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Abstract

We study the nonlinear elliptic problems with Dirichlet bound-
ary condition

{
−∆pu = f(x, u) in Ω

u = 0 on ∂Ω

Resonance conditions at the first or at the second eigenvalue
will be considered.
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1. INTRODUCTION

Let us consider the Dirichlet problem

(1.1)where

{
−∆pu = f(x, u) in Ω

u = 0 on ∂Ω

Ω is a bounded smooth domain in N (N ≥ 1) and the nonlinearity
f : Ω× → is assumed to be a Carathéodory function with subcritical
growth, that is:

(f0) |f(x, s)| ≤ a|s|q−1 + b ∀s ∈ ; a.e. x ∈ Ω

for some constants a, b > 0, where 1 ≤ q < p∗, if N > p and

1 ≤ q < +∞ if N ≤ p, with
1

p∗
=

1

p
− 1

N
.

∆p, 1 < p < ∞ is the p-laplacian ∆pu = div(|∇u|p−2∇u). The oper-
ator ∆p with p 6= 2 arises from a variety of physical phenomena. It
is used in non-Newtonian fluids, in some reaction-diffusion problems
as well as in flow through porous media. It appears also in nonlinear
elasticity, glaceology and petroleum extraction. The linear case when
p = 2 has been studied by many authors, see e.g [13], [9], [6] · · ·
The nonlinear case (p 6= 2), when the nonlinearity pF (x,s)

|s|p stays asymp-

totically between λ1 and λ2, where F (x, s) denotes the primitive
F (x, s) =

∫ s
0 f(x, t) dt and λ1, λ2 are the first and the second eigen-

values of −∆p on W 1,p
0 (Ω), has been studied by just a few authors. A

contribution in this direction is [12] where the authors use a topologi-
cal method to study the case N = 1. Another contribution was made
by João Marcos B. do Ó in [14] who studied the case when F (x, s)
interacts only with the first eigenvalue. In this paper, we will consider
three situations.

The first situation is the resonance on the right side of the first
eigenvalue, we will prove the following results :

Theorem 1.1. Suppose that
c1.1) lim

|s|→+∞
[sf(x, s)− pF (x, s)] = −∞ uniformly for a.e. x ∈ Ω

c2.1) λ1 ≤ lim inf
|s|→+∞

pF (x, s)

|s|p uniformly for a.e. x ∈ Ω
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c3.1) lim sup
s→0

pF (x, s)

|s|p ≤ β < λ1 uniformly for a.e. x ∈ Ω

then the problem (1.1) has a nontrivial solution u ∈ W 1,p
0 (Ω).

Theorem 1.2. Suppose that
c1.2) lim

|s|→+∞
[sf(x, s)− pF (x, s)] = +∞ uniformly for a.e. x ∈ Ω

c2.2) F (x, s) ≤ A|s|p + B(x) B(.) ∈ L1(Ω)

c3.2) lim sup
s→0

pF (x, s)

|s|p ≤ β < λ1 uniformly for a.e. x ∈ Ω

c4.2)
∫

Ω
F (x, t0ϕ1) dx− tp0

p
> 0 for at least one t0 > 0.

ϕ1 is a λ1-eigenfunction with ‖ϕ1‖ = (
∫
Ω |∇ϕ1|p)

1
p = 1. Then the

problem (1.1) possesses a nonzero solution u ∈ W 1,p
0 (Ω).

Remarks

1. the condition c3.1) and c3.2) can be replaced by

F (x, s) ≤ 0 for |s| ≤ δ (δ > 0)

2. In the condition c1.2) of theorem 1.2 we can replace +∞ by −∞,
in this case the theorem can be proved without condition c2.2).

The second situation is the resonance between the two first con-
secutive eigenvalues. To state our result, let us denote by l(x), k(x)
and L̃(x) the corresponding limits

l(x) = lim inf
|s|→+∞

f(x, s)

|s|p−2s
; k(x) = lim sup

|s|→+∞

f(x, s)

|s|p−2s
; L̃(x) = lim inf

|s|→+∞
[pF (x, s)−

sf(x, s)].
These limits are taken uniformly for a.e. x ∈ Ω.

