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Abstract

In this paper we describe explicitly one class of real-analytic
hypersurfaces in C? rigid and spherical at the origin.
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1. Introduction

A real-analytic hypersurface M in C? is called rigid if it is given by
an equation of the form r(w,w, z,z) =: Imw + F(2,z) =0,

F
where F'is a real-analytic function such that: £'(0,0) = 2(0, 0) =
2

In this paper we study the real-analytic hypersurfaces M in C?
rigid and spherical at the origin, i.e. there exists a local biholomorphic
which maps M to the euclidean unit sphere. We note that recently
A. Tsaev [4] has given a characterization of spherical rigid real hyper-
surfaces in C™ (n > 2) in terms of a certain system of differential
equations for a defining function of such hypersurfaces, but this does
not permit to describe the spherical rigid real hypersurfaces even if
in C?. Nowadays these hypersurfaces are not known. The only exam-
ples have been given by N. Stanton [5] (see also [6]). More recently,
B. Coupet and A. Sukhov [3] have described the spherical hypersur-
faces of the form: I'mw + P(z,Z) = 0, where P is a non-identically
zero subharmonic homogeneous polynomial without purely harmonic
terms.

The goal of this paper is to give one description of one class of
real-analytic hypersurfaces in C? rigid and spherical at the origin.

2. Prelimenaries and results

Let M be a hypersurface in C2, strictly pseudoconvex at the origin,
defined by:
M =: {Rew + ¢(z,%Z) = 0}, where ¢ is a real-analytic function.
[oalt
0,0) =
azﬁf( )

Without any loss of generality, we may assume that

According to a theorem of N. Stanton [5] (see theorem 1.7) there
exists an holomorphic change of coordinates ¢ of the form (w,g(z))
defined in a neighborhood V' of the origin and such that ¢ (M NV) is
defined by:

Rew + |2)* + |2|* b(2,7) = 0,

where b is a real-analytic function.
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Theorem. Let M be a hypersurface in C? defined by
M =: {Rew + ¢(2,%Z) = 0},

where (2, %Z) = |2|°+|2|* b(z,Z) and b being a real-analytic function
in a neighbourhood of the origin.

b
Suppose that 8—(0, 0) = 0. Then M is spherical at the origin if and
z

only if ¢ is given by one of the functions:
1 1
. 2 I | 2 T R A | 2
i) 2|7, i) - sin (c\z| ), ii1) Csh (c|z[ )
for some ¢ € R*.

Proof. Let F = (Fi, Fy) be a local biholomorphism at the origin
which maps M to the euclidean unit sphere:
{(w,z) € C?: p(w, z) =: Rew + |2|* = O}.

OF
We may assume that F;(0,0) = F»(0,0) = 0 and a—wl(0,0) =
OF,
“200,0) = 1.
"0,0)

By conjugating F' with some automorphism of the euclidean unit

OF.
ball of C2, we may also assume that — (0, 0) = 0.

The principal idea of the proof is to determine explicitly F' by
solving a system of partial differential equations. To this end we con-

.0

sider the direct image of the translation vector field i— : F*(za—)
w
which is holomorphic tangent vector of the euclidean unit sphere,
0 0 0
ie. F*(z%) =: A(w,z)% + B(w,z)a, where 'A' and B are two
holomorphic functions in a neighborhood of the origin and such that

0 0
Re | A(w, z)a—p + B(w, z)a—p is identically null on the unit sphere.
w z
We note that the real dimension of the lie algebra of holomorphic
tangent vector fields on the unit sphere is equal to 8 (see E. Cartan
[1]).

We now proceed in three steps.

n n

F E
First step: %ZT:(O,O) =0, Yn>0 and 882"2

(0,0) =0, Vn>2.
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We write w = u +iv and p(w, z) =: Rew + |z|*.
Let A(v, z) =: (—p(2) +1iv, z) be a parametrization of M. The vec-

Jdp 0 10
tor field defined by: L = —w——fa— is tangent to M, so L(poF) =0
z

on M in a neighbourhood of the origin, which implies the following
identity:

830 1 8F1 8F2
1 6F1 8}72 _
-5 [26014 (FQOA)aZOA] =0

near v = 0 and z = 0.
Differentiating (1) with respect to z to arbitrary order, we get:

(2) ok —(0,0)=0, ¥n>0 (See(2] page 47 — 49).

We write Fg(w z) in the following form:

Fy(w,z) =2+ K(z +anw+ Z B, 2"w™.

n>2 n,m>1

Setting v = 0 and identifing the pure Z terms in (1), and taking
(2) into account we obtain K (z) = 0.
Second step: F'is one of the four following forms:

_Bo,,
w ze 2
- _
i) Fw,2) (1+iFw’1+iFw)

1 ze= P
i) F(w, z) (tg'yw )
Y cosyw

- _Boy ik
iii) ikow 1), ze 2”“”6’2“’)

a—1 ek _Ba,, egw
( 6"”"—17 (@ = 1)z aekv — 1

where [y = b( ,O,FER’yEC*and’y e R* k€ R*. k €
{R*iR*},a e C*and a # 1, |a|* = 1if k € R* and a € R* if
k € iR".

