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Abstract

We consider the Banach-Mackey property for pairs of vec-
tor spaces E and E' which are in duality. Let A be an algebra
of sets and assume that P is an additive map from A into
the projection operators on E. We define a continuous gliding
hump property for the map P and show that pairs with this
gliding hump property and another measure theoretic property
are Banach-Mackey pairs,i.e., weakly bounded subsets of E are
strongly bounded. Examples of vector valued function spaces,
such as the space of Pettis integrable functions, which satisfy
these conditions are given.
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1. INTRODUCTION

H. Lebesgue introduced the gliding hump technique of proof to estab-
lish several uniform boundedness results for concrete function spaces
such as L[0,1] ([L]). Subsequently, Schur and Hellinger/Toeplitz also
used the gliding hump method to establish similar uniform bound-
edness principles for concrete function spaces ([Sc|,[HT]). The early
proofs of abstact uniform boundedness principles by Banach, Hahn
and Hilldebrandt all employed gliding techniques ([B],[Ha],[Hi]). Ab-
sract gliding hump assumptions have been used to treat a number
of topics in sequence spaces;for example, Noll used a "strong gliding
hump” property to establish the weak sequential completeness of the
beta dual of a sequence space ([N] ; see [BF] for a list of various gliding
hump properties for sequence spaces). In this paper we introduce a
gliding hump assumption involving multipliers from a scalar sequence
space which is particularly useful in establishing uniform boundedness
results for a vector-valued sequence space and its beta dual; in par-
ticular, our results establish Banach-Mackey properties for sequence
spaces.

2. DEFINITIONS AND EXAMPLES

We begin with the notations and assumptions which will be used.
Let X be a Hausdorff locally convex space and let F be a vector
space of X-valued sequences containing cyo(X), the space of all X-
valued sequences which are eventually 0. We assume that E has a
Hausdorff locally convex topology under which FE is a K-space, i.e., the
coordinate maps © = {x;} — x; from E into X are continuous
for every k. An interval in N is a set of the form [m,n] = {k €
N : m < k < n}, where m < n; a sequence of intervals {I;} is
increasing if max I < min Iy for every k. If I is an interval in N
the characteristic function of I is denoted by x; , and if x = {x}}
is an X-valued sequence, x5 x denotes the coordinatewise product of
xr and x.

Let A be a vector space of scalar valued sequences which contains
coo the space of sequences which are eventually 0. The S-dual of A, \?,
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is defined to be {t = {t1} : 3 trsi, converges for every s = {s;} € \}.
IfseXandt e N | wesett-s=>ts;; A and \? are in duality
with respect to the bilinear pairing (s,t) — s - t.

Definition 1. E has the strong A gliding hump property (strong
A-GHP) if whenever {I;} is an increasing sequence of intervals and
{2*} is a bounded sequence in E, then for every ¢t = {t,} € \ the
coordinate sum of the series Zthlk:ck belongs to F.

Definition 2. FE has the weak A gliding hump property (weak
A-GHP) if whenever {I;} is an increasing sequence of intervals and
{2*} is a bounded sequence in F, there is a subsequence {n;} such
that the coordinate sum 3> txy,, ¥ belongs to E for every t € \.

We refer to the elements of A in Definitions 1 and 2 as multipliers
since their coordinates multiply the blocks {x;, } determined by {/}
and {zF}. The weak A — GHP is like the strong gliding humps
property introduced by Noll ([N]) where the multipliers consist only
of the constant sequence {1}. After giving examples of spaces with
A-GHP we will make remarks comparing \A-GHP with other gliding
hump properties.

We proceed to give an extensive list of examples of spaces with
A-GHP. The reader may want to skip ahead to section 3 where the
main results are established and then refer back to the examples. For
our first example we need a definition.

Definition 3. F satisfies the boundedness property (B) if for every
increasing sequence of intervals {I} and every bounded set A C FE,
the set {xr,z:k € N,x € A} is bounded in E.

For example, if 7 is the family of all intervals in N and the maps
X1: E — E,x — xyx,I €T are equicontinuous, then (B) holds. This
is the case if p(x;x) < p(z) holds for every I € Z,§ € £ and continuous
seminorm p on E.

Proposition 4. If E is a locally complete space with property
(B), then E has strong I' — GHP.

