Proyecciones Vol. 20, N o 2, pp. 205-216, August 2001. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172001000200005

$\begin{array}{c} \textbf{RIGID SPHERICAL} \\ \textbf{HYPERSURFACES IN } \mathbf{C}^2 \end{array}$

Abdelaziz CHAOUECH Université Abdelmalek Essaâdi, Maroc

Abstract

In this paper we describe explicitly one class of real-analytic hypersurfaces in \mathbb{C}^2 rigid and spherical at the origin.

1. Introduction

A real-analytic hypersurface M in \mathbb{C}^2 is called rigid if it is given by an equation of the form $r(w, \overline{w}, z, \overline{z}) =: Imw + F(z, \overline{z}) = 0$,

where F is a real-analytic function such that: $F(0,0) = \frac{\partial F}{\partial z}(0,0) = 0.$

In this paper we study the real-analytic hypersurfaces M in \mathbb{C}^2 rigid and spherical at the origin, i.e. there exists a local biholomorphic which maps M to the euclidean unit sphere. We note that recently A. Isaev [4] has given a characterization of spherical rigid real hypersurfaces in \mathbb{C}^n $(n \ge 2)$ in terms of a certain system of differential equations for a defining function of such hypersurfaces, but this does not permit to describe the spherical rigid real hypersurfaces even if in \mathbb{C}^2 . Nowadays these hypersurfaces are not known. The only examples have been given by N. Stanton [5] (see also [6]). More recently, B. Coupet and A. Sukhov [3] have described the spherical hypersurfaces of the form: $Imw + P(z, \overline{z}) = 0$, where P is a non-identically zero subharmonic homogeneous polynomial without purely harmonic terms.

The goal of this paper is to give one description of one class of real-analytic hypersurfaces in \mathbb{C}^2 rigid and spherical at the origin.

2. Prelimenaries and results

Let M be a hypersurface in \mathbb{C}^2 , strictly pseudoconvex at the origin, defined by:

 $M =: \{Rew + \varphi(z, \overline{z}) = 0\}$, where φ is a real-analytic function.

Without any loss of generality, we may assume that $\frac{\partial^2 \varphi}{\partial z \partial \overline{z}}(0,0) =$

1.

According to a theorem of N. Stanton [5] (see theorem 1.7) there exists an holomorphic change of coordinates ψ of the form (w, g(z)) defined in a neighborhood V of the origin and such that $\psi(M \cap V)$ is defined by:

 $Rew + |z|^2 + |z|^4 b(z, \overline{z}) = 0,$

where b is a real-analytic function.

Theorem. Let M be a hypersurface in \mathbb{C}^2 defined by $M =: \{Rew + \varphi(z, \overline{z}) = 0\},\$

where $\varphi(z,\overline{z}) = |z|^2 + |z|^4 b(z,\overline{z})$ and b being a real-analytic function in a neighbourhood of the origin.

Suppose that $\frac{\partial b}{\partial z}(0,0) = 0$. Then M is spherical at the origin if and only if φ is given by one of the functions: i) $|z|^2$, ii) $\frac{1}{c} \sin^{-1} \left(c |z|^2 \right)$, iii) $\frac{1}{c} sh^{-1} \left(c |z|^2 \right)$ for some $c \in \mathbf{R}^*$.

Proof. Let $F = (F_1, F_2)$ be a local biholomorphism at the origin which maps M to the euclidean unit sphere: $\{(w, z) \in \mathbf{C}^2 : \rho(w, z) =: Rew + |z|^2 = 0\}.$

We may assume that $F_1(0,0) = F_2(0,0) = 0$ and $\frac{\partial F_1}{\partial u}(0,0) =$ $\frac{\partial F_2}{\partial z}(0,0) = 1.$

By conjugating F with some automorphism of the euclidean unit ball of \mathbf{C}^2 , we may also assume that $\frac{\partial F_2}{\partial w}(0,0) = 0$. The principal idea of the proof is to determine explicitly F by

solving a system of partial differential equations. To this end we consider the direct image of the translation vector field $i\frac{\partial}{\partial w}: F_*(i\frac{\partial}{\partial w})$ which is holomorphic tangent vector of the euclidean unit sphere, i.e. $F_*(i\frac{\partial}{\partial w}) =: A(w,z)\frac{\partial}{\partial w} + B(w,z)\frac{\partial}{\partial z}$, where A and B are two holomorphic functions in a neighborhood of the origin and such that $Re\left[A(w,z)\frac{\partial\rho}{\partial w} + B(w,z)\frac{\partial\rho}{\partial z}\right]$ is identically null on the unit sphere.

