Proyecciones
Vol. 20, N^{o} 2, pp. 205-216, August 2001.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172001000200005

RIGID SPHERICAL HYPERSURFACES IN C ${ }^{2}$

Abdelaziz CHAOUECH
Université Abdelmalek Essaâdi, Maroc

Abstract
In this paper we describe explicitly one class of real-analytic hypersurfaces in \mathbf{C}^{2} rigid and spherical at the origin.

1. Introduction

A real-analytic hypersurface M in \mathbf{C}^{2} is called rigid if it is given by an equation of the form $r(w, \bar{w}, z, \bar{z})=: \operatorname{Imw}+F(z, \bar{z})=0$,
where F is a real-analytic function such that: $F(0,0)=\frac{\partial F}{\partial z}(0,0)=$ 0.

In this paper we study the real-analytic hypersurfaces M in \mathbf{C}^{2} rigid and spherical at the origin, i.e. there exists a local biholomorphic which maps M to the euclidean unit sphere. We note that recently A. Isaev [4] has given a characterization of spherical rigid real hypersurfaces in $\mathbf{C}^{n}(n \geq 2)$ in terms of a certain system of differential equations for a defining function of such hypersurfaces, but this does not permit to describe the spherical rigid real hypersurfaces even if in \mathbf{C}^{2}. Nowadays these hypersurfaces are not known. The only examples have been given by N. Stanton [5] (see also [6]). More recently, B. Coupet and A. Sukhov [3] have described the spherical hypersurfaces of the form: $\operatorname{Imw}+P(z, \bar{z})=0$, where P is a non-identically zero subharmonic homogeneous polynomial without purely harmonic terms.

The goal of this paper is to give one description of one class of real-analytic hypersurfaces in \mathbf{C}^{2} rigid and spherical at the origin.

2. Prelimenaries and results

Let M be a hypersurface in \mathbf{C}^{2}, strictly pseudoconvex at the origin, defined by:
$M=:\{\operatorname{Rew}+\varphi(z, \bar{z})=0\}$, where φ is a real-analytic function.
Without any loss of generality, we may assume that $\frac{\partial^{2} \varphi}{\partial z \partial \bar{z}}(0,0)=$ 1.

According to a theorem of N. Stanton [5] (see theorem 1.7) there exists an holomorphic change of coordinates ψ of the form $(w, g(z))$ defined in a neighborhood V of the origin and such that $\psi(M \cap V)$ is defined by:

Rew $+|z|^{2}+|z|^{4} b(z, \bar{z})=0$,
where b is a real-analytic function.

Theorem. Let M be a hypersurface in \mathbf{C}^{2} defined by $M=:\{\operatorname{Rew}+\varphi(z, \bar{z})=0\}$,
where $\varphi(z, \bar{z})=|z|^{2}+|z|^{4} b(z, \bar{z})$ and b being a real-analytic function in a neighbourhood of the origin.

Suppose that $\frac{\partial b}{\partial z}(0,0)=0$. Then M is spherical at the origin if and only if φ is given by one of the functions:
i) $|z|^{2}$,
ii) $\frac{1}{c} \sin ^{-1}\left(c|z|^{2}\right)$,
iii) $\frac{1}{c} s h^{-1}\left(c|z|^{2}\right)$
for some $c \in \mathbf{R}^{*}$.

Proof. Let $F=\left(F_{1}, F_{2}\right)$ be a local biholomorphism at the origin which maps M to the euclidean unit sphere:
$\left\{(w, z) \in \mathbf{C}^{2}: \rho(w, z)=:\right.$ Rew $\left.+|z|^{2}=0\right\}$.
We may assume that $F_{1}(0,0)=F_{2}(0,0)=0$ and $\frac{\partial F_{1}}{\partial w}(0,0)=$ $\frac{\partial F_{2}}{\partial z}(0,0)=1$.

By conjugating F with some automorphism of the euclidean unit ball of \mathbf{C}^{2}, we may also assume that $\frac{\partial F_{2}}{\partial w}(0,0)=0$.