Theorem 1.3. Suppose that
c1.3) λ1 ≤ l(x) ≤ k(x) ≤ β < λ2

c2.3) L̃(.) ∈ L1(Ω) and
∫

Ω
L̃(x) dx ≥ 0

c3.3) F (x, s) ≤ 0 for |s| ≤ δ with (δ > 0)

c4.3) there exists t0 > 0 such that
∫

Ω
F (x, t0ϕ1(x)) dx− tp0

p
> 0.

Then the problem (1.1) has a nontrivial solution.
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Remarks

1. Instead of the condition c2.3), we can assume

lim sup
|s|→+∞

[pF (x, s)− sf(x, s)] = K̃(.) ∈ L1(Ω) and
∫

Ω
K̃(x) dx ≤ 0

2. the condition c3.3) can be replaced by

lim sup
s→0

pF (x, s)

|s|p ≤ β < λ1

The third situation is the resonance on the left side of the first
eigenvalue, we will prove the following :

Theorem 1.4. Assume that
c1.4) |F (x, s)| ≤ A|s|p + B

c2.4) K(x) = lim sup
|s|→+∞

pF (x, s)

|s|p ≤ λ1 uniformly for a.e. x ∈ Ω.

c3.4) there exists R(.) ∈ L1(Ω) such that
∫

Ω
R(x) dx ≥ 0 and

lim inf
|s|→+∞

[pF (x, s)− sf(x, s)] ≥ R(x) uniformly for a.e. x ∈ Ω

c4.4) F (x, s) ≤ 0 for |s| ≤ δ (δ > 0)

c5.4) there exists t0 > 0 such that
∫

Ω
F (x, t0ϕ1(x)) dx− tp0

p
> 0

Then the problem (1.1) possesses a nonzero solution.

In the final section, we will give examples to illustrate our results.

2. PROOF OF THE MAIN RESULTS

We start recalling a compactness condition of the Palais Smale type
which was introduced by Cerami and which allows rather general min-
imax results.
A functional I ∈1 (E, ), E is a real Banach space, is said to satisfy the
condition () at the level c (()c) if the following holds :
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ci) any bounded sequence (un) such that I(un) → c and I ′(un) → 0
possesses a convergent subsequence.

cii) there exists constants δ, R, α > 0 such that ‖I ′(u)‖‖u‖ ≥ α for
any u ∈ I−1([c− δ, c + δ]) with ‖u‖ ≥ R.

Remark. Using assumption (f0) the functional

Φ(u) =
∫

Ω

1

p
|∇u|p −

∫

Ω
F (x, u(x)) dx

is well defined and of class 1 on the Sobolev space W 1,p
0 (Ω) with deriva-

tive

Φ′(u)v =
∫

Ω
|∇u|p−2∇u∇v −

∫

Ω
f(x, u)v dx for all u, v ∈ W 1,p

0 (Ω).

Thus, the critical points of Φ are precisely the weak solutions of (1.1).
Moreover, the condition ci) yields for every c ∈ .

Denote the norm in W 1,p
0 (Ω) by ‖.‖ (‖u‖p =

∫
Ω |∇u|p) and the

norm in Lq(Ω) by ‖.‖q (‖u‖q = (
∫
Ω |u|q)

1
q ). To obtain a nontrivial

critical point of the functional Φ, we will apply the following version
of the Mountain-Pass theorem, with condition ()

Theorem 2.1. Let E be a real Banach space and I ∈1 (E, ) satisfying
condition ()c, for every c > 0.
Suppose that I(0) = 0, and for some α, ρ > 0 and e ∈ E with ‖e‖ > ρ,
one has α ≤ inf

‖u‖=ρ
I(u) and I(e) < 0, then I has a critical value c ≥ α

characterized by
c = inf

h∈Γ
sup0≤t≤1 I(h(t)) where Γ = h ∈ ([0, 1], E) : h(0) = 0, h(1) = e.

Remark. It is not difficult to see that the same proof of the standard
Mountain-Pass theorem applies to the present context, since the de-
formation theorem, (theorem 1.3) in [5] is obtained with condition ()
in Banach space.