O

First, we shall prove that Fi(w,z) = F(w), i.e. F; depends only
on w.
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0
We consider the holomorphic vector field F*(za—) which is de-
w

0
fined in a neighbourhood of the origin. Since F, (18—) is tangent to
w

the euclidean unit sphere: {(w, z) € C?: Rew + |z = 0} , it may be
written as a real linear combination of the following fields:

0
ne Z% 0 0
X9 = —2zgw + %
X3 = Ziz% + Z%Z
X4 = ngw + Z@
X5 = ZZE ; ;
X6 = 2izwgw + (2i2% — iwa)az
X7 = QZw% + (222 + w)a
Xg = —ini — izwﬁ.
Then there aqé)e real malfnbers Qq, ..., ag such that:
9 8
F*(za—w) :jzjl a; X
We note lF*(zaaw)] . =: A(w, z)ai) + B(w, z)aaz

Then  A(w,z) =ia; + 2(—ag + ias)z + 204w — iagw? + 2 wz
and  B(w,2) = (g +iaz) + pz + 2222 +  w — iagwz
where = ay + 15 and A = a7 + .

On the other hand we have:

.0 OF) 0 0F, 0
F.(i— =i—(w,2)— +i—(w, z)=—.
[ <28w)]F(w7z) ! ow (w z)ﬁw e ow (w Z>8z
Then, we obtain:
OF}
(3) im—(w,z) = (AoF)(w, 2)

ow
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and oF
(4) 2872(11]72) = (BOF)(U),Z)
w
F F:
Since %wl(o, 0) =1 and ZJ(O, 0) = 0, then the identities (3) and
(4) become:
OFy . I,
(5) i =1 + 204 Fy — iagFY 4 20F1 Fy
and OF
(6) zgf:ug+2M§+Ma—mgu@

where 1 = ay + 15 and A = a7 + i
! (%(0,0) and a5 = —520, the
proof will be given in the end of this paper.

By hypothesis E(O, 0) = 0, then A = 0, so the identities (5) and
(6) become:

(7) gil =1— 2iayFy — agF?
and
(8) %f:—mg—%ﬂ&
Do

where = ay —1—.

OF.
Since F5(0,0) = a—wQ(O,O) = 0, from (8) we deduce by induction

that@”F
672(0, 0)=0, Yn>0, i.e Fy(w,0)=0, this implies that:
wn
Fi(w,z) = Fi(w) (See[2] page 47).
We are now in order to solve the system of differential equations
(7) and (8).
oF,

Let us recall: (9)  F(0,0) = (0,0), a—(0,0) =
w

0F,

5 (0.0) =1

and o
2
0,0) =0, Vn > 2.

azn(7) b n_

There are two cases to consider.

Case 1. ayu=10
We suppose that ag = 0. In this case (7) and (8) become:
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OF,
. T
2 __0

then F}(w, z) = w and Fy(w, z) = h(z)e’%ow where h is a holomorphic
function. Taking (9) into account we obtain Fy(w,z) = ze_%ow, this

corresponds to the case i).
1
We suppose now that ag # 0. Let n € C* such that: n*> = — a
as
particular solution of the Riccati equation (7). Then it is easy to show
that:

1 1
(12> Fl(wyz) = —tgyw, where y= —; ’72 = —03.
Y n
ReplacingF (w, z) by its expression (12) into (8) and observing that

a
—2 — —, then we obtain:

7y
OF:
(13) —2 = (—5 + ytgyw) F.

w
From (13) and (9) we obtain:

Bo

Fy(w,z) = zemF

Cos Yw

, this corresponds to the case ii).

Case 2. au# 0
We proceed analogously to the first case.
First we suppose that ag = 0. From (7), (8) and (9) we obtain:

Fi(w,2) = (e = 1)
0

and Fy(w,z) = ze~Fve

where kg = 2ay, this corresponds to the case iii).

Now, we suppose that ag # 0. Let € C* such that: agn?+2iaun =
1, a particular solution of the Riccati equation (7).

We put: k = 2(asgn + iay).

If £ =0, in this case, we obtain from (7), (8) and (9):

- ko
w 7/[/711)

_Sa,,
w ze 2
Fi(w,z) = T iTw and  Fy(w,z) = T iTw

where I' = ay, this corresponds to the case i).
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If k # 0, then from (7) we deduce:

1
(14) Fl(w,Z):W—i‘?]; 0eC*
k
or also i
a—1 "™ -1 ok
1 F = h _
(15) 1(w, 2) I gk 7 Wherea o

Replacing Fi(w, z) by its expression (14) into (8) and observing
that agn + tay = o> then, we obtain:
OF. kE ae™ +1

2 _ (_@ _r &) £

1 “h2
(16) ow 2 2 aekv—1
From (16) and (9) we deduce:
k
_Bow  €2Y
(17) FQ('UJ,Z) = ((Z — 1)26 2 m

Now, we shall prove that k¥ € {R*,iR*}, a € C*and a # 1, |a|* =
lifkeR*and a € R*if k € iR.".

