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1. Introduction

A real-analytic hypersurface M in C2 is called rigid if it is given by
an equation of the form r(w, w, z, z) =: Imw + F (z, z) = 0,

where F is a real-analytic function such that: F (0, 0) =
∂F

∂z
(0, 0) =

0.

In this paper we study the real-analytic hypersurfaces M in C2

rigid and spherical at the origin, i.e. there exists a local biholomorphic
which maps M to the euclidean unit sphere. We note that recently
A. Isaev [4] has given a characterization of spherical rigid real hyper-
surfaces in Cn (n ≥ 2) in terms of a certain system of differential
equations for a defining function of such hypersurfaces, but this does
not permit to describe the spherical rigid real hypersurfaces even if
in C2. Nowadays these hypersurfaces are not known. The only exam-
ples have been given by N. Stanton [5] (see also [6]). More recently,
B. Coupet and A. Sukhov [3] have described the spherical hypersur-
faces of the form: Imw + P (z, z) = 0, where P is a non-identically
zero subharmonic homogeneous polynomial without purely harmonic
terms.

The goal of this paper is to give one description of one class of
real-analytic hypersurfaces in C2 rigid and spherical at the origin.

2. Prelimenaries and results

Let M be a hypersurface in C2, strictly pseudoconvex at the origin,
defined by:

M =: {Rew + ϕ(z, z) = 0} , where ϕ is a real-analytic function.

Without any loss of generality, we may assume that
∂2ϕ

∂z∂z
(0, 0) =

1.

According to a theorem of N. Stanton [5] (see theorem 1.7) there
exists an holomorphic change of coordinates ψ of the form (w, g(z))
defined in a neighborhood V of the origin and such that ψ(M ∩ V ) is
defined by:

Rew + |z|2 + |z|4 b(z, z) = 0,

where b is a real-analytic function.
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Theorem. Let M be a hypersurface in C2 defined by
M =: {Rew + ϕ(z, z) = 0} ,

where ϕ(z, z) = |z|2+|z|4 b(z, z) and b being a real-analytic function
in a neighbourhood of the origin.

Suppose that
∂b

∂z
(0, 0) = 0. Then M is spherical at the origin if and

only if ϕ is given by one of the functions:

i) |z|2 , ii)
1

c
sin−1

(
c |z|2

)
, iii)

1

c
sh−1

(
c |z|2

)

for some c ∈ R∗.

Proof. Let F = (F1, F2) be a local biholomorphism at the origin
which maps M to the euclidean unit sphere:{
(w, z) ∈ C2 : ρ(w, z) =: Rew + |z|2 = 0

}
.

We may assume that F1(0, 0) = F2(0, 0) = 0 and
∂F1

∂w
(0, 0) =

∂F2

∂z
(0, 0) = 1.

By conjugating F with some automorphism of the euclidean unit

ball of C2, we may also assume that
∂F2

∂w
(0, 0) = 0.

The principal idea of the proof is to determine explicitly F by
solving a system of partial differential equations. To this end we con-

sider the direct image of the translation vector field i
∂

∂w
: F∗(i

∂

∂w
)

which is holomorphic tangent vector of the euclidean unit sphere,

i.e. F∗(i
∂

∂w
) =: A(w, z)

∂

∂w
+ B(w, z)

∂

∂z
, where A and B are two

holomorphic functions in a neighborhood of the origin and such that

Re

[
A(w, z)

∂ρ

∂w
+ B(w, z)

∂ρ

∂z

]
is identically null on the unit sphere.

We note that the real dimension of the lie algebra of holomorphic
tangent vector fields on the unit sphere is equal to 8 (see E. Cartan
[1]).

We now proceed in three steps.

First step:
∂nF1

∂zn
(0, 0) = 0, ∀n ≥ 0 and

∂nF2

∂zn
(0, 0) = 0, ∀n ≥ 2.
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We write w = u + iv and ρ(w, z) =: Rew + |z|2.
Let A(v, z) =: (−ϕ(z)+ iv, z) be a parametrization of M. The vec-

tor field defined by: L =:
∂ϕ

∂z

∂

∂w
−1

2

∂

∂z
is tangent to M, so L(ρoF ) ≡ 0

on M in a neighbourhood of the origin, which implies the following
identity:

(1)
∂ϕ

∂z

[
1

2

∂F1

∂w
oA + (F 2oA).

∂F2

∂w
oA

]

-
1

2

[
1

2

∂F1

∂z
oA + (F 2oA).