The principal idea of the proof is to determine explicitly F by solving a system of partial differential equations. To this end we consider the direct image of the translation vector field $i \frac{\partial}{\partial w}: F_{*}\left(i \frac{\partial}{\partial w}\right)$ which is holomorphic tangent vector of the euclidean unit sphere, i.e. $\quad F_{*}\left(\frac{\partial}{\partial w}\right)=: A(w, z) \frac{\partial}{\partial w}+B(w, z) \frac{\partial}{\partial z}$, where A and B are two holomorphic functions in a neighborhood of the origin and such that $\operatorname{Re}\left[A(w, z) \frac{\partial \rho}{\partial w}+B(w, z) \frac{\partial \rho}{\partial z}\right]$ is identically null on the unit sphere.

We note that the real dimension of the lie algebra of holomorphic tangent vector fields on the unit sphere is equal to 8 (see E. Cartan [1]).

We now proceed in three steps.

First step: $\frac{\partial^{n} F_{1}}{\partial z^{n}}(0,0)=0, \quad \forall n \geq 0$ and $\frac{\partial^{n} F_{2}}{\partial z^{n}}(0,0)=0, \quad \forall n \geq 2$.

We write $w=u+i v \quad$ and $\rho(w, z)=:$ Rew $+|z|^{2}$.
Let $A(v, z)=:(-\varphi(z)+i v, z)$ be a parametrization of M. The vector field defined by: $L=: \frac{\partial \varphi}{\partial z} \frac{\partial}{\partial w}-\frac{1}{2} \frac{\partial}{\partial z}$ is tangent to M, so $L(\rho o F) \equiv 0$ on M in a neighbourhood of the origin, which implies the following identity:
(1) $\frac{\partial \varphi}{\partial z}\left[\frac{1}{2} \frac{\partial F_{1}}{\partial w} o A+\left(\bar{F}_{2} o A\right) \cdot \frac{\partial F_{2}}{\partial w} o A\right]$
$-\frac{1}{2}\left[\frac{1}{2} \frac{\partial F_{1}}{\partial z} o A+\left(\bar{F}_{2} o A\right) \cdot \frac{\partial F_{2}}{\partial z} o A\right] \equiv 0$
near $v=0$ and $z=0$.
Differentiating (1) with respect to z to arbitrary order, we get:

$$
\begin{equation*}
\frac{\partial^{n} F_{1}}{\partial z^{n}}(0,0)=0, \quad \forall n \geq 0 \quad(\text { See [2] page } 47-49) \tag{2}
\end{equation*}
$$

We write $F_{2}(w, z)$ in the following form:

$$
F_{2}(w, z)=z+K(z)+\sum_{n \geq 2} b_{n} w^{n}+\sum_{n, m \geq 1} B_{n m} z^{n} w^{m}
$$

Setting $v=0$ and identifing the pure \bar{z} terms in (1), and taking (2) into account we obtain $K(z) \equiv 0$.

Second step: F is one of the four following forms:
i) $F(w, z)=\left(\frac{w}{1+i \Gamma w}, \frac{z e^{-\frac{\beta_{0}}{2} w}}{1+i \Gamma w}\right)$
ii) $F(w, z)=\left(\frac{1}{\gamma} \operatorname{tg} \gamma w, \frac{z e^{-\frac{\beta_{0}}{2} w}}{\cos \gamma w}\right)$
iii) $F(w, z)=\left(\frac{i}{k_{0}}\left(e^{-i k_{0} w}-1\right), z e^{-\frac{\beta_{0}}{2} w} e^{-i \frac{k_{0}}{2} w}\right)$
iv) $F(w, z)=\left(\frac{a-1}{k} \frac{e^{k w}-1}{a e^{k w}-1},(a-1) z e^{-\frac{\beta_{0}}{2} w} \frac{e^{\frac{k}{2} w}}{a e^{k w}-1}\right)$
where $\beta_{0}=b(0,0), \Gamma \in \mathbf{R} . \gamma \in \mathbf{C}^{*}$ and $\gamma^{2} \in \mathbf{R}^{*}, k_{0} \in \mathbf{R}^{*} . k \in$ $\left\{\mathbf{R}^{*}, i \mathbf{R}^{*}\right\}, a \in \mathbf{C}^{*}$ and $a \neq 1,|a|^{2}=1$ if $k \in \mathbf{R}^{*}$ and $a \in \mathbf{R}^{*}$ if $k \in i \mathbf{R}^{*}$.

First, we shall prove that $F_{1}(w, z)=F_{1}(w)$, i.e. F_{1} depends only on w.