We note that the real dimension of the lie algebra of holomorphic tangent vector fields on the unit sphere is equal to 8 (see E. Cartan |1|).

We now proceed in three steps.

$$\underline{\text{First step}}: \ \frac{\partial^n F_1}{\partial z^n}(0,0) = 0, \ \ \forall n \ge 0 \ \ \text{and} \ \frac{\partial^n F_2}{\partial z^n}(0,0) = 0, \ \ \forall n \ge 2.$$

We write w = u + iv and $\rho(w, z) =: Rew + |z|^2$.

Let $A(v, z) =: (-\varphi(z) + iv, z)$ be a parametrization of M. The vector field defined by: $L =: \frac{\partial \varphi}{\partial z} \frac{\partial}{\partial w} - \frac{1}{2} \frac{\partial}{\partial z}$ is tangent to M, so $L(\rho oF) \equiv 0$ on M in a neighbourhood of the origin, which implies the following identity:

(1)
$$\frac{\partial \varphi}{\partial z} \left[\frac{1}{2} \frac{\partial F_1}{\partial w} oA + (\overline{F}_2 oA) \cdot \frac{\partial F_2}{\partial w} oA \right]$$

 $-\frac{1}{2} \left[\frac{1}{2} \frac{\partial F_1}{\partial z} oA + (\overline{F}_2 oA) \cdot \frac{\partial F_2}{\partial z} oA \right] \equiv 0$

near v = 0 and z = 0.

Differentiating (1) with respect to z to arbitrary order, we get:

(2)
$$\frac{\partial^n F_1}{\partial z^n}(0,0) = 0, \quad \forall n \ge 0 \quad (See [2] \text{ page } 47 - 49).$$

We write $F_2(w,z)$ in the following form:

$$F_2(w,z) = z + K(z) + \sum_{n \ge 2} b_n w^n + \sum_{n,m \ge 1} B_{nm} z^n w^m.$$

Setting v = 0 and identifying the pure \overline{z} terms in (1), and taking (2) into account we obtain $K(z) \equiv 0$.

Second step: F is one of the four following forms:

i)
$$F(w,z) = \left(\frac{w}{1+i\Gamma w}, \frac{ze^{-\frac{\beta_0}{2}w}}{1+i\Gamma w}\right)$$

ii)
$$F(w,z) = \left(\frac{1}{\gamma}tg\gamma w, \frac{ze^{-\frac{\beta_0}{2}w}}{\cos\gamma w}\right)$$

iii)
$$F(w,z) = \left(\frac{i}{k_0}(e^{-ik_0w}-1), ze^{-\frac{\beta_0}{2}w} e^{-i\frac{k_0}{2}w}\right)$$

iv)
$$F(w,z) = \left(\frac{a-1}{k} \frac{e^{kw}-1}{ae^{kw}-1}, (a-1)ze^{-\frac{\beta_0}{2}w} \frac{e^{\frac{k}{2}w}}{ae^{kw}-1}\right)$$

where $\beta_0 = b(0,0)$, $\Gamma \in \mathbf{R}$. $\gamma \in \mathbf{C}^*$ and $\gamma^2 \in \mathbf{R}^*$, $k_0 \in \mathbf{R}^*$. $k \in \{\mathbf{R}^*, i\mathbf{R}^*\}$, $a \in \mathbf{C}^*$ and $a \neq 1$, $|a|^2 = 1$ if $k \in \mathbf{R}^*$ and $a \in \mathbf{R}^*$ if $k \in i\mathbf{R}^*$.