To prove the theorems in the first situation, we need the following
preliminary lemmas.
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Lemma 2.1. Assume (f0) and c1.1) if c3.1) holds then, there exists
ρ, α > 0 such that

Φ(u) ≥ α if ‖u‖ = ρ

Proof. Using (f0) and c1.1) it is easy to show that

(1) F (x, s) ≤ A|s|p + B

for some constants A,B > 0.
Choosing ε > 0 such that β+ε < λ1, in view of c3.1) and the inequality
(1) there exists Ã = Ã(ε) ≥ 0 such that

F (x, s) ≤ 1

p
(β + ε)|s|p + Ã|s|q

we may assume q > p, with the Poincaré inequality λ1‖u‖p
p ≤ ‖u‖p

and the Sobolev inequality ‖u‖q
q ≤ K‖u‖q, we obtain the estimate

Φ(u) ≥ 1

p

(
1− β + ε

λ1

)
‖u‖p − ÃK‖u‖q.

Thus

Φ(u) ≥
(

1

p
(1− β + ε

λ1

)− ÃK‖u‖q−p

)
‖u‖p.

So taking ρ =

[
1

2p
[1− β + ε

λ1

]
1

ÃK

] 1
q−p

and α =
1

2p

(
1− β + ε

λ1

)
ρp,

we obtain Φ(u) ≥ α if ‖u‖ = ρ. Then the proof of lemma 2.1 is now
complete.

The next result is standard (cf [7] e.g )

Lemma 2.2. Assume c1.1) and c2.1), then we have

lim
|s|→ +∞

F (x, s)− λ1

p
|s|p = +∞ uniformly for a.e. x ∈ Ω

It follows from lemma 2.2 above that there exists R0 > 0 such that

(2) F (x, s)− λ1

p
|s|p ≥ 0 for all |s| ≥ R0.
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On the other hand we claim (F (x, tϕ1(x)) − λ1

p
|tϕ1|p)t∈ is bounded

below (ϕ1 is λ1 normalized eigenfunction: that is ‖ϕ1‖p = λ1

∫
Ω |ϕ1|p =

1), Indeed, we consider the set Ω0 = {x ∈ Ω : |tϕ1(x)| ≥ R0}, in view
of (2) we have

(3) F (x, tϕ1(x))− λ1

p
|tϕ1|p ≥ 0 for all x ∈ Ω0.

If x /∈ Ω0, (f0) yields

(4) F (x, tϕ1(x))− λ1

p
|tϕ1|p ≥ B0 for some B0 ∈

and using (3) and (4) the desired result follows.

Lemma 2.3. Assume (f0), c1.1)and c2.1), then there exists R1 > 0 (R1 >
ρ) such that ∫

Ω
F (x,R1ϕ1(x)) dx− Rp

1

p
> 0.

This means Φ(R1ϕ1) < 0.

Proof. Suppose by negation that there exists a sequence (tn) such
that

(5) |tn| → +∞ and
∫

Ω
F (x, tnϕ1(x)) dx− |tn|p

p
≤ 0.

Since λ1

∫
Ω |ϕ1|p dx = 1, (5) is equivalent to

∫

Ω
(F (x, tnϕ1(x))− λ1

p
|tnϕ1|p) dx ≤ 0

thus

(6) lim inf
n→+∞

∫

Ω
(F (x, tnϕ1(x))− λ1

p
|tnϕ1|p) dx ≤ 0.

On the other hand, using lemma 2.2, Fatou’s lemma with
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hn = F (x, tnϕ1(x))− λ1

p
|tnϕ1|p gives

lim inf
n→+∞

∫

Ω
hn(x) dx ≥

∫

Ω
lim inf
n→+∞ hn(x) dx = +∞

which contradicts (6), then the proof is complete.

Lemma 2.4. Assume (f0) and c1.1), then the functional Φ satisfies
()c for every c ∈ .

Proof. Let us assume by negation, that Φ does not satisfy ()c for
some c ∈ , then there exists a sequence (un) such that

(7) Φ′(un)un → 0, Φ(un) → c, and ‖un‖ → +∞.

It follows that

(8) lim
n→+∞

∫

Ω
(pF (x, un)− unf(x, un)) dx = −pc.

A subsequence of vn (vn =
un

‖un‖) (still denoted by (vn)) is such that

vn ⇀ v weakly in W 1,p
0 (Ω)

vn → v strongly in Lp(Ω)

vn(x) → v(x), a.e. x ∈ Ω and |vn(x)| ≤ z(x), z(.) ∈ Lp(Ω) .