We consider the holomorphic vector field $F_{*}\left(i \frac{\partial}{\partial w}\right)$ which is defined in a neighbourhood of the origin. Since $F_{*}\left(i \frac{\partial}{\partial w}\right)$ is tangent to the euclidean unit sphere: $\left\{(w, z) \in \mathbf{C}^{2}:\right.$ Rew $\left.+|z|^{2}=0\right\}$, it may be written as a real linear combination of the following fields:

$$
\begin{aligned}
& X_{1}=i \frac{\partial}{\partial w} \\
& X_{2}=-2 z \frac{\partial}{\partial w}+\frac{\partial}{\partial z} \\
& X_{3}=2 i z \frac{\partial}{\partial w}+i \frac{\partial}{\partial z} \\
& X_{4}=2 w \frac{\partial}{\partial w}+z \frac{\partial}{\partial z} \\
& X_{5}=i z \frac{\partial}{\partial z} \\
& X_{6}=2 i z w \frac{\partial}{\partial w}+\left(2 i z^{2}-i w\right) \frac{\partial}{\partial z} \\
& X_{7}=2 z w \frac{\partial}{\partial w}+\left(2 z^{2}+w\right) \frac{\partial}{\partial z} \\
& X_{8}=-i w^{2} \frac{\partial}{\partial w}-i z w \frac{\partial}{\partial z}
\end{aligned}
$$

Then there are real numbers $\alpha_{1}, \ldots, \alpha_{8}$ such that:

$$
F_{*}\left(i \frac{\partial}{\partial w}\right)=\sum_{j=1}^{8} \alpha_{j} X_{j}
$$

We note $\left[F_{*}\left(i \frac{\partial}{\partial w}\right)\right]_{(w, z)}=: A(w, z) \frac{\partial}{\partial w}+B(w, z) \frac{\partial}{\partial z}$.
Then $\quad A(w, z)=i \alpha_{1}+2\left(-\alpha_{2}+i \alpha_{3}\right) z+2 \alpha_{4} w-i \alpha_{8} w^{2}+2 \lambda w z$
and $\quad B(w, z)=\left(\alpha_{2}+i \alpha_{3}\right)+\mu z+2 \lambda z^{2}+\bar{\lambda} w-i \alpha_{8} w z$
where $\mu=\alpha_{4}+i \alpha_{5}$ and $\lambda=\alpha_{7}+i \alpha_{6}$.
On the other hand we have:

$$
\left[F_{*}\left(i \frac{\partial}{\partial w}\right)\right]_{F(w, z)}=i \frac{\partial F_{1}}{\partial w}(w, z) \frac{\partial}{\partial w}+i \frac{\partial F_{2}}{\partial w}(w, z) \frac{\partial}{\partial z} .
$$

Then, we obtain:

$$
\begin{equation*}
i \frac{\partial F_{1}}{\partial w}(w, z)=(A o F)(w, z) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
i \frac{\partial F_{2}}{\partial w}(w, z)=(B o F)(w, z) \tag{4}
\end{equation*}
$$

Since $\frac{\partial F_{1}}{\partial w}(0,0)=1$ and $\frac{\partial F_{2}}{\partial w}(0,0)=0$, then the identities (3) and (4) become:

$$
\begin{equation*}
i \frac{\partial F_{1}}{\partial w}=i+2 \alpha_{4} F_{1}-i \alpha_{8} F_{1}^{2}+2 \lambda F_{1} F_{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
i \frac{\partial F_{2}}{\partial w}=\mu F_{2}+2 \lambda F_{2}^{2}+\bar{\lambda} F_{1}-i \alpha_{8} F_{1} F_{2} \tag{6}
\end{equation*}
$$

where $\mu=\alpha_{4}+i \alpha_{5}$ and $\lambda=\alpha_{7}+i \alpha_{6}$.
We momentarily admit that $\lambda=\frac{1}{2 i} \frac{\partial b}{\partial z}(0,0)$ and $\alpha_{5}=-\frac{\beta_{0}}{2}$, the proof will be given in the end of this paper.