Proof: Let {I;} be an increasing sequence of intervals and {z*} C
E be bounded. By (B) {xs.z" : k} is bounded so if t = {t;,} € I,
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the series 352, txx7, 2" is absolutely convergent in £ and, therefore,
converges to an element z € E by local completeness. Since X is a
K — space, x is also the coordinate sum of the series.

Proposition 4 gives a large supply of spaces with I! — GHP. We
also have

Example 5. [*° and ¢y have strong ¢g — GHP; [P has strong
P —GHP for 0 < p < o0.

We now give examples of non-complete scalar sequence spaces with
weak [P — GHP.

Example 6. Let 1 < p < co. Let P be the power set of N and let
p: P —[0,00) be a finitely additive set function with u({;j}) > 0 for
every j. Put [P(u) = LP(u), the space of all pth power u-integrable
functions with the norm || f||, = (fy | f |P du)'/? | see [RR] for details
on the integration with repect to finitely additive set functions; the
assumption p({j}) > 0 for every j makes I’(u) a K — space]. We show
that [P (u) has weak P —GHP. Let {I} be an increasing sequence and
{fe} € ?(u) be bounded with || fx]|, < 1. By Drewnowski’s Lemma
([Dr],[Sw2]2.2.3) , there is a subsequence {n;} such that p is countably
additive on the o-algebra generated by {I,, }. Suppose that t € 7.
Put f = >332, teX1,, fo, [coordinatewise]. We claim that f € IP(u) and
the series converges to f in (1) by using Theorem 4.6.10 of [RR]. Put
Sn = Yj—1 tkXI,, [, and note that s, — f p-hazily [-measure| since
if € >0,

W 5al0) = T0) |2 D) S U al) = D ) =0

by countable additivity. Next, {s,} is Cauchy in [”(u) since
lsn = smlly =1 D= tix, Fu,lly < D 15 7= 0.
j=m

j=m

It follows that {/ | fn, [P du : j} is uniformly p-continuous. The
claim is thus justified, and it follows that [P(u) has weak I — GHP.
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Problem. Does [?(u) have strong (P?

We next give examples of vector-valued sequence spaces with \ —
GHP. Let X be a family of semi-norms which generate the topology
of X . Let u be a normal (scalar) K-space whose topology is generated
by the family of semi-norms M. If t = {t,} € p, weset | t |= {| tx |}
We make the following assumptions on u:

(*) If A C pis bounded, then | A |={|t|:t € A} is bounded in
1.

(**) If s,t € p with | s |<| t | and if ¢ € M, then q(s) < ¢(t).

These assumptions are satisfied by many of the classical sequence
spaces.

We define u{ X} to be the space of all X — valued sequences x =
{zx} such that {p(xy)} € p for every p € X. Since p is normal,
u{ X} is a vector space. We assume that pu{X} has the locally convex
topology generated by the semi-norms

(1) Top({21}) = al{p(zr)}), p € X L e M.

Spaces of this type were considered in [FP] and [F].
The spaces [P{X} and ¢o{X} are the usual spaces of pth power
convergent and null sequences, respectively. As in Example 5 it is

easily seen that [*°{X} and c¢y{ X} have strong ¢y — GHP and [P{X}
has strong [P — GHP. More generally. we have

Proposition 7. If x4 has strong A\— GHP | then {X} has strong
A—GHP.

Proof: Let {I;} be an increasing sequence of intervals and {z*} C
pu{X} be bounded. Let t € A and put x = Y32, txxr1, 2" {coordinatewise}
. Let p € X and note p(z(-)) = 322 | te | x1,p(@"(-)),where z(-) is
the function j — z;. Now {{p(z¥)}32, : k} is bounded in p by the
definition in (1). By strong A — GHP, {p(z,)} € p ie., v € p{X}.

Proposition 8. If i has weak A — GHP and X is normed, then
u{X} has weak A — GHP.

Proof: Continue the notation from Proposition 7 and let || ||
be the norm on X. For every k {|[z¥|}32, € p and {{||=}[]}; : k}
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is bounded in p so by weak A — GHP there is a subsequence {ny}
such that 3232, texr, [[2™())[| = s € p for every t € A. Therefore,

T =332 texr, ' € p{ X}

Propositions 7 and 8 give a large supply of spaces with A — GHP
many of which are not sequentially complete [ e.g., I’{X }or co{ X }].