First, we shall prove that $F_1(w, z) = F_1(w)$, *i.e.* F_1 depends only on w.

We consider the holomorphic vector field $F_*(i\frac{\partial}{\partial w})$ which is defined in a neighbourhood of the origin. Since $F_*(i\frac{\partial}{\partial w})$ is tangent to the euclidean unit sphere: $\{(w, z) \in \mathbf{C}^2 : Rew + |z|^2 = 0\}$, it may be written as a real linear combination of the following fields:

$$X_{1} = i\frac{\partial}{\partial w}$$

$$X_{2} = -2z\frac{\partial}{\partial w} + \frac{\partial}{\partial z}$$

$$X_{3} = 2iz\frac{\partial}{\partial w} + i\frac{\partial}{\partial z}$$

$$X_{4} = 2w\frac{\partial}{\partial w} + z\frac{\partial}{\partial z}$$

$$X_{5} = iz\frac{\partial}{\partial z}$$

$$X_{6} = 2izw\frac{\partial}{\partial w} + (2iz^{2} - iw)\frac{\partial}{\partial z}$$

$$X_{7} = 2zw\frac{\partial}{\partial w} + (2z^{2} + w)\frac{\partial}{\partial z}$$

$$X_{8} = -iw^{2}\frac{\partial}{\partial w} - izw\frac{\partial}{\partial z}.$$
Then there are real numbers of

Then there are real numbers $\alpha_1, ..., \alpha_8$ such that:

$$F_*(i\frac{\partial}{\partial w}) = \sum_{j=1}^8 \alpha_j X_j$$

We note
$$\left[F_*(i\frac{\partial}{\partial w})\right]_{(w,z)} =: A(w,z)\frac{\partial}{\partial w} + B(w,z)\frac{\partial}{\partial z}.$$

Then $A(w,z) = ig_{w,z} + 2(-g_{w,z} + ig_{w,z})z + 2g_{w,z} w - ig_{w,z} w^2$.

Then $A(w,z) = i\alpha_1 + 2(-\alpha_2 + i\alpha_3)z + 2\alpha_4w - i\alpha_8w^2 + 2\lambda wz$ and $B(w,z) = (\alpha_2 + i\alpha_3) + \mu z + 2\lambda z^2 + \overline{\lambda}w - i\alpha_8wz$ where $\mu = \alpha_4 + i\alpha_5$ and $\lambda = \alpha_7 + i\alpha_6$.

On the other hand we have:

$$\left[F_*(i\frac{\partial}{\partial w})\right]_{F(w,z)} = i\frac{\partial F_1}{\partial w}(w,z)\frac{\partial}{\partial w} + i\frac{\partial F_2}{\partial w}(w,z)\frac{\partial}{\partial z}.$$

Then, we obtain:

(3)
$$i\frac{\partial F_1}{\partial w}(w,z) = (AoF)(w,z)$$

and

(4)
$$i\frac{\partial F_2}{\partial w}(w,z) = (BoF)(w,z)$$

Since $\frac{\partial F_1}{\partial w}(0,0) = 1$ and $\frac{\partial F_2}{\partial w}(0,0) = 0$, then the identities (3) and (4) become:

(5)
$$i\frac{\partial F_1}{\partial w} = i + 2\alpha_4 F_1 - i\alpha_8 F_1^2 + 2\lambda F_1 F_2$$

and

(6)
$$i\frac{\partial F_2}{\partial w} = \mu F_2 + 2\lambda F_2^2 + \overline{\lambda}F_1 - i\alpha_8 F_1 F_2$$

where $\mu = \alpha_4 + i\alpha_5$ and $\lambda = \alpha_7 + i\alpha_6$.

We momentarily admit that $\lambda = \frac{1}{2i} \frac{\partial b}{\partial z}(0,0)$ and $\alpha_5 = -\frac{\beta_0}{2}$, the proof will be given in the end of this paper.