By hypothesis $\frac{\partial b}{\partial z}(0,0)=0$, then $\lambda=0$, so the identities (5) and (6) become:

$$
\begin{equation*}
\frac{\partial F_{1}}{\partial w}=1-2 i \alpha_{4} F_{1}-\alpha_{8} F_{1}^{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial w}=-i \mu F_{2}-\alpha_{8} F_{1} F_{2} \tag{8}
\end{equation*}
$$

where $\mu=\alpha_{4}-i \frac{\beta_{0}}{2}$.
Since $F_{2}(0,0)=\frac{\partial F_{2}}{\partial w}(0,0)=0$, from (8) we deduce by induction that
$\frac{\partial^{n} F_{2}}{\partial w^{n}}(0,0)=0, \quad \forall n \geq 0, \quad$ i.e. $F_{2}(w, 0) \equiv 0$, this implies that:
$F_{1}(w, z)=F_{1}(w) \quad($ See[2] page 47).
We are now in order to solve the system of differential equations (7) and (8).

Let us recall: (9) $\quad F(0,0)=(0,0), \quad \frac{\partial F_{1}}{\partial w}(0,0)=\frac{\partial F_{2}}{\partial z}(0,0)=1$ and

$$
\frac{\partial^{n} F_{2}}{\partial z^{n}}(0,0)=0, \forall n \geq 2
$$

There are two cases to consider.

Case 1. $\alpha_{4}=0$
We suppose that $\alpha_{8}=0$. In this case (7) and (8) become:

$$
\begin{align*}
& \frac{\partial F_{1}}{\partial w}=1 \tag{10}\\
& \frac{\partial F_{2}}{\partial w}=-\frac{\beta_{0}}{2} F_{2} \tag{11}
\end{align*}
$$

then $F_{1}(w, z)=w$ and $F_{2}(w, z)=h(z) e^{-\frac{\beta_{0}}{2} w}$ where h is a holomorphic function. Taking (9) into account we obtain $F_{2}(w, z)=z e^{-\frac{\beta_{0}}{2} w}$, this corresponds to the case i).

We suppose now that $\alpha_{8} \neq 0$. Let $\eta \in \mathbf{C}^{*}$ such that: $\eta^{2}=\frac{1}{\alpha_{8}}$ a particular solution of the Riccati equation (7). Then it is easy to show that:

$$
\begin{equation*}
F_{1}(w, z)=\frac{1}{\gamma} \operatorname{tg} \gamma w, \quad \text { where } \gamma=\frac{1}{i \eta} ; \quad \gamma^{2}=-\alpha_{8} \tag{12}
\end{equation*}
$$

Replacing $F_{1}(w, z)$ by its expression (12) into (8) and observing that $\frac{\alpha_{8}}{\gamma}=-\gamma$, then we obtain:

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial w}=\left(-\frac{\beta_{0}}{2}+\gamma \operatorname{tg} \gamma w\right) F_{2} \tag{13}
\end{equation*}
$$

From (13) and (9) we obtain:

$$
F_{2}(w, z)=z e^{-\frac{\beta_{0}}{2} w} \frac{1}{\cos \gamma w}, \text { this corresponds to the case ii). }
$$

Case 2. $\alpha_{4} \neq 0$
We proceed analogously to the first case.
First we suppose that $\alpha_{8}=0$. From (7), (8) and (9) we obtain:

$$
F_{1}(w, z)=\frac{i}{k_{0}}\left(e^{-i k_{0} w}-1\right)
$$

and

$$
F_{2}(w, z)=z e^{-\frac{\beta_{0}}{2} w} e^{-i \frac{k_{0}}{2} w}
$$

where $k_{0}=2 \alpha_{4}$, this corresponds to the case iii).
Now, we suppose that $\alpha_{8} \neq 0$. Let $\eta \in \mathbf{C}^{*}$ such that: $\alpha_{8} \eta^{2}+2 i \alpha_{4} \eta=$ 1, a particular solution of the Riccati equation (7).

We put: $k=2\left(\alpha_{8} \eta+i \alpha_{4}\right)$.
If $k=0$, in this case, we obtain from (7), (8) and (9):

$$
F_{1}(w, z)=\frac{w}{1+i \Gamma w} \quad \text { and } \quad F_{2}(w, z)=\frac{z e^{-\frac{\beta_{0}}{2} w}}{1+i \Gamma w}
$$

where $\Gamma=\alpha_{4}$, this corresponds to the case i).