F' is a local biholomorphism, so, a # 1. Since the image F'(M) is
contained in the unit sphere:

(w,z) € C*: Rew + |z|* = O} near (0,0), hence ReF(w) = 0 for
Rew = 0, then we obtain:

(18)  Re <a ; 1) + <Re(a (&; 1)) o2vReik _
<CL (a ; 1) + (a ; 1)) e~i* = for v near 0.

First we prove that k € {R*,iR*}. Assume, to the contrary, that
k € C\{R*,iR*}, then Re(ik) # 0 and ik # ik. From (18) we obtain:

a—1 a—1 a—1
Re( ? )annd 3 +a( ? >:0.
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a—1 a—1 a—1
Th it foll hat : ——— -2 =
us, it follows that 2 +a( ’ > Re< A )

1
I la — 1]2 = 0, then a = 1, this is a contradiction, so, k € {R*,iR*}.
From (18) we deduce: |a]* =1if k € R* and a € R* if k € iR*

Third step: conclusion
We return to the second step. Let us first prove that G, = 0.
According to the result of N. stanton [5] (theorem 1.7), it suffices
to prove that ¢(z,z) = ¢(|z|°), (8o is the coefficient of |z|*).
There are four cases to consider. For example, we suppose that F'

ze W

1
is given by ii), i.e. F(w,z) = (tgfyw, , where v € C* and
v COS YW
72 e R*
So, 72 € R* then v € R* or v = iy, 70 € R*.
Since the image F'(M) is contained in the unit sphere:

{(w,z) € C?: Rew + |2|* = O} near (0,0), we have

1

?(sin 2vw)e P if y € R
h(g(2,7)) = |2*, where h(z) ={ ]
7(3%127035)6_%“3 if v =i

"o
Hence ©(2,7) = h™(|z]*) near 0.
So, By = 0 and
1
> sin™! (27 |z|2) if y e R*
QO(Z,?) = 1

1
—sh™! (270 |2]? if v =
20" (2%12%) ity =i

By following the same way we obtain the other cases.
To end the proof of the theorem it remains to show that:

1 0b B
= 27%(0,0) and a5 =7

Let’s return to the indentities(5) and (6). From the first step we
have:

A
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o"F
5 ! (0,0) =0, ¥n >0, then, from (5) we deduce that:
ZTL
Oy . . .
,0) =0, Vn > 1, So, in a neighbourhood fo the origin, we
8({)(OO)OV>1S hbourhood fo th
20w
can write:
19) Fi(w,z) =w+ a,w" + w? A, 2"+ w? A 2"
( ) ( ’ ) Z 2 q

n>2 n>1 q>3 n>1

(20)  Fo(w,z) =24+ > byw"+w Y Bpz"+w?> > B,2"+ Y

n>2 n>1 n>1 q>3
w? Z B,z"
n>1
1 0b
The idea to prove A = ?a—(o, 0) and a5 = _520 is to observe that
10z

the terms of degree less or equal to 4 on z,%Z in the left hand-side of
(1) are null.
First, we observe that from (5) and (19) we have:

(21) A12 = —3X and a9 = —’i()é4
Next, from (6) and (20) we have:
A
(22) b2 = —25, Bgl = —2¢)\ and Bll = (X5 — iOé4

We are now in order to collect the terms of degree less or equal to
4 on z,% in the left hand-side of (1).
Let us write b(2,2) = By + iz + 312 + ...

0
The terms of degree less or equal to 4 in 8—90 are:

z
Z+260% 2° + 28,2 |2” + 361 |2|*.

0
Since a—(’p(O, 0) = 0, it suffices to collect the terms of degree less or
z
10F — OF:
equal to 3 on 2,7 in oA+ (FQOA) =204 , which are:
2 0w ow
1

5 + (BH - CLQ) |Z|2 + (Bgl - Alg)Z ‘Z|2 — 2[)22 ’2‘2 .

the terms of degree less or equal to 4 on z,Z in

8g0 1 8F1 — 8F2
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are:
1i _ 2 - 2 2 3 4
52+ (Bo + Bii — a2)Z [2]” + (B — 2b2)Z7 | 2| + (B — As2 + 551) |2|

On the other hand, the terms of degree less or equal to 4 on z,Z in

1[10F . = o OF |
5 [2&0A —+ (FQOA) a2:014‘| are:
1

1~ 1 /- 1
52— E\z[QReBH — 5821 52 ‘Z|2 + 5 (bg — 2821 + 2A12> ‘2’4 .

Finally, the terms of degree less or equal to 4 on z,Z in the left
hand-side of (1) are:

_ 1—
(ﬂo + BH — a9 + R@Bn)f ’2‘2 -+ (ﬂl — 2b2 + 5321)22 |Z’2

+(2B21 — 21412 + %ﬁl — %52) ’2'14-

These terms are null, then:

(23) ﬁ() + B11 — asg + REBH =0
and )

(24) By — 2b; + §§21 =0

From (21), (22) and (23) we obtain: §y = —2ReBj; = —2aq;
and

From (22) and (24) we obtain: A = % = 27%(0, 0).
This ends the proof of the theorem.
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