By hypothesis $\frac{\partial b}{\partial z}(0,0) = 0$, then $\lambda = 0$, so the identities (5) and (6) become:

(7)
$$\frac{\partial F_1}{\partial w} = 1 - 2i\alpha_4 F_1 - \alpha_8 F_1^2$$

and

(8)
$$\frac{\partial F_2}{\partial w} = -i\mu F_2 - \alpha_8 F_1 F_2$$

where $\mu = \alpha_4 - i \frac{\beta_0}{2}$.

Since $F_2(0,0) = \frac{\partial F_2}{\partial w}(0,0) = 0$, from (8) we deduce by induction $\operatorname{that}_{\partial^n F_2}$

$$\frac{\partial^2 F_2}{\partial w^n}(0,0) = 0, \ \forall n \ge 0, \ i.e. \ F_2(w,0) \equiv 0, \text{ this implies that:} \\ F_1(w,z) = F_1(w) \quad (\text{See}[2] \text{ page } 47).$$

We are now in order to solve the system of differential equations (7) and (8).

Let us recall: (9) $F(0,0) = (0,0), \quad \frac{\partial F_1}{\partial w}(0,0) = \frac{\partial F_2}{\partial z}(0,0) = 1$ and $an \Gamma$

$$\frac{\partial^n F_2}{\partial z^n}(0,0) = 0, \ \forall n \ge 2.$$

There are two cases to consider.

Case 1. $\alpha_4 = 0$

We suppose that $\alpha_8 = 0$. In this case (7) and (8) become:

(10)
$$\frac{\partial F_1}{\partial w} = 1$$

(11)
$$\frac{\partial F_2}{\partial w} = -\frac{\beta_0}{2}F_2$$

then $F_1(w, z) = w$ and $F_2(w, z) = h(z)e^{-\frac{\beta_0}{2}w}$ where h is a holomorphic function. Taking (9) into account we obtain $F_2(w, z) = ze^{-\frac{\beta_0}{2}w}$, this corresponds to the case i).

We suppose now that $\alpha_8 \neq 0$. Let $\eta \in \mathbb{C}^*$ such that: $\eta^2 = \frac{1}{\alpha_8}$ a particular solution of the Riccati equation (7). Then it is easy to show that:

(12)
$$F_1(w,z) = \frac{1}{\gamma} t g \gamma w$$
, where $\gamma = \frac{1}{i\eta}$; $\gamma^2 = -\alpha_8$

Replacing $F_1(w, z)$ by its expression (12) into (8) and observing that $\frac{\alpha_8}{\gamma} = -\gamma$, then we obtain:

(13)
$$\frac{\partial F_2}{\partial w} = (-\frac{\beta_0}{2} + \gamma t g \gamma w) F_2$$

From (13) and (9) we obtain:

$$F_2(w,z) = ze^{-\frac{\beta_0}{2}w} \frac{1}{\cos \gamma w}$$
, this corresponds to the case ii).

Case 2. $\alpha_4 \neq \mathbf{0}$

We proceed analogously to the first case.

First we suppose that $\alpha_8 = 0$. From (7), (8) and (9) we obtain:

$$F_1(w,z) = \frac{i}{k_0} (e^{-ik_0w} - 1)$$

and $F_2(w, z) = z e^{-\frac{\beta_0}{2}w} e^{-i\frac{\alpha_0}{2}w}$ where $k_0 = 2\alpha_4$, this corresponds to the case iii).

Now, we suppose that $\alpha_8 \neq 0$. Let $\eta \in \mathbb{C}^*$ such that: $\alpha_8 \eta^2 + 2i\alpha_4 \eta =$

1, a particular solution of the Riccati equation (7).

We put: $k = 2(\alpha_8 \eta + i\alpha_4).$

If k = 0, in this case, we obtain from (7), (8) and (9):

$$F_1(w, z) = \frac{w}{1 + i\Gamma w}$$
 and $F_2(w, z) = \frac{ze^{-\frac{\beta_0}{2}w}}{1 + i\Gamma w}$

where $\Gamma = \alpha_4$, this corresponds to the case i).