∂F2

∂z
oA

]
≡ 0

near v = 0 and z = 0.
Differentiating (1) with respect to z to arbitrary order, we get:

(2)
∂nF1

∂zn
(0, 0) = 0, ∀n ≥ 0 (See [2] page 47− 49).

We write F2(w, z) in the following form:

F2(w, z) = z + K(z)+
∑

n≥2

bnw
n+

∑

n,m≥1

Bnmznwm.

Setting v = 0 and identifing the pure z terms in (1), and taking
(2) into account we obtain K(z) ≡ 0.
Second step: F is one of the four following forms:

i) F (w, z) =


 w

1 + iΓw
,

ze−
β0
2

w

1 + iΓw




ii) F (w, z) =


1

γ
tgγw,

ze−
β0
2

w

cosγw




iii) F (w, z) =
(

i

k0

(e−ik0w − 1), ze−
β0
2

w e−i
k0
2

w

)

iv) F (w, z) =


a− 1

k

ekw − 1

aekw − 1
, (a− 1)ze−

β0
2

w e
k
2
w

aekw − 1




where β0 = b(0, 0), Γ ∈ R. γ ∈ C∗ and γ2 ∈ R∗, k0 ∈ R∗. k ∈
{R∗, iR∗} , a ∈ C∗ and a 6= 1, |a|2 = 1 if k ∈ R∗ and a ∈ R∗ if
k ∈ iR∗.

First, we shall prove that F1(w, z) = F1(w), i.e. F1 depends only
on w.
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We consider the holomorphic vector field F∗(i
∂

∂w
) which is de-

fined in a neighbourhood of the origin. Since F∗(i
∂

∂w
) is tangent to

the euclidean unit sphere:
{
(w, z) ∈ C2 : Rew + |z|2 = 0

}
, it may be

written as a real linear combination of the following fields:

X1 = i
∂

∂w

X2 = −2z
∂

∂w
+

∂

∂z

X3 = 2iz
∂

∂w
+ i

∂

∂z

X4 = 2w
∂

∂w
+ z

∂

∂z

X5 = iz
∂

∂z

X6 = 2izw
∂

∂w
+ (2iz2 − iw)

∂

∂z

X7 = 2zw
∂

∂w
+ (2z2 + w)

∂

∂z

X8 = −iw2 ∂

∂w
− izw

∂

∂z
.

Then there are real numbers α1, ..., α8 such that:

F∗(i
∂

∂w
) =

8∑

j=1

αjXj

We note

[
F∗(i

∂

∂w
)

]

(w,z)

=: A(w, z)
∂

∂w
+ B(w, z)

∂

∂z
.

Then A(w, z) = iα1 + 2(−α2 + iα3)z + 2α4w − iα8w
2 + 2λwz

and B(w, z) = (α2 + iα3) + µz + 2λz2 + λw − iα8wz
where µ = α4 + iα5 and λ = α7 + iα6.

On the other hand we have:
[
F∗(i

∂

∂w
)

]

F (w,z)

= i
∂F1

∂w
(w, z)

∂

∂w
+ i

∂F2

∂w
(w, z)

∂

∂z
.

Then, we obtain:

(3) i
∂F1

∂w
(w, z) = (AoF )(w, z)
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and

(4) i
∂F2

∂w
(w, z) = (BoF )(w, z)

Since
∂F1

∂w
(0, 0) = 1 and

∂F2

∂w
(0, 0) = 0, then the identities (3) and

(4) become:

(5) i
∂F1

∂w
= i + 2α4F1 − iα8F

2
1 + 2λF1F2

and

(6) i
∂F2

∂w
= µF2 + 2λF 2

2 + λF1 − iα8F1F2

where µ = α4 + iα5 and λ = α7 + iα6.

We momentarily admit that λ =
1

2i

∂b

∂z
(0, 0) and α5 = −β0

2
, the

proof will be given in the end of this paper.

By hypothesis
∂b

∂z
(0, 0) = 0, then λ = 0, so the identities (5) and

(6) become:

(7)
∂F1

∂w
= 1− 2iα4F1 − α8F

2
1

and

(8)
∂F2

∂w
= −iµF2 − α8F1F2

where µ = α4 − i
β0

2
.

Since F2(0, 0) =
∂F2

∂w
(0, 0) = 0, from (8) we deduce by induction

that
∂nF2

∂wn
(0, 0) = 0, ∀n ≥ 0, i.e. F2(w, 0) ≡ 0, this implies that:

F1(w, z) = F1(w) (See[2] page 47).

