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1. Introduction.

The graph to considered will be in general simple and finite, graphs
with a nonempty set of edges. For a graph G, V(G) denote the set
of vertices and E(G) denote the set of edges. The cardinality of V(G)
is called order of G and the cardinality of E(G) is called size of G. A
(p,q) graph has order p and size q. Two vertices u and v are called
neighbors if {u,v} is an edge of G. For any vertex v of G, denote by
Nv the set neighbors of v. To simplify the notation, and edge {x,y}
is written as xy (or yx). Other concepts used in this work and not
defined explicitly can be found in the references [1], [2], [3], [5], [9],
[12], [13].

2. Preliminaries

. Some essential concepts of this work are the following :

2.1. The Substitution [10], [11]

:
It assumes that G and K and two disjointed graphs by vertices. For

a vertex v in V(G) and a function s : Nv → V(K) it will be defined the
substitution of the vertice v by the graph K, as the graph M, denoted
by G(v, s)K, such that:

(1) V(M) = ( V(G) ∪ V(K)) - {v} and
(2) E(M) = (E(G) - {vx / x ∈ Nv}) ∪ {xs(x) / x ∈ Nv}.
The vertex v is said to be the substitution vertex by K in G under

the function s and this function is called substitution function. Figure
1 shows an example of substitution.
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Now let v1, ... , vn be the vertices of a graph G and H1, ... , Hn

a sequence of graphs with no common vertices among themselves or
with G. By Mk = Mk−1(vk,sk)Hk it will be denoted the graph which is
obtained by substitution of vertices of G by graphs Hi, 1≤ i ≤k, where
M0=G. In other words, M1 denotes a graph obtained by substitution
of only one vertex of G, M2 denotes a graph obtained by substitution
of only one vertex of M1, and so on. Note that every substitutes vertex
must belong to V(G). Figure 2 shows an example of M6.
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It can be said that an edge of the substitution Mp is an edge internal
[10] if it is denoted by si(x)si(y). The edge in Mp that is not edge
internal will be nominated edge external [9]. Let G be a graph without
isolated vertices. If each vertex v of G is substituted by a complete
graph with val(v) vertices, through an injective function, then it will
be said that the graph G has been expanded [9]. When each vertex of
a given G graph is substituted for a copy [3] of G through injectives
functions of substitution is obtained a special type of substitution
which will be called autosubstitution and denoted by G(G). If G is a
cycle then G(G) will be called autocycle. Figure 3 shows an example
of G(G) for G = C4.
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2.2. Realizable graph [2], [3]:

A (p,q) graph G is said to be realizable on R3 if it is possible to dis-
tinguish a collection of p distinct point of R3 that correspond to the
vertices of G and a collection of q curves, pairwise disjoint except pos-
sibly for endpoint, on R3 that correspond to the edges of G such that
if a curve λ corresponds to the edge e = uv, then only the endpoints
of λ correspond to vertices of G, namely u and v.

2.3. Discrete dynamical systems [6], [7], [12].

A discrete dynamical system is any set X together with a mapping
f : X → X. In this work X is always a set of graph. In the literature
[12], X must be some topological space such that f is continuous. An
orbit of f in G is any set of the form {G, f(G), ..., fn(G), ... }. A
graph G is an attractor point of f if there is some natural n > 0 with
G = fn(G) and G 6= f t(G) if t < n.
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3. Attractors Points

. The class of all the simple and finite graphs will be written down by
X [6] and an application X in X that takes a G graph in G (G) will
be denoted by w . It is of noticing that each element of the orbit of w
is obtained by substitution of each one of its vertices by G.

The realization of the graph G in R3 will be denoted by C(G).
If h : V (G)→ R3 is a injective function defined by h(v) = ṽ

and if V(G) = {v1, ..., vn}, then C(G) =
⋃

vivj∈E(G)
ṽiṽj, where ṽiṽj =

{ṽi − λ(ṽj − ṽi) / λ ∈ [0, 1]} . If E(G) = Φ and V (G) = {v1, ..., vn},
then C(G)= {ṽ1, ..., ṽn}.

Lemma 3.1: C(G) is compact in R3.

Proof :

(i) C(G) is bounded.
If V(G) = { v1, ..., vn}, then C(G)

⋃
vivj∈E(G)

. Let p ∈ R3− C(G) be,

then d(p,ṽi) > 0, i ∈ {1, ..., n}, where d denotes the usual distance in
R3. It is defined r = 2vi ∈ V (G)max d(p,ṽi) and consequently C(G)
⊂ Vr(p).

(ii) C(G) is closed.
Let p ∈ R3− C(G) be, then it is defined r ∈ R+ by d(p,C(G))

and consequently Vr(p) ⊂ R3− C(G). Therefore C(G) is closed •

Let Aλ be the set defined by {y ∈ R3/∃ x ∈ A, d(x, y) < λ}
where A ⊂ R3, λ ∈ R+. Is obvious that Aλ =

⋃
a∈A

, where Vλ(a) = {
x ∈ R3/d(x, a) < λ}.

Let A ⊂ R3 be a bounded set. The diameter of A, denoted
by diam(A), is the real number max

x,y∈A
, i.e., diam(A) = x, y ∈ Amax

d(x, y).
Moreover, if A,B,C ⊂ R3, then .d(A,B) ≤ d(A,C) + d(C, B).

From now on, by X it will be denoted the class of all the simple
and finite graphs.
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In the following proposition it will be constructed a distance in X.

Proposition 3.2: The function δ : X ×X → R defined by
δ(G1, G2) = inf{λ ∈ R+/C(G1) ⊂ (C(G2))λ∧C(G2) ⊂ (C(G1))λ},
is a distance on X.