If $k \neq 0$, then from (7) we deduce:

(14)
$$F_1(w,z) = \frac{1}{\delta e^{kw} - \frac{\alpha_8}{k}} + \eta ; \quad \delta \in \mathbf{C}^*$$

or also

(15)
$$F_1(w,z) = \frac{a-1}{k} \frac{e^{kw}-1}{ae^{kw}-1}, \text{ where } a = \frac{\delta k}{\alpha_8}$$

Replacing $F_1(w, z)$ by its expression (14) into (8) and observing that $\alpha_8\eta + i\alpha_4 = \frac{k}{2}$, then, we obtain:

(16)
$$\frac{\partial F_2}{\partial w} = \left(-\frac{\beta_0}{2} - \frac{k}{2} \frac{ae^{kw} + 1}{ae^{kw} - 1}\right)F_2$$

From (16) and (9) we deduce:

(17)
$$F_2(w,z) = (a-1)ze^{-\frac{\beta_0 w}{2}} \frac{e^{\frac{\kappa}{2}w}}{ae^{kw} - 1}$$

Now, we shall prove that $k \in {\mathbf{R}^*, i\mathbf{R}^*}$, $a \in \mathbf{C}^*$ and $a \neq 1$, $|a|^2 = 1$ if $k \in \mathbf{R}^*$ and $a \in \mathbf{R}^*$ if $k \in i\mathbf{R}^*$.

F is a local biholomorphism, so, $a \neq 1$. Since the image F(M) is contained in the unit sphere:

 $\{(w,z) \in \mathbb{C}^2 : Rew + |z|^2 = 0\}$ near (0,0), hence $ReF_1(w) = 0$ for Rew = 0, then we obtain:

(18)
$$Re\left(\frac{a-1}{k}\right) + \left(Re\left(\overline{a}\left(\frac{a-1}{k}\right)\right)e^{2vReik} - \left(\frac{a-1}{k} + a\left(\frac{a-1}{k}\right)\right)e^{ikv} - \left(\overline{a}\left(\frac{a-1}{k}\right) + \overline{\left(\frac{a-1}{k}\right)}\right)e^{-i\overline{k}v} \equiv 0 \text{ for } v \text{ near } 0.$$

First we prove that $k \in {\mathbf{R}^*, i\mathbf{R}^*}$. Assume, to the contrary, that $k \in \mathbf{C} \setminus {\mathbf{R}^*, i\mathbf{R}^*}$, then $Re(ik) \neq 0$ and $ik \neq \overline{ik}$. From (18) we obtain:

$$Re\left(\frac{a-1}{k}\right) = 0$$
 and $\frac{a-1}{k} + a\left(\frac{a-1}{k}\right) = 0.$

Thus, it follows that : $\frac{a-1}{k} + a \left(\frac{a-1}{k} \right) - 2Re\left(\frac{a-1}{k} \right) =$ $\frac{1}{\overline{k}}|a-1|^2 = 0$, then a = 1, this is a contradiction, so, $k \in \{\mathbf{R}^*, i\mathbf{R}^*\}$. From (18) we deduce: $|a|^2 = 1$ if $k \in \mathbf{R}^*$ and $a \in \mathbf{R}^*$ if $k \in i\mathbf{R}^*$

Third step: conclusion

We return to the second step. Let us first prove that $\beta_0 = 0$. According to the result of N. stanton [5] (theorem 1.7), it suffices to prove that $\varphi(z, \overline{z}) = \varphi(|z|^2)$, $(\beta_0$ is the coefficient of $|z|^4$).

There are four cases to consider. For example, we suppose that Fis given by ii), i.e. $F(w,z) = \left(\frac{1}{\gamma}tg\gamma w, \frac{ze^{-\frac{\beta_0}{2}w}}{\cos\gamma w}\right)$, where $\gamma \in \mathbf{C}^*$ and

 $\gamma^2 \in \mathbf{R}^*$.