We now give other examples of (non-monotone) vector-valued se-
quence spaces.

Example 9. Let C'S(X) be the space of all X-valued sequences
{z} such that the series Yz, is Cauchy in X. If X is the scalar field,
CS(X) is the space cs of convergent series. We define a topology on
CS(X) induced by the semi-norms p'({zy}) = sup{p(Xjerz;) : I €
I}, pe X.

We claim that C'S(X) has strong ' — GHP. Suppose {I;} is
increasing and {zf} C CS(X) is bounded. If ¢t € [!, put z =
S tixsa® [coordinatewise]. Let € > 0,p € X and set M =
sup{p(Xjer¥) : I € Z,||}. Pick N such that Y25 | & [< e
Suppose I € Z and min/ > N. Then

p(> ) < N |t | M < Me
k=N

jel

so z € CS(X).

Example 10. Let BS(X) be all X-valued sequences {z;} such
that the partial sums {>°}_; 2} are bounded. If X is the scalar field,
BS(X) is the space of bounded series bs. As above define a topology
on BS(X) by the semi-norms p'({zx}) = sup{p(X;c;z; : 1 € I},
p € X. It is easily checked that BS(X) has strong I' — GHP.

Example 11. Let BV(X) be all X —valued sequences {zy} such
that the series Y22, (x;41 — x;) is absolutely convergent in X, i.e.,
{iy1 — ;) € M{X}. If X is the scalar field BV (X) is the space bv
of sequences of bounded variation. If p € X, we define a semi-norm
P ({xr}) = X2, p(wip1 — x;) +lim p(x;) and topologize BV (X) by the
semi-norms {p’ : p € X'}.

We show that BV (X) has strong I' — GHP. First note that if
x € BV(X), then sup{p(z;) : i} < p/(z) for p € X [for n > m,z,, =
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ke Tk = T1) + T, s0 i I € T, p'(xsz) < p'(x) + 25up; p(a;) <
3p/(x). If {1} is increasing, {z*} C BV(X) is bounded, t € I! and
we set £ = Y02, texr, ", we have 00 p(zpr — ) < 02 | U |
3p/(2%) < 0o so x € BV (X).

As noted earlier the weak A — GH P resembles the strong gliding
hump property introduced by Noll where the mutipliers consist of the
single constant sequence {1} ([N]). A weaker gliding hump property is
the zero—GH P; E has zero—GHP if 2% — 0 in F and {I,,} increasing
implies there exists a subsequence {n;.} such that x = 3232, xy, 2™ €
E ([Sw3] 12.5). We give an example of a space with I' — GHP but
without zero — GHP.

Example 12. Let E be [? with the weak topology. Since E
is sequentially complete, F has strong ' — GHP by Proposition 4.
However, E fails to have zero — GH P [consider {k} and {e*}].

Problem. Does zero — GHP imply I* — GHP?

3. MAIN RESULTS

We now prove several uniform boundedness results for spaces with
weak A\ — GHP. The (scalar) 3 — dual of E is defined to be Ef =
Hue} - ye € X', 302 (yk, x) converges for every x = {zx} € E}.
If 2={x}€Fandy={y}e€El, wewritey -1 =3, (ys, T1);
E and EP are then in duality with respect to the bilinear pairing
(r,y) =y

If Z and Z' are two vector spaces in duality, we denote the weak
(strong) topology of Z with resect to this duality by o(Z, Z")(8(Z, Z")).
Recall that the pair Z, Z’ is a Banach-Mackey pair if o(Z, Z’) bounded
sets in Z are 3(Z,Z') bounded, and X is a Banach-Mackey space if
X, X" is a Banach-Mackey pair ([Wi] 10.4).

We begin with a basic lemma. If A C E and B C E®, we write
| B-Al=sup{|y-x|:y € B,z € A}.