If $k \neq 0$, then from (7) we deduce:
or also

$$
\begin{equation*}
F_{1}(w, z)=\frac{1}{\delta e^{k w}-\frac{\alpha_{8}}{k}}+\eta ; \quad \delta \in \mathbf{C}^{*} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
F_{1}(w, z)=\frac{a-1}{k} \frac{e^{k w}-1}{a e^{k w}-1}, \text { where } a=\frac{\delta k}{\alpha_{8}} . \tag{15}
\end{equation*}
$$

Replacing $F_{1}(w, z)$ by its expression (14) into (8) and observing that $\alpha_{8} \eta+i \alpha_{4}=\frac{k}{2}$, then, we obtain:

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial w}=\left(-\frac{\beta_{0}}{2}-\frac{k}{2} \frac{a e^{k w}+1}{a e^{k w}-1}\right) F_{2} \tag{16}
\end{equation*}
$$

From (16) and (9) we deduce:

$$
\begin{equation*}
F_{2}(w, z)=(a-1) z e^{-\frac{\beta_{0} w}{2}} \frac{e^{\frac{k}{2} w}}{a e^{k w}-1} \tag{17}
\end{equation*}
$$

Now, we shall prove that $k \in\left\{\mathbf{R}^{*}, i \mathbf{R}^{*}\right\}, a \in \mathbf{C}^{*}$ and $a \neq 1,|a|^{2}=$ 1 if $k \in \mathbf{R}^{*}$ and $a \in \mathbf{R}^{*}$ if $k \in i \mathbf{R}^{*}$.
F is a local biholomorphism, so, $a \neq 1$. Since the image $F(M)$ is contained in the unit sphere:
$\left\{(w, z) \in \mathbf{C}^{2}: \operatorname{Rew}+|z|^{2}=0\right\}$ near $(0,0)$, hence $\operatorname{Re} F_{1}(w)=0$ for Rew $=0$, then we obtain:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{a-1}{k}\right)+\left(\operatorname{Re}\left(\bar{a}\left(\frac{a-1}{k}\right)\right) e^{2 v R e i k}-\right. \tag{18}
\end{equation*}
$$

$$
\left(\frac{a-1}{k}+a \overline{\left(\frac{a-1}{k}\right)}\right) e^{i k v}-
$$

$$
\left(\bar{a}\left(\frac{a-1}{k}\right)+\overline{\left(\frac{a-1}{k}\right)}\right) e^{-i \bar{k} v} \equiv 0 \text { for } v \text { near } 0 .
$$

First we prove that $k \in\left\{\mathbf{R}^{*}, i \mathbf{R}^{*}\right\}$. Assume, to the contrary, that $k \in \mathbf{C} \backslash\left\{\mathbf{R}^{*}, i \mathbf{R}^{*}\right\}$, then $\operatorname{Re}(i k) \neq 0$ and $i k \neq \overline{i k}$. From (18) we obtain:

$$
\operatorname{Re}\left(\frac{a-1}{k}\right)=0 \text { and } \frac{a-1}{k}+a \overline{\left(\frac{a-1}{k}\right)}=0 .
$$

Thus, it follows that : $\frac{a-1}{k}+a \overline{\left(\frac{a-1}{k}\right)}-2 \operatorname{Re}\left(\frac{a-1}{k}\right)=$ $\frac{1}{\bar{k}}|a-1|^{2}=0$, then $a=1$, this is a contradiction, so, $k \in\left\{\mathbf{R}^{*}, i \mathbf{R}^{*}\right\}$.

From (18) we deduce: $|a|^{2}=1$ if $k \in \mathbf{R}^{*}$ and $a \in \mathbf{R}^{*}$ if $k \in i \mathbf{R}^{*}$

Third step: conclusion

We return to the second step. Let us first prove that $\beta_{0}=0$.
According to the result of N. stanton [5] (theorem 1.7), it suffices to prove that $\varphi(z, \bar{z})=\varphi\left(|z|^{2}\right),\left(\beta_{0}\right.$ is the coefficient of $\left.|z|^{4}\right)$.

There are four cases to consider. For example, we suppose that F is given by ii), i.e. $F(w, z)=\left(\frac{1}{\gamma} t g \gamma w, \frac{z e^{-\frac{\beta_{0}}{2} w}}{\cos \gamma w}\right)$, where $\gamma \in \mathbf{C}^{*}$ and $\gamma^{2} \in \mathbf{R}^{*}$.