So, $\gamma^2 \in \mathbf{R}^*$ then $\gamma \in \mathbf{R}^*$ or $\gamma = i\gamma_0, \ \gamma_0 \in \mathbf{R}^*$. Since the image F(M) is contained in the unit sphere:

$$\{(w,z) \in \mathbf{C}^2 : Rew + |z|^2 = 0\}$$
 near (0,0), we have

$$h(\varphi(z,\overline{z})) = |z|^2, \text{ where } h(x) = \begin{cases} \frac{1}{2\gamma} (\sin 2\gamma x) e^{-\beta_0 x} & \text{if } \gamma \in \mathbf{R}^* \\ \frac{1}{2\gamma_0} (sh2\gamma_0 x) e^{-\beta_0 x} & \text{if } \gamma = i\gamma_0 \end{cases}$$

 $\varphi(z,\overline{z})=h^{-1}(\left|z\right|^{2}) \ \ \text{near} \ \ 0 \ \text{and}$ Hence So, $\beta_0 = 0$ and

$$\varphi(z,\overline{z}) = \begin{cases} \frac{1}{2\gamma} \sin^{-1} \left(2\gamma |z|^2 \right) & \text{if } \gamma \in \mathbf{R}^* \\ \frac{1}{2\gamma_0} sh^{-1} \left(2\gamma_0 |z|^2 \right) & \text{if } \gamma = i\gamma_0 \end{cases}$$

By following the same way we obtain the other cases. To end the proof of the theorem it remains to show that:

$$\lambda = \frac{1}{2i} \frac{\partial b}{\partial z}(0,0)$$
 and $\alpha_5 = -\frac{\beta_0}{2}$.

Let's return to the indentities (5) and (6). From the first step we have:

$$\frac{\partial^n F_1}{\partial z^n}(0,0) = 0, \ \forall n \ge 0, \text{ then, from (5) we deduce that:}$$

 $\frac{\partial^{n+1}F_1}{\partial z^n \partial w}(0,0) = 0, \quad \forall n \ge 1$, So, in a neighbourhood fo the origin, we can write:

(19)
$$F_{1}(w,z) = w + \sum_{n\geq 2} a_{n}w^{n} + w^{2} \sum_{n\geq 1} A_{n_{2}}z^{n} + \sum_{q\geq 3} w^{q} \sum_{n\geq 1} A_{nq}z^{n}$$

(20)
$$F_{2}(w,z) = z + \sum_{n\geq 2} b_{n}w^{n} + w \sum_{n\geq 1} B_{n_{1}}z^{n} + w^{2} \sum_{n\geq 1} B_{n_{2}}z^{n} + \sum_{q\geq 3} w^{q} \sum_{n\geq 1} B_{nq}z^{n}$$

The idea to prove $\lambda = \frac{1}{2i} \frac{\partial b}{\partial z}(0,0)$ and $\alpha_5 = -\frac{\beta_0}{2}$ is to observe that the terms of degree less or equal to 4 on z, \overline{z} in the left hand-side of (1) are null.

First, we observe that from (5) and (19) we have:

(21) $A_{12} = -i\lambda$ and $a_2 = -i\alpha_4$ Next, from (6) and (20) we have:

(22)
$$b_2 = -i\frac{\lambda}{2}, \quad B_{21} = -2i\lambda \text{ and } B_{11} = \alpha_5 - i\alpha_4$$

We are now in order to collect the terms of degree less or equal to 4 on z, \overline{z} in the left hand-side of (1).

Let us write $b(z, \overline{z}) = \beta_0 + \beta_1 \overline{z} + \overline{\beta}_1 \overline{z} + \dots$

The terms of degree less or equal to 4 in $\frac{\partial \varphi}{\partial z}$ are: $\overline{z} + 2\beta_0 \overline{z} |z|^2 + 2\overline{\beta}_1 \overline{z}^2 |z|^2 + 3\beta_1 |z|^4$. Since $\frac{\partial \varphi}{\partial z}(0,0) = 0$, it suffices to collect the terms of degree less or equal to 3 on z, \overline{z} in $\left[\frac{1}{2}\frac{\partial F_1}{\partial w}oA + (\overline{F}_2 oA) \cdot \frac{\partial F_2}{\partial w}oA\right]$, which are: $\frac{1}{2} + (B_{11} - a_2) |z|^2 + (B_{21} - A_{12})z |z|^2 - 2b_2 \overline{z} |z|^2$.