Lemma 1. Let X be a Banach-Mackey space. Suppose A C F
is coordinatewise bounded and B C E” has coordinates which are
o(X', X) bounded. If | B- A |= oo, then there exists an increasing
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sequence of intervals {I;},{z*} € A and {y*} C B such that | y* -
o |> k2
k

Proof: There exist y* € B,z" € A such that | y > k2 +
1. Set ky = 1. There exists n; such that | Y7L l(y] T > > kI +
1. For every j {xj : k} is bounded in X by hypothesis and {yj :
k} is o(X’, X) bounded since B has o(X’, X) bounded coordinates.
Since X is Banach-Mackey, {(y¥,2%) : k} is bounded for every j so
limy, k(yj, z¥) = 0. Hence, there ex1sts Ky > ky such that 37, |
(yj , T ) |< 1. Then | 252 w1 (U2, ] %) |> k2. Pick ny > my suchthat
| 252 m+1(y] , T 2" |> k2 and set I = [ny+1,7n,] so | y*2- XL, ® zk2 |> k2.
Now just continue this construction and relabel.

We now establish our first uniform boundedness result for £ and
its 3-dual. In what follows e* is the canonical vector with a 1 in the
kth coordinate and 0 in the other coordinates.

Theorem 2. Let X be a Banach-Mackey space and suppose that
E has weak A — GHP. Assume

(2) {e¥ - kY is BN, AP) bounded in .

If A C FE is bounded and B C E” is o(E”, E) bounded, then
| B-A|< o0.

Proof: If the conclusion fails, Lemma 1 applies. Let the notation
be as in Lemma 1 and let {n;} be the subsequence in the definition
of the weak A — GHP. Define a linear operator T': A\ — E by Tt =
Y521 tiX1,, " [coordinatewise sum].

We claim that T is o(\, \?) — o(E, EP) continuous. For this let
teXyeES Theny-Tt= 2ty anjx”j) and since this series
converges for every t € A, {y - X1, 2"} belongs to A\’ and y - Tt =
{y-x1,, 2" } -t which implies that T is o(A, M) —o(E, EP) continuous.
Hence, T is also 3(\,\°) — B(E, EP) continuous ([Wi] 11.2.6,[Swl1]
26.15). Thus, by hypothesis, {Te*} = {x;, 2™} is B(E, E’) bounded.
But this contradicts the conclusion of Lemma 1.
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A similar uniform boundedness result for spaces with zero— GH P
is given in [Sw3] 12.5.7.

Corollary 3. Under the hypothesis of Theorem 2 if E' C E” |
then FE is a Banach-Mackey space.

We have a general criterion for the hypothesis in Corollary 3 to
hold. If z € X, we define ¥ ® 2 to be the sequence with z in the
kth coordinate and 0 in the other coordinates. We say that F is an
AK-space if the series 332, e* ® x, converges to = {x;} € E in the
topology of E for all x.

Proposition 4. Assume that the map z — e ® z from X into £
is continuous for every k. If £ is an AK-space, then E' C EP.

Proof: Let f € E'. For every k define y,, : X — R by (y,2) =
<f, ek®z>. Then y, € X' by hypothesis, and if x € E, (f,x) =

(f, 5% " @ 2) = 532, (ye, we) so y € BY and (f,2) =y - =

Example 5. C'S(X) is an AK-space so it follows from Proposition
4, Corollary 3 and Example 2.9 that C'S(X) is a Banach-Mackey space
when X is a Banach-Mackey space.

For the vector-valued sequence spaces u{ X}, we have

Example 6. It is easily checked that u{X} is an AK-space when
i is an AK-space. If
(3) X is a Banach-Mackey space and either phas strong
A—GHP or p has weak A — GHP and X is normed,

(2) holds and p is anAK-space, then pu{X} is a Banach-Mackey space
[Proposition 4, Corollary 3 and Propositions 2.7 or 2.8].
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In particular, co{ X } is a Banach-Mackey space when X is a Banach-
Mackey space; this was established by Mendoza ([M]). It also follows
that (P{X} is a Banach-Mackey space for 1 < p < oo; Fourie has given
a general criterion for spaces of the type u{X} to be Banach-Mackey
spaces ([F] 3.7) but his result does not cover I'{X}.

We also have a general uniform boundedness result for the spaces
u{X} and their S-duals.

Corollary 7. Assume (3). If A C p{X} is bounded and B C
p{ X} is o(p{X}?, u{X}) bounded, then | B - A |< cc.

We consider conditions which guarantee that £, E° form a Banach-
Mackey pair and then consider specific examples. From Theorem 2,
we obtain

Corollary 8. Assume that X is a Banach-Mackey space, E has
weak A\ — GHP and (2) holds. If E is such that o(E, E®) bounded
sets are bounded in the topology of E, then E, E” is a Banach-Mackey
pair.