So, $\gamma^{2} \in \mathbf{R}^{*}$ then $\gamma \in \mathbf{R}^{*}$ or $\gamma=i \gamma_{0}, \gamma_{0} \in \mathbf{R}^{*}$.
Since the image $F(M)$ is contained in the unit sphere:
$\left\{(w, z) \in \mathbf{C}^{2}:\right.$ Rew $\left.+|z|^{2}=0\right\}$ near $(0,0)$, we have

$$
h(\varphi(z, \bar{z}))=|z|^{2}, \text { where } h(x)= \begin{cases}\frac{1}{2 \gamma}(\sin 2 \gamma x) e^{-\beta_{0} x} & \text { if } \gamma \in \mathbf{R}^{*} \\ \frac{1}{2 \gamma_{0}}\left(\operatorname{sh} 2 \gamma_{0} x\right) e^{-\beta_{0} x} & \text { if } \gamma=i \gamma_{0}\end{cases}
$$

Hence $\quad \varphi(z, \bar{z})=h^{-1}\left(|z|^{2}\right)$ near 0.
So, $\beta_{0}=0$ and

$$
\varphi(z, \bar{z})= \begin{cases}\frac{1}{2 \gamma} \sin ^{-1}\left(2 \gamma|z|^{2}\right) & \text { if } \gamma \in \mathbf{R}^{*} \\ \frac{1}{2 \gamma_{0}} \operatorname{sh}^{-1}\left(2 \gamma_{0}|z|^{2}\right) & \text { if } \gamma=i \gamma_{0}\end{cases}
$$

By following the same way we obtain the other cases.
To end the proof of the theorem it remains to show that:

$$
\lambda=\frac{1}{2 i} \frac{\partial b}{\partial z}(0,0) \quad \text { and } \quad \alpha_{5}=-\frac{\beta_{0}}{2} .
$$

Let's return to the indentities(5) and (6). From the first step we have:
$\frac{\partial^{n} F_{1}}{\partial z^{n}}(0,0)=0, \quad \forall n \geq 0$, then, from (5) we deduce that:
$\frac{\partial^{n+1} F_{1}}{\partial z^{n} \partial w}(0,0)=0, \quad \forall n \geq 1$, So, in a neighbourhood fo the origin, we can write:

$$
\begin{equation*}
w^{q} \sum_{n \geq 1} B_{n q} z^{n} \tag{20}
\end{equation*}
$$

The idea to prove $\lambda=\frac{1}{2 i} \frac{\partial b}{\partial z}(0,0)$ and $\alpha_{5}=-\frac{\beta_{0}}{2}$ is to observe that the terms of degree less or equal to 4 on z, \bar{z} in the left hand-side of (1) are null.

First, we observe that from (5) and (19) we have:

$$
\begin{equation*}
A_{12}=-i \lambda \text { and } a_{2}=-i \alpha_{4} \tag{21}
\end{equation*}
$$

Next, from (6) and (20) we have:

$$
\begin{equation*}
b_{2}=-i \frac{\bar{\lambda}}{2}, \quad B_{21}=-2 i \lambda \text { and } B_{11}=\alpha_{5}-i \alpha_{4} \tag{22}
\end{equation*}
$$

We are now in order to collect the terms of degree less or equal to 4 on z, \bar{z} in the left hand-side of (1).

Let us write $b(z, \bar{z})=\beta_{0}+\beta_{1} z+\bar{\beta}_{1} \bar{z}+\ldots$
The terms of degree less or equal to 4 in $\frac{\partial \varphi}{\partial z}$ are:
$\bar{z}+2 \beta_{0} \bar{z}|z|^{2}+2 \bar{\beta}_{1} \bar{z}^{2}|z|^{2}+3 \beta_{1}|z|^{4}$.
Since $\frac{\partial \varphi}{\partial z}(0,0)=0$, it suffices to collect the terms of degree less or equal to 3 on z, \bar{z} in $\left[\frac{1}{2} \frac{\partial F_{1}}{\partial w} o A+\left(\bar{F}_{2} o A\right) \cdot \frac{\partial F_{2}}{\partial w} o A\right]$, which are:

$$
\frac{1}{2}+\left(B_{11}-a_{2}\right)|z|^{2}+\left(B_{21}-A_{12}\right) z|z|^{2}-2 b_{2} \bar{z}|z|^{2}
$$

the terms of degree less or equal to 4 on z, \bar{z} in

$$
\frac{\partial \varphi}{\partial z}\left[\frac{1}{2} \frac{\partial F_{1}}{\partial w} o A+\left(\bar{F}_{2} o A\right) \cdot \frac{\partial F_{2}}{\partial w} o A\right]
$$

are:
$\frac{1}{2} \bar{z}+\left(\beta_{0}+B_{11}-a_{2}\right) \bar{z}|z|^{2}+\left(\bar{\beta}_{1}-2 b_{2}\right) \bar{z}^{2}|z|^{2}+\left(B_{21}-A_{12}+\frac{3}{2} \beta_{1}\right)|z|^{4}$
On the other hand, the terms of degree less or equal to 4 on z, \bar{z} in

$$
\begin{aligned}
& \frac{1}{2}\left[\frac{1}{2} \frac{\partial F_{1}}{\partial z} o A+\left(\bar{F}_{2} o A\right) \cdot \frac{\partial F_{2}}{\partial z} o A\right] \text { are: } \\
& \frac{1}{2} \bar{z}-\bar{z}|z|^{2} R e B_{11}-\frac{1}{2} \bar{B}_{21} \bar{z}^{2}|z|^{2}+\frac{1}{2}\left(\bar{b}_{2}-2 B_{21}+\frac{1}{2} A_{12}\right)|z|^{4}
\end{aligned}
$$

Finally, the terms of degree less or equal to 4 on z, \bar{z} in the left hand-side of (1) are:

$$
\begin{aligned}
& \quad\left(\beta_{0}+B_{11}-a_{2}+\operatorname{Re} B_{11}\right) \bar{z}|z|^{2}+\left(\bar{\beta}_{1}-2 b_{2}+\frac{1}{2} \bar{B}_{21}\right) \bar{z}^{2}|z|^{2} \\
& +\left(2 \mathrm{~B}_{21}-\frac{5}{4} A_{12}+\frac{3}{2} \beta_{1}-\frac{1}{2} \bar{b}_{2}\right)|z|^{4} .
\end{aligned}
$$

These terms are null, then:

$$
\begin{equation*}
\beta_{0}+B_{11}-a_{2}+\operatorname{Re} B_{11}=0 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\beta}_{1}-2 b_{2}+\frac{1}{2} \bar{B}_{21}=0 \tag{24}
\end{equation*}
$$

From (21), (22) and (23) we obtain: $\beta_{0}=-2 R e B_{11}=-2 \alpha_{5}$ and

From (22) and (24) we obtain: $\lambda=\frac{\beta_{1}}{2 i}=\frac{1}{2 i} \frac{\partial b}{\partial z}(0,0)$.
This ends the proof of the theorem.

Acknowledgements. We thank the professor François Berteloot (University Paul Sabatier, Toulouse-French) for his helpful discussion.

References

[1] E. Cartan., sur la géometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. Part I. Ann. Mat. 11, 17-90 (1932); or oeuvres complètes, vol.II, pp. 1231-1304. Paris: Gauthiers-Villars, (1953).
[2] A. Chaouech., Auto-applications holomorphes propres des domaines polynômiaux rigides de \mathbf{C}^{2}. Publicacions Matemàtiques, Vol.40, N1, pp. 41-66, (1996).
[3] B. Coupet and A. Sukhov., Rigidity of algebraic CR structures and regularity of CR mappings, Preprint.
[4] A. Isaev., Rigid spherical hypersurfaces. Complex variables 31, pp. 141-163, (1996).
[5] N. Stanton., A normal form for rigid hypersurfaces in \mathbf{C}^{2}. American Journal of Mathematics 113, pp. 877-910, (1991).
[6] N. Stanton., Infinitesimal CR automorphisms of rigid hypersurfaces in \mathbf{C}^{2}. Journal of geometric analysis, Vol. 1, N. 3, pp. 231-267, (1991).

Received: March, 2001.

Abdelaziz Chaouech

Université Abdelmalek Essaâdi
Faculté des Sciences
Département de Mathématiques \& Informatiques
B. P. 2121 Tétouan

Maroc
E-MAIL : chaouech@hotmail.com