Proof : If G,G1,G2,G3 ∈ X, then
(i) Since δ(G,G) = inf{λ ∈ R+/C(G) ⊂ (C(G))λ} and C(G) is

compact in R3, then δ(G,G) = 0.

(ii) Suppose δ(G1, G2) > 0.

Since inf{λ ∈ R+/C(G1) ⊂ (C(G2))λ ∧C(G2) ⊂ (C(G1))λ} >
0, then G1 6= G2.

Suppose .G1 6= G2

Since δ(G1, G2) = inf{λ ∈ R+/C(G1) ⊂ (C(G2))λ ∧ C(G2) ⊂
(C(G1))λ}, and C(G1) ⊂ (C(G1))λ , C(G2) ⊂ (C(G2))λ, then
(C(G1) ∪ C(G2)) ⊂ (C(G1))λ ∧ (C(G1) ∪ C(G2)) ⊂ (C(G2))λ ⇒

⇒ (C(G1) ∪ C(G2)) ⊂ ((C(G1))λ ∩ (C(G2))λ) ⇒

⇒ inf{λ ∈ R+/C(G1) ⊂ (C(G2))λ ∧C(G2) ⊂ (C(G1))λ} > 0 ⇒

(iii) By definition, δ(G1, G2) = δ(G2, G1).

(iv) δ(G1, G2) ≤ δ(G1, G3) + δ(G3, G2).

δ(G1, G2) ≤ δ(G1, G2)+diam(C(G3)) ≤ diam(C(G3))+diam(C(G1))+

+d(C(G1), C(G2)) + diam(C(G2)) ≤ diam(C(G3)) + diam(C(G2))+

+d(C(G1), C(G3))+d(C(G3), C(G2))+diam(C(G3))+diam(C(G1)) ≤

≤ δ(G1, G3) + δ(G3, G2).•
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Any important concepts are the following.

Neighborhood: A neighborhood of a graph G in X is the set
{H ∈ X / δ(H, G) < r}, r ∈ R+, and denoted by Vr(G).
That is Vr(G) = {H ∈ X/δ(H, G) < r}.

Open Set: A set A ⊂ X is open if for each G ∈ A, exits r ∈ R+

such that Vr(G) ⊂ A.

Closed Set : A set A ⊂ X is closed if X − A is open.

Adherent Graph : A graph G ∈ X is adherentgraph of set
A ⊂ X if for each r ∈ R+, Vr(G) ∩ A 6= φ. The set {G ∈ X / G is
adherent graph an A} is denoted by Ā.

Remark 3.3: .Ā =
⋂

F cerrado
A⊂F

F

Theorem 3.4: (X, δ) is a metric complete space.

Proof: By proposition 3.2 (X, δ) is a metric space. Let {Gi}i∈N
be a sequence in X.

(i) Suppose that {Gi}i∈N is a convergent sequence on graph G.

∀r ∈ R+, ∃nr ∈ N : ∀n ∈ N,n > nr : Gn ∈ V r
2
(G) ⇒

⇒ ∀n,m ∈ N,n, m > nr : δ(Gn, Gm) ≤ δ(Gn, G) + δ(G,Gm) <
r
2

+ r
2

= r ⇒

⇒ {Gi}i∈N is a Cauchy sequence.

(ii) Suppose that {Gi}i∈N is a Cauchy sequence, i.e.,

∀r ∈ R+, ∃nr ∈ N : ∀n,m ∈ N,n,m > nr : δ(Gn, Gm) < r.

For each n ∈ N, let Hn =
⋃

p∈N
C (Gn+p) be. According to lemma

3.1 each C(Gn+p) is compact, then Hn =
⋃

p∈N
C (Gn+p). As
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Hn = C(Gn) ∪ Hn+1, then Hn+1 ⊂ Hn. Let G be a graph so that
C (G) =

⋂
n∈N

Hn. Since {Hi}i∈N is decreasing, therefore C(G) 6= φ

and accordingly lim
n−→∞ C (Gn) = C (G). For him previously affirmed,

∀r ∈ R+, ∃nr ∈ N : ∀n ∈ N,n > nr : δ(Gn, G) < r., and therefore
{Gi}i∈N is a convergent sequence on graph G•

Now, the following lemma is fundamental

Lemma 3.5: If w is an application of X in X, defined by w (G)=
G(G), then w is a contraction in X.

Proof: Choose s ∈ [0, 1[ such that for each pair G1, G2 ∈ X ,
δ(w(G1), w(G2)) ≤ sδ(G1, G2). This s number could be defined by

means of an appropriate election of the metric in the realization of G
and w(G) in R3 .

In fact s = Sup
U,V ∈X

U 6=V

δ (w (U) , w (V ))

δ (U, V )
•

The existence of an attractor point for w is assured by the following
theorem whose demonstration could be found in [8].

Theorem 3.6: If M is a metric complete space and f : M → M is
a contraction, then xf = n →∞limfn(x) it exist and it is independent
of the election of x in M. Also, xf is the only fixed point of f.

Theorem 3.7: If G ∈ X, then the orbit G → w(G) → ... →
wk(G) → ...has a single attractor point Gw for w.

Proof: Applying lemma 3.5 and theorem 3.6.

3. The algorithm[4]. Observe that the described previously is of
deterministic character, due to this fact an deterministic algorithm in
order to calculate the attractor point of w. An analysis shows that if
G is a graph with p vertices then w(G) has p2 vertices and, in general,
wk(G) has pk vertices. The algorithm to be used generates the G
graph, after w(G) and so on. Figure 4 shows an example of an orbit
of w for G = K5.
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