Example 9. The space [*°{X} satisfies the boundedness crite-
rion in Corollary 8. For suppose A C [°{X} is o(I®{X},[*{X}?)
bounded. For t € [}, 2’ € X' define t ® 2’ € [®°{X}? by t® a'-
=Y te(r' ). Then sup{|[t®@a’-z| : z € A} < oco. Thus,
{{{z',21) : x € Ak} C 1™ is o(I*,1') bounded and, therefore,
norm bounded in [*°. Hence, sup{| (/,zy) |: v € Ak} < co and
{zx : v € Ak} is bounded in X or A is bounded in [*°{X }.From
Corollary 8 and Proposition 7, it follows that [*°{X},I°{X}? is a
Banach-Mackey pair when X is a Banach-Mackey space [the [-dual
of *°{X} is described in [GKR] 2.6].

Similarly, co{ X}, co{ X }? is a Banach-Mackey pair.

When FE is a monotone space [or more generally when FE has
the signed weak GHP| and X’ is weak* sequentially complete, then
(E°, o(E®, E)) is sequentially complete so £, EX form a Banach-Mackey
pair ([Sw3] 12.4.1,[Wi] 10.4). This result applies to [*°{X} and co{ X}
when X' is weak* sequentially complete; however, our assumption on
X being a Banach-Mackey space is weaker.
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We show that the (non-monotone) space BS(X) satisfies the bound-
edness criterion of Corollary 8. For this we require a description of the
f-dual of BS(X). Let X, be the dual of X equipped with the strong
topology and let BVy(X) be the subspace of BV (X)) consisting of the
null sequences.

Proposition 10. BS(X)? = BV,(X}).

Proof: Let y € BS(X)P. To show that y, — 0 strongly, it suffices
to show that (yg,zr) — 0 for every bounded sequence {z;} C X. If
xo = 0, then {zy — 21} € BS(X) so Y3221 (Yk, T — Tg—1) converges
and we have that limy (yx, zx, — 2x_1) = 0 for every bounded sequence
{zx}. This implies that limg(yx, zx) = 0 for every bounded sequence
[Define a bounded sequence {z;} by 0, 21,0, z3,0...; then the sequence
{(yj, zj41—2;)} contains the sequence {(y2j11, Z2j11) } as a subsequence
so lim; (yaj41, T2j41) = 0. Similarly, lim;(ya;, z2;) = 0 so lim;(y;, z;) =
0.]. Thus, y € co{X}}.

Put wy = g1 — 2k so {wy} € BS(X) and Y72 (yg, wi) converges.
Now

n n n—1
(4) Z(yz‘, w;) = Z(yz‘, Tip1 — ;) Z ~ Yit1, Ti) = (Yn, Tn)-
i=1 i=1 i=1

By the above (yy,, z,,) — 050 372, (y; —yi+1, ;) converges for every
bounded {x;} by (4). Hence, 372, (y; — y;+1) is absolutely convergent
in Xj, i.e.,y € BVy(X}).

Next, let y € BVy(X}) and « € BS(X). {s; = X\_; ;} is bounded
50 Y2 (Yir1 — i, si) converges absolutely. Now

n n—1

(5) > (i wi) =D (Yi — Yis1, $i) + (Yn, Sn).

=1 =1

(Y, Sn) — 0 since y, — 0 strongly so (5) implies that Y52 (v, z;)
coverges. That is, y € BS(X).

Proposition 11. If A ¢ BS(X) is 0(BS(X), BS(X)”) bounded,
then A is bounded in BS(X).
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Proof: For t € by and 2’ € X' define tz’ € BVy(X]) by (ta')x =
tyx'. If x € A,

(6) te' - =) ti(a, xj).
j=1
Since {(2',z;)} € bs, (6) implies {{(2',z;)} : © € A} is o(bs, bv,)
bounded and, therefore, bounded in bs ([KG] p.69). Therefore,
{3 (@ z5) v € An} is bounded. Hence, {37_, x; : v € A,n}
is (X, X’) bounded and, therefore, bounded in X. That is, A is
bounded in BS(X).

From Corollary 8 and Example 10, we have

Example 12. If X is a Banach-Mackey space, then BS(X), BS(X)?
is a Banach-Mackey pair.
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