Using (1) and (7) we conclude that

1

p
‖un‖p − A‖un‖p

p −B ≤ K ′

for some constant K ′, therefore

1

p
− A‖v‖p

p ≤ 0.

So that v 6= 0. Let us define Ω1 = {x ∈ Ω : v(x) 6= 0}, we have

mes (Ω1) > 0 and |un(x)| → +∞ a.e. x ∈ Ω1
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using (f0) and c1.1), we conclude that

pF (x, un)− unf(x, un) ≥ M for some constant M ∈
and

lim
n→+∞ (pF (x, un)− unf(x, un)) = +∞ a.e. x ∈ Ω1

However, Fatou’s lemma gives

lim
n→+∞

∫

Ω
(pF (x, un)− unf(x, un)) dx = +∞

which contradicts (8) and shows that (7) can not occur. Then the
proof of lemma 2.4 is complete.

Proof of theorem 1.1. In view of lemmas 2.1, 2.3, 2.4 we may
apply theorem 2.1 taking e = R1ϕ1, it follows that the functional Φ
has a critical value c0 ≥ α > 0, and, hence that problem (1.1) has a
nontrivial solution u0 ∈ W 1,p

0 (Ω).

The proof of theorem 1.2. is similar to that of theorem 1.1 and is
omitted. To prove the theorem 1.3 we will use the following lemmas.

Lemma 2.5. Assume (f0), c1.3) and c2.3) then the functional Φ sat-
isfies (C)c for every c > 0.

Proof. From (f0) and c1.3 it follows that there exists constants a
and b such that

(9) |f(x, s)| ≤ a|s|p−1 + b.

Now, suppose by negation, that Φ does not satisfy ()c for some c > 0,
then there exists a sequence (un) such that (7) holds.

Let us define vn =
un

‖un‖ , fn =
f(x, un)

‖un‖p−1
, passing to subsequence of

vn (respectively fn), still denoted by (vn) (respectively fn) we may
assume that :
vn ⇀ v weakly in W 1,p

0 (Ω) , vn → v strongly in Lp(Ω) and a.e. x ∈ Ω,
fn ⇀ f̃ in Lp(Ω).
We have the following claim which is inspired from [7].

Claim 1
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1. λ1 ≤ f̃

|v|p−2v
≤ β if v 6= 0

2. f̃(x) = 0 if v = 0.

Letting, m(.) =
f̃

|v|p−2v
if v 6= 0 and m(.) =

1

2
(λ1+β) if v =

0.
By (7) we have |Φ′(un)w| ≤ εn‖w‖ for all w ∈ W 1,p

0 (Ω), where εn → 0,
therefore

|Φ′(un)un|
‖un‖p

=

∣∣∣∣∣1−
∫

Ω

f(x, un

‖un‖p−1
vn

∣∣∣∣∣ ≤
εn

‖un‖p−1

hence ∫

Ω

f(x, un)

‖un‖p−1
vn → 1

passing to the limit, we obtain
∫
Ω f̃v = 1, so that v 6= 0 . On the

other hand, for any w ∈ W 1,p
0 (Ω) we have

| Φ′(un)

‖un‖p−1
w| =

∣∣∣∣∣
∫

Ω
|∇v|p−2∇v∇w −

∫

Ω

f(x, un)

‖un‖p−1
w

∣∣∣∣∣ ≤ εn
‖w‖

‖un‖p−1

passing to the limit, we conclude

∫

Ω
|∇v|p−2∇v∇w −

∫

Ω
f̃w = 0

that is
∫

Ω
|∇v|p−2∇v∇w −

∫

Ω
m(.)|v|p−2vw = 0 ∀w ∈ W 1,p

0

in other words, v is a weak solution of the following problem

(Pm)

{
−∆pu = m(.)|u|p−2u in Ω

u = 0 on ∂Ω

The result above and claim 1 imply

(10) 1 ∈ σ(−∆p,m(.)) and λ1 ≤ m(.) ≤ β < λ2
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if λ1m(.) (that is λ1 < m(.) on subset of Ω of positive measure), then
by the second part of (10), the strict monotonicity of λ1 (cf [11]) and
the strict partial monotonicity of λ2 (cf [4]), we have

λ1(m(.)) < λ1(λ1(1)) = 1 and λ2(m(.)) > λ2(λ2(1)) = 1

thus

(11) λ1(m(.)) < 1 < λ2(m(.)).