We are now in order to solve the system of differential equations
(7) and (8).

Let us recall: (9) F (0, 0) = (0, 0),
∂F1

∂w
(0, 0) =

∂F2

∂z
(0, 0) = 1

and
∂nF2

∂zn
(0, 0) = 0, ∀n ≥ 2.

There are two cases to consider.

Case 1. α4= 0

We suppose that α8 = 0. In this case (7) and (8) become:
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(10)
∂F1

∂w
= 1

(11)
∂F2

∂w
= −β0

2
F2

then F1(w, z) = w and F2(w, z) = h(z)e−
β0
2

w where h is a holomorphic

function. Taking (9) into account we obtain F2(w, z) = ze−
β0
2

w, this
corresponds to the case i).

We suppose now that α8 6= 0. Let η ∈ C∗ such that: η2 =
1

α8

a

particular solution of the Riccati equation (7). Then it is easy to show
that:

(12) F1(w, z) =
1

γ
tgγw, where γ =

1

iη
; γ2 = −α8.

ReplacingF1(w, z) by its expression (12) into (8) and observing that
α8

γ
= −γ, then we obtain:

(13)
∂F2

∂w
= (−β0

2
+ γtgγw)F2.

From (13) and (9) we obtain:

F2(w, z) = ze−
β0
2

w 1

cos γw
, this corresponds to the case ii).

Case 2. α4 6= 0
We proceed analogously to the first case.
First we suppose that α8 = 0. From (7), (8) and (9) we obtain:

F1(w, z) =
i

k0

(e−ik0w − 1)

and F2(w, z) = ze−
β0
2

we−i
k0
2

w

where k0 = 2α4, this corresponds to the case iii).
Now, we suppose that α8 6= 0. Let η ∈ C∗ such that: α8η

2+2iα4η =
1, a particular solution of the Riccati equation (7).

We put: k = 2(α8η + iα4).
If k = 0, in this case, we obtain from (7), (8) and (9):

F1(w, z) =
w

1 + iΓw
and F2(w, z) =

ze−
β0
2

w

1 + iΓw

where Γ = α4, this corresponds to the case i).
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If k 6= 0, then from (7) we deduce:

(14) F1(w, z) =
1

δekw − α8

k

+ η ; δ ∈ C∗

or also

(15) F1(w, z) =
a− 1

k

ekw − 1

aekw − 1
, where a =

δk

α8

.

Replacing F1(w, z) by its expression (14) into (8) and observing

that α8η + iα4 =
k

2
, then, we obtain:

(16)
∂F2

∂w
= (−β0

2
− k

2

aekw + 1

aekw − 1
)F2

From (16) and (9) we deduce:

(17) F2(w, z) = (a− 1)ze−
β0w

2
e

k
2
w

aekw − 1

Now, we shall prove that k ∈ {R∗, iR∗} , a ∈ C∗ and a 6= 1, |a|2 =
1 if k ∈ R∗ and a ∈ R∗ if k ∈ iR.∗.

F is a local biholomorphism, so, a 6= 1. Since the image F (M) is
contained in the unit sphere:

{
(w, z) ∈ C2 : Rew + |z|2 = 0

}
near (0, 0), hence ReF1(w) = 0 for

Rew = 0, then we obtain:

(18) Re
(

a− 1

k

)
+

(
Re(a

(
a− 1

k

))
e2vReik−

(
a− 1

k
+ a

(
a− 1

k

))
eikv−

(
a

(
a− 1

k

)
+

(
a− 1

k

))
e−ikv ≡ 0 for v near 0.

First we prove that k ∈ {R∗, iR∗} . Assume, to the contrary, that
k ∈ C\{R∗, iR∗} , then Re(ik) 6= 0 and ik 6= ik. From (18) we obtain:

Re
(

a− 1

k

)
= 0 and

a− 1

k
+ a

(
a− 1

k

)
= 0.
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Thus, it follows that :
a− 1

k
+ a

(
a− 1

k

)
− 2Re

(
a− 1

k

)
=

1

k
|a− 1|2 = 0, then a = 1, this is a contradiction, so, k ∈ {R∗, iR∗} .

