* + B(2)

hence, the functional

@(u):;/Q\Vu\Z—/QF(:U,u)—/Qhu

1

is well defined, lower semi-continuous and of class * on the Sobolev

space Hg () with derivative ®'(u) given by

<I>’(u)w:/QVqu—/Qf(x,u)w—/Qhw.

for all u,w € H}(), thus the critical points of ® are precisely the
weak solutions of (1.1).
Let (u,) C Hj(2) be an unbounded sequence, such that

(3) ®(uy,) is bounded and ®'(u,) — 0.

‘u", we have ||v,]| = 1 and, passing to a
subsequence (still denoted by (v,,)), we may assume

Defining (v,) by v, =

v, — v weakly in Hg(Q)
v, — v strongly in L?({2)
() — v(z) a.e. z € Q)
lv,| < 2(x) where z(.) € L*(Q).
[, un)

[

Assuming (fy) and (H;), we obtain that the sequence ( ) is

bounded in L?(f2), so we may assume that

(4) f(x, up)

[

— f weakly in L*(Q).
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An easy calculation (see [4]) shows that

(5) @) < 19 < @) it o) £0

v(x) ~
and
(6) fl@)=0 ifv(z)=0.
Let us define
f
if w(x)#0
m(zx) = ] v(z) (@)
§(l($) + k(z)) if v(x)=0

Then by (5) and (6), we have
(7) f(z) =m(z)o(z) and IU(z) < m(z) < k(z)

Lemma 2.1. Assume (fy) and (Hy), then v is a nontrivial solution
of the following problem

(1.2) —Au=m()u inQ; u=0 ondQ

Proof. Using (3) we have |®'(u,)w| < &,|w|| for all w € H}(Q),
where ¢, — 0, therefore

|q),(un un’

1-— f:L’un 1 /hv <
[[un[? " Tl Jo™

= lunll

hence, by (4) and the fact that v, — v in L?(Q), we obtain [, fv =1,
so that v # 0.
On the other hand, for any w € H{(2) we have

Vo — f T Un) | n ‘_ o
el Iunll [lual nll

passing to the limit, we conclude

|2 (up)w| w|

lall

Y 1
/QVva /wa 0 Ywe HY(Q)



58 M. Moussaoui and M. Moussaoui

that is
/ VoVw — / m(z)vw =0 Yw € HJ(Q)
Q Q

in other words v is a weak solution of (1.2), moreover v # 0. So the
proof of lemma 2.1 is complete.

Lemma 2.2. Assume (fy), (H1) and (Hs) then the functional ® sat-
isfies the Palais-Smale condition (PS), that is whenever (u,) C H}(Q)
is a sequence such that ®(u,) is bounded and ®'(u,) — 0 then (u,)
possesses a convergent subsequence

Proof : Let (u,) C H}(Q2) be such that |®(u,)| < ¢, ' (u,) — O.
Since ®'(u) = u — T'(u) where T is a compact operator from H} ()
to H1(Q) (T'(vw)w = [, f(z,u)w — [ hw), in order to show that (u,)
has a convergent subsequence it suffices to show that (u,) is bounded.
Suppose by contradiction that

(8) [un]| — +o0

u
Let v, = ﬁ, then, as we observed in (7) and lemma 2.1 there exists
Unp

a subsequence of (v,) (still denoted by (v,)) such that v, — v in
H{(Q), v, — v strongly in L*(2) and v is a nontrivial solution of the

problem
—Au=m()u inQ; u=0 ondN

where

l(z) <m(x) < k(x)

so we conclude that

(9) L€ o(=A,m())
and

On the other hand, by (10) and the strict monotonicity of \;(m)
we deduce

Ai(Ai(1)) > Ai(m(.)) and Aii2(m(.)) > Air2(Aig2(1))
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hence

1> )\Z(m()) and )\H_g(m()) >1
that is
(11) Ai(m(.)) <1< Aga(m(L)).

it follows from (9) and (11) that
(12) 1= Xp(m(.)).

In view of the variational characterization of \;,; we have

(13) 1 =sup inf{/ m()u? : |ul|=1,uc E+1}
Q

Fi

where F},; varies over all i + 1- dimensional subspace of H} ().
On the other hand, we claim that there exists € > 0 such that

(14) inf {/Qmu2 |l =1, ue @1§p§iE()\p)} >1+e¢

Indeed, suppose (14) is false, then there exists a sequence (u,) in

D1<p<iE(Np), |lun|l =1 and a sequence (g,) in ** such that
(15) e, — 0 and /Qm()ui <1l+e,.

Since |lu,|| =1 and dim ®1<,<; E())) < 00, we deduce

(16) tn — u, |Juf =1 and Jul)? < )\i/QUQ.

Passing to the limit in (15) we conclude
(17) / m(z)u?dr < 1
Q

combining (10), (16) and (17) we obtain

1:Hu||2:)\i/u2:/mu2
0 0
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hence
(18) u € E()\;) and /(m — \)u? = 0.
Q

Since m(.) > A\; and u € E()\;) satisfies the unique continuation prin-
ciple, (18) implies that m(.) = \; a.e. x € Q, which contradicts (H;)
and shows that (15) can not occur. To complete the proof of lemma
2.2, let F' C @1<p<iF(N,) such that dimF = i+ 1 (it is possible by
hypothesis (Hs)), it follows from (14) that

inf{/muQ, |ul| =1, uEF}zl—i-a
Q

which contradicts (13), so (8) can not occur and the proof of lemma
2.2 is complete.

Let us take the decomposition Hg(2) = V& W where V is the sub-
space spanned by the eigenfunctions corresponding to Aj, 7 =1,...,i+
1, and W = V+. Tt is easy to see that (H;) implies

2F
(19) K(z) = limsup @ = Ait2
sltoo 8
Lemma 2.3. Assume (fy),(H;) and (H3), then we have
i) lim ®(v) = —o0

[[v]|—=+oo;veV

im P(w) = +o00
[wl|—+oc;weW

Proof. Combining (H3) and (19) the above results follows.
3. Proof Of The Main Results
Proof of theorem 1.1. We can easily see that the functional ® :
1
®(u) = = |[uf? — / Flz,u) —
(w) = 5llul”~ | F(z,u) - hu dz

is weakly lower semicontinuous. Therefore, since ® is coercive,
(lemma2.3 ii)) the infinimum § = inf @y > —oo is attained. Taking
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a < 3 by i) of lemma 2.3 there exists R > 0 such that ®(v) < « for
all v € V with ||v| > R. Finally since ® satisfies the Palais-Smale
condition, (lemma 2.2) we can apply the saddle point theorem of P.
Rabinowitz to conclude the existence of a critical point ug € Hg of ®,
so the proof is complete. |

Proof of corollary 1.1. To show the corollary 1.1, it suffices to show

i) there exists p > 0 such that
(20) O(u) > a > 0if ||lu|| = p,u € Hy ()
and i) By hypotheses (H;) and (Hy) we deduce

(21) lim ®(tp;) = —oc0

[t|—-+o0
1 is a A\; normalized eigenfunction.
Combining (20), (21) and lemma 2.2 we can apply the Mountain-

Pass theorem to conclude that ® has a critical value ®(ug) with
D (up) > a > 0.

Proof of corollary 1.2. It is easy to show from (H,), (Hg) and (H7)
that

(20) lim  ®(v) = —o00

[|[v]|—4o0;veV

On the other hand we have

21 lim d(w) = +o0
( ) [|w||—+o0, weW ( )

so by lemma 2.2 ,(20) and (21) we deduce the result.
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