Since σ(−∆p,m(.))∩]λ1(m(.)), λ2(m(.))[= ∅ (cf [4]), the first part
of (10) and (11) are in contradiction, hence m(.) = λ1 and v is a λ1

eigenfunction, so it follows that

(12) |un(x)| → +∞ a.e. x ∈ Ω.

On the other hand by (8) we have

(13) lim
n→+∞

∫

Ω
pF (x, un)− unf(x, un) dx = −pc

combining (12) and c2.3), Fatou’s lemma yields
∫

Ω
L̃(x) dx ≤ lim inf

n→+∞

∫

Ω
pF (x, un)− unf(x, un) dx.

Via (13) we obtain ∫

Ω
L̃(x) dx ≤ −pc < 0

which gives a contradiction, then the proof of lemma 2.5 is complete.

Lemma 2.6. Assume (f0), c1.3) and c3.3), then there exists ρ , α > 0
such that Φ(u) ≥ α if ‖u‖ = ρ

Proof. Since
∫
|u(x)|≤δ F (x, u(x)) dx ≤ 0, we have

Φ(u) ≥ 1

p
‖u‖p −

∫

|u(x)|>δ
F (x, u(x)) dx.

On the other hand we have

(14) lim sup
‖u‖→0

∫

|u(x)|>δ

F (x, u(x))

‖u‖p
dx ≤ 0
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indeed, assume that (14) is false, then we can find a sequence (un) and
ε > 0 such that

(15) ‖un‖ → 0 and
∫

|u(x)|>δ

F (x, un(x))

‖un‖p
≥ ε.

From (9) we deduce

(16) F (x, s) ≤ K̃|s|p for |s| ≥ δ,

and by (15) and (16), we conclude

(17)
∫

Ω
K̃|vn(x)|pχn(x) dx ≥ ε,

where vn =
un

‖un‖ , χn(x) = 1 if |un(x)| > δ and χn = 0 if |un(x)| ≤ δ.

Since ‖un‖ → 0, then un(x) → 0 and χn → 0, so passing to the limit
in the inequality (17) we get a contradiction.
Now, via (14) choosing ρ > 0 ( ρ < t0, t0 given in c4.3)) such that

∫

|u(x)|>δ

F (x, u(x))

‖u‖p
≤ 1

2p
for ‖u‖ = ρ,

then, for ‖u‖ = ρ we obtain

Φ(u) ≥ 1

2p
ρp.

To conclude the proof, take α =
1

2p
ρp.

Proof of theorem 1.3. In view of lemmas 2.5 and 2.6 we may apply
theorem 2.1 letting e = t0ϕ1. It follows that the functional Φ has a
critical value c ≥ α > 0.

Lemma 2.7. Assume (f0), c1.4), c2.4), c3.4) then the functional Φ sat-
isfies the condition ()c for every c > 0.

Proof. Assume by contradiction that there exists c > 0 and a
sequence (un) in W 1,p

0 (Ω) such that (7) holds. Then a subsequence of

(vn), still denoted by (vn), where (vn =
un

‖un‖) is such that

vn ⇀ v weakly in W 1,p
0 (Ω)
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vn → v strongly in Lp(Ω)

vn(x) → v(x), a.e. x ∈ Ω

|vn(x)| ≤ h(x) where h(.) ∈ Lp.

In view of (7) we have

1

p
‖un‖p −

∫

Ω
F (x, un) dx ≤ c′ (c′ ∈ )

thus by c1.4) and c2.4 we obtain

1

p
‖un‖p − (λ1 + ε)

p
‖un‖p

p − ‖B‖ ≤ c′

then
1

p
− (λ1 + ε)

p
‖vn‖p

p − 0(n) ≤ 0(n).

Passing to the limit in the above inequality, we obtain

1

p
− λ1

p
‖v‖p

p ≤ 0.(18)

Since λ1‖v‖p
p ≤ ‖v‖p ≤ 1, from (18) we conclude that

v 6= 0 and ‖v‖p = λ1‖v‖p
p

hence v is a λ1 eigenfunction, therefore

(19) |un(x)| → +∞ a.e. x ∈ Ω.