From (18) we deduce: |a|2 = 1 if k ∈ R∗ and a ∈ R∗ if k ∈ iR∗

Third step: conclusion
We return to the second step. Let us first prove that β0 = 0.
According to the result of N. stanton [5] (theorem 1.7), it suffices

to prove that ϕ(z, z) = ϕ(|z|2), (β0 is the coefficient of |z|4).
There are four cases to consider. For example, we suppose that F

is given by ii), i.e. F (w, z) =


1

γ
tgγw,

ze−
β0
2

w

cos γw


 , where γ ∈ C∗ and

γ2 ∈ R∗.
So, γ2 ∈ R∗ then γ ∈ R∗ or γ = iγ0, γ0 ∈ R∗.
Since the image F (M) is contained in the unit sphere:

{
(w, z) ∈ C2 : Rew + |z|2 = 0

}
near (0, 0), we have

h(ϕ(z, z)) = |z|2 , where h(x) =





1

2γ
(sin 2γx)e−β0x if γ ∈ R∗

1

2γ0

(sh2γ0x)e−β0x if γ = iγ0

Hence ϕ(z, z) = h−1(|z|2) near 0.
So, β0 = 0 and

ϕ(z, z) =





1

2γ
sin−1

(
2γ |z|2

)
if γ ∈ R∗

1

2γ0

sh−1
(
2γ0 |z|2

)
if γ = iγ0

By following the same way we obtain the other cases.
To end the proof of the theorem it remains to show that:

λ =
1

2i

∂b

∂z
(0, 0) and α5 = −β0

2
.

Let’s return to the indentities(5) and (6). From the first step we
have:
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∂nF1

∂zn
(0, 0) = 0, ∀n ≥ 0, then, from (5) we deduce that:

∂n+1F1

∂zn∂w
(0, 0) = 0, ∀n ≥ 1, So, in a neighbourhood fo the origin, we

can write:

(19) F1(w, z) = w+
∑

n≥2

anw
n + w2

∑

n≥1

An2z
n+

∑

q≥3

wq
∑

n≥1

Anqz
n

(20) F2(w, z) = z+
∑

n≥2

bnwn + w
∑

n≥1

Bn1z
n + w2

∑

n≥1

Bn2z
n+

∑

q≥3

wq
∑

n≥1

Bnqz
n

The idea to prove λ =
1

2i

∂b

∂z
(0, 0) and α5 = −β0

2
is to observe that

the terms of degree less or equal to 4 on z, z in the left hand-side of
(1) are null.

First, we observe that from (5) and (19) we have:

(21) A12 = −iλ and a2 = −iα4

Next, from (6) and (20) we have:

(22) b2 = −i
λ

2
, B21 = −2iλ and B11 = α5 − iα4

We are now in order to collect the terms of degree less or equal to
4 on z, z in the left hand-side of (1).

Let us write b(z, z) = β0 + β1z + β1z + ...

The terms of degree less or equal to 4 in
∂ϕ

∂z
are:

z + 2β0z |z|2 + 2β1z
2 |z|2 + 3β1 |z|4 .

Since
∂ϕ

∂z
(0, 0) = 0, it suffices to collect the terms of degree less or

equal to 3 on z, z in

[
1

2

∂F1

∂w
oA +

(
F 2oA

)
.
∂F2

∂w
oA

]
, which are:

1

2
+ (B11 − a2) |z|2 + (B21 − A12)z |z|2 − 2b2z |z|2 .

the terms of degree less or equal to 4 on z, z in

∂ϕ

∂z

[
1

2

∂F1

∂w
oA + (F 2oA).

∂F2

∂w
oA

]
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are:

1

2
z + (β0 + B11 − a2)z |z|2 + (β1 − 2b2)z

2 |z|2 + (B21 −A12 +
3

2
β1) |z|4

On the other hand, the terms of degree less or equal to 4 on z, z in

1

2

[
1

2

∂F1

∂z
oA +

(
F 2oA

)
.
∂F2

∂z
oA

]
are:

1

2
z − z |z|2 ReB11 − 1

2
B21 z2 |z|2 +

1

2

(
b2 − 2B21 +

1

2
A12

)
|z|4 .

Finally, the terms of degree less or equal to 4 on z, z in the left
hand-side of (1) are:

(β0 + B11 − a2 + ReB11)z |z|2 + (β1 − 2b2 +
1

2
B21)z

2 |z|2

+(2B21 − 5
4
A12 + 3

2
β1 − 1

2
b2) |z|4 .

These terms are null, then:
(23) β0 + B11 − a2 + ReB11 = 0

and

(24) β1 − 2b2 +
1

2
B21 = 0

From (21), (22) and (23) we obtain: β0 = −2ReB11 = −2α5

and

From (22) and (24) we obtain: λ =
β1

2i
=

1

2i

∂b

∂z
(0, 0).

This ends the proof of the theorem.
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