the terms of degree less or equal to 4 on z, \overline{z} in

$$\frac{\partial \varphi}{\partial z} \left[\frac{1}{2} \frac{\partial F_1}{\partial w} oA + (\overline{F}_2 oA) . \frac{\partial F_2}{\partial w} oA \right]$$

are:

$$\frac{1}{2}\overline{z} + (\beta_0 + B_{11} - a_2)\overline{z} |z|^2 + (\overline{\beta}_1 - 2b_2)\overline{z}^2 |z|^2 + (B_{21} - A_{12} + \frac{3}{2}\beta_1) |z|^4$$

On the other hand, the terms of degree less or equal to 4 on z, \overline{z} in

$$\frac{1}{2} \left[\frac{1}{2} \frac{\partial F_1}{\partial z} oA + \left(\overline{F}_2 oA \right) \cdot \frac{\partial F_2}{\partial z} oA \right] \text{ are:}$$
$$\frac{1}{2} \overline{z} - \overline{z} \left| z \right|^2 ReB_{11} - \frac{1}{2} \overline{B}_{21} \overline{z}^2 \left| z \right|^2 + \frac{1}{2} \left(\overline{b}_2 - 2B_{21} + \frac{1}{2} A_{12} \right) \left| z \right|^4.$$

Finally, the terms of degree less or equal to 4 on z, \overline{z} in the left hand-side of (1) are:

$$(\beta_0 + B_{11} - a_2 + ReB_{11})\overline{z} |z|^2 + (\overline{\beta}_1 - 2b_2 + \frac{1}{2}\overline{B}_{21})\overline{z}^2 |z|^2 + (\overline{\beta}_1 - \frac{5}{4}A_{12} + \frac{3}{2}\beta_1 - \frac{1}{2}\overline{b}_2) |z|^4.$$

These terms are null, then:
(23) $\beta_0 + B_{11} - a_2 + ReB_{11} = 0$
d
(24) $\overline{\beta}_1 - 2b_2 + \frac{1}{2}\overline{B}_{21} = 0$

an

From (21), (22) and (23) we obtain: $\beta_0 = -2ReB_{11} = -2\alpha_5$ and

From (22) and (24) we obtain: $\lambda = \frac{\beta_1}{2i} = \frac{1}{2i} \frac{\partial b}{\partial z}(0,0)$. This ends the proof of the theorem.

Acknowledgements. We thank the professor François Berteloot (University Paul Sabatier, Toulouse-French) for his helpful discussion.

References

- E. Cartan., sur la géometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. Part I. Ann. Mat. 11, 17-90 (1932); or oeuvres complètes, vol.II, pp. 1231-1304. Paris: Gauthiers-Villars, (1953).
- [2] A. Chaouech., Auto-applications holomorphes propres des domaines polynômiaux rigides de C². Publicacions Matemàtiques, Vol.40, N1, pp. 41-66, (1996).
- [3] B. Coupet and A. Sukhov., Rigidity of algebraic CR structures and regularity of CR mappings, Preprint.
- [4] A. Isaev., Rigid spherical hypersurfaces. Complex variables 31, pp. 141-163, (1996).
- [5] N. Stanton., A normal form for rigid hypersurfaces in \mathbb{C}^2 . American Journal of Mathematics 113, pp. 877-910, (1991).
- [6] N. Stanton., Infinitesimal CR automorphisms of rigid hypersurfaces in C². Journal of geometric analysis, Vol. 1, N. 3, pp. 231-267, (1991).

Received : March, 2001.

Abdelaziz Chaouech

Université Abdelmalek Essaâdi Faculté des Sciences Département de Mathématiques & Informatiques B. P. 21 21 Tétouan Maroc

E-MAIL : chaouech@hotmail.com