On the other hand (7) gives

lim
n→+∞

∫

Ω
(pF (x, un)− unf(x, un)) dx = −pc.

However, by (19), Fatou’s lemma gives
∫

Ω
R(x) dx ≤ −pc < 0

which contradicts c3.4). Then the functional Φ satisfies ()c for every
c > 0.

Proof of theorem 1.4. Combining lemmas 2.6, 2.8 and taking e =
t0ϕ1 (t0 > ρ) in theorem2.1 to conclude the existence of a critical point
u0 ∈ W 1,p

0 (Ω) of Φ with Φ(u0) ≥ α > 0.
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3. SOME EXAMPLES

This final section treats the question of verifying some applications of
the hypotheses that are required in the abstract theorems presented
earlier.
Example 1
We consider the boundary value problem

(P1)

{
−∆pu = f(x, u) in Ω

u = 0 on ∂Ω

where :

f(x, s) =





λ1s
p−1 +

λ1

ps
if s ≥ 1

λ1(
p + 1

p
)sp if 1 ≥ s ≥ 0

−f(x,−s) if s ≤ 0.

The primitive F (x, s) =
∫ s
0 f(x, t) dt is such that

F (x, s) =





λ1
sp

p
+ λ1

log(s)

p
if s ≥ 1

λ1
sp+1

p
if 1 ≥ s ≥ 0

F (x,−s) if 0 ≥ s.

A simple computation shows that:

1. lim|s|→+∞
pF (x, s)

|s|p = λ1

2. lims→0
pF (x, s)

|s|p = 0

3. lim|s|→+∞[sf(x, s)− pF (x, s)] = −∞.

Hence the hypotheses of the theorem 1.1 are satisfied, and (P1) is
a resonant problem.

Example 2
We shall now construct as above a Carathéodory function f satisfying
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all conditions of theorem 1.3, and such that :

lim inf
|s|→+∞

f(x, s)

|s|p−2s
= λ1

and

lim sup
|s|→+∞

f(x, s)

|s|p−2s
= β

where λ1 < β < λ2, so taking

f(x, s) =





λ1s
p−1 +

pλ1

s2
if s ≥ 1

(p + 1)λ1s
p if 1 ≥ s ≥ 0

−2β|s|p if 0 ≥ s ≥ −1

β|s|p−2s− β

s2
if − 1 ≥ s.

A simple calculation shows that the primitive F satisfies :

(16) lim inf
|s|→+∞

pF (x, s)

|s|p = λ1

(17) lim sup
|s|→+∞

pF (x, s)

|s|p = β

and

(18) lim sup
s→0

pF (x, s)

|s|p = 0.

lim inf
|s|→+∞

(pF (x, s)−sf(x, s)) ≥ inf(λ1(p
2 + p− 1), β(p− 1 +

2p

p + 1
)) > 0.

Hence by theorem 1.3 the problem (P1) possesses a nonzero solution
u ∈ W 1,p

0 (Ω).

Example 3
In this example we consider the Dirichlet problem (P1) where the
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Carathéodory function f is as follows :

f(x, s) =





λ1s
p−1 +

λ1

ps2
+ p

λ1

s2
if s ≥ 1

λ1

p
[p(p + 1) + 1]sp(p+1) if 1 ≥ s ≥ 0

−f(x,−s) if 0 ≥ s.

The primitive F (x, s) =
∫ s
0 f(x, t) dt is such that

F (x, s) =





λ1s
p

p
− λ1

ps
+

λ1

p
− p

λ1

s
+ pλ1 if s ≥ 1

λ1

p
sp(p+1)+1 if 1 ≥ s ≥ 0

F (x,−s) if 0 ≥ s.

A simple computation shows that

1. lim|s|→+∞
pF (x, s)

|s|p = λ1

2. lims→0
pF (x, s)

|s|p = 0

3. lim|s|→+∞[pF (x, s)− λ1s
p

p
] = λ1(p +

1

p
)

4. lim inf |s|→+∞[pF (x, s)− sf(x, s)] = λ1 + p2λ1.

Hence by theorem 1.4 the problem (P1) possesses a nonzero solu-
tion in W 1,p

0 (Ω).
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