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Abstract
Let H be a separable Hilbert Space. Denote by Hy = Lo(a,b; H)
the set of function defned on the interval a < x < b (—oo <
a < x <b<oo) whose values belong to H strongly measurable
[12] and satisfying the condition

b
| 1@ frde < o0

If the inner product of function f(x) and g(z) belonging to Hy
1s defined by

(o = [ U@, 9@z

then Hy forms a separable Hilbert space . We study separa-
tion problem for the operator formed by —y"” + Q(z)y Sturm-
Liouwille differential expression in Lo(—o0,00; H) space has
been proved where Q(x) is an operator which transforms at
H in value of z,self-adjoint,lower bounded and its inverse is
complete continous.
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1. Introduction

Let us consider

(1) —y" +Q(z)y

differential expression in H; = Lo(—o0,00; H). Let us assume
that Q(z), satisfies the following conditions as a self-adjoint operator
making transformation at H in each value obtained (—o0, 00) interval
of x

1) Q(z) operator family have the same definition set indepent of
X (—oo < o < 00) Let us show this set by D.

2) Let Q(z) > I and for Vf € D Q(z)f be a strong countinous
function in (—o0,00) and Q7 !(x) is completely continous in H for
Vf € (—o0,00)

3) When |z —y| < 2 let

HQ(z) — Q) @™ (W) <

0 > 0 is any number.

Let us form Ly operator by (2) expression.Let the definition set
D(Lg) of Ly be by the functions y(x) satisfying the following condi-
tions:

1) Let y(z) having compact support in  (—00,00),Q(z)y(x),y" (z)
be continious.

2) Let —y"(z) + Q(z)y(x) € La(—o00, 00; H).

We have formed

Lyy=—-y"+Q(x)y , yeD(Ly)

Since H which is the definition set of () is dense almost everywhere
and since Q(z) f is continuous at (—oo, 00) Vf € D definition set D(Ly)
of Ly operator forms a dense linear monifold almost everywhere of the
space Lo(—00,00; H). Lg is a symmetric operator bounded from below
in Ly(—o00,00; H) Let us assume that L which is a closure of Ly is a
self-adjoint operator.

In this work we study the seperability of the operator L. According
to the definition of seperability when y(x) is any function belonging
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to D(L) we will show that 3" (x) and Q(x)y(x) functions also belong
to Lo(—00, 00; H) space.

Let us show the resolvent of L operator in reguler A\ value (A is
complex number) by Ry = (L — AI)~!. According to the definition of
Resolvent, Ry operator is bounded operator in H; space.

Lemma 1: [9] If Q(z)R, operator is bounded in Hy, then L
operator is seperable in H.

Proof: Let y(z) be an arbitrary element belonging to D(L) then
(L=X)y=f fe€H.Wecanwritey = R)f and Q(x)y = Q(z)R\f
Since Q(z)R, is a bounded operator, Q(x)R)f € Hy i.e Q(x)y € Hye

Many books, by B. M. Levitan and I. S. Sargsyan [8], E. C. Titc-
march [11], M. Otelbayev [10], and papers by T.C.Fulton and S.A.Pruess
[6] belonging to singular Sturm-Liouville problem have been written.
English mathematicians W. N. Everitt and M. A. Giertz [3], [4], [5]
have proved that they introduced separation definition for operator L
consisting of expression (1) being real valued function @Q(x) with se-
ries papers and studies, and separation theorem of Q(z) for operator
L in various conditions. For the separability problem,there are works
by M. Bayramoglu and A. Abudov [1], K. Boymatov [2], A. Izmaylov
and M. Otelbayev [13], M. Otelbayev [14] and many mathematicians;
it has taken big place in the book [9] by the K. Minbayev and M.
Otelbayev and given many references in the book.

Localization method for seperability of L operator. This
method was firstly used by R.Ismagilov [7], and were developed by
M.Otelbayev [10]. We use that developed method.

Let us show the operator L; ,formed by the following differential
expression

(2) —y" 4+ Q(x)y . j-l<z<j+1

and

3) y(i-1)=y(+1)=0 j=0,4£1,£2, ... are integers
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boundary conditions in space Lo(j — 1,7+ 1; H). Each L; operator is
a positive defined self-adjoint operator.

Let w(x) be a function satisfying the following properties and dif-
ferentiable defined in (—o0, 00)

Let
1 |z <1
w(x) =

|z] > 1.5

and ¢;(z) = w(z — j).
Let us show

5o le—jl<1
vi(z) =
0 |[z—j|>1
It is seen easily that
(4) Y. Yi(z) =

j=—o0

Let f € Hi. A >0 let us show

Myf = i @i (Lj+ M)~y f

j=—o00

operator by M,.

(5) (L+X)Myf= > (L+X)pj(Lj+ )"y, f
j=—00

Since L + Al and L; + Al operators coincide in the interval (j —
1.5, j41.5) and ¢;(x) has compact support in the interval (j—1.5, 5+
1.5), we can write

(LJFM)MAJC—
_Z—foo {"0 i (L + D)~ ¢Jf+2%dm (Lj +AI)~ %‘f}
©) +Z L+ M) (L + M)y f

—BAf+Z ot f
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where

o

Baf = 30 |ei(Li+ M) f + 290};;(% AT

j=—0c0

If we consider ¢;1; = ¢; and condition (4), the expression (6) can be
written as

(7) (L+AMyf =T+ By)f

If we apply (L + AI)~! operator to both side of (7) we can write

(8) Myf=(L+X)""(I+B)f
Let (I+By) =g or f=(I+B)) 'g. Then (8) equality becomes
(9) M\(I+By)'g=(L+A)"g

Let us evalute the norm of B, operator transforming in H;. Let
J € H;

2
1B\ = FgmVﬂ@+ﬂ04wﬁ+2%£A@+An*wﬁ}
(10) < 8j§oo‘¢g (L +)\[)71wij2
+ 8j:§w‘<ﬁ}(%+>\1)l¢jf”2

In (10) equality it is considered that support of ¢} and ;) (k >
2) functions are not intersected. Let us evaluate the terms of the first
sum on the right side of (10)

~ 2 T
ot (A0 P < Sl = & [ Il
(11) et
02
= & [ W@
7j—1

Thus,

C2

G+1
LA < 5 [ 1@ e

Jj—1
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Second sum is

/ — 2 d —
L+ M) f | < Sl (L AD TP S

d j+1
< 2% /\]—12/ 2
< LA [ @) P
Let us prove the following lemma.

Lemma 2: |[|-L(L;+ )7 < c% (A > 0) inequality holds.

Proof: Let us consider y(7—1) =y(j+1) =0 by multiply with
y(x) both sides of equation —y” + Q(x)y = f . Then,

G+1 j+1
[y @@y yde = [ (f)da
j—1 7j—1

i+ j+1
[+ @) de = [ (7 )
If we consider in this inequality that @Q(x) = @*(z) > I and use the
Schwartz inequality, we obtain

L e (T ser)” (7 )

y(@) = (L; + M)~ f(x)

1/2

Since

then . 1 pih
J
ly@)I2; < 51012 = 55 [ If@)Pda

7j—1

Here L} = Ly(j — 1,7 + 1). If we consider

Jj+1 1 i+l
[P < 5 [ @)
J Jj—1

-1

d
I L. I_l

(L + AD 7 f,; <

d 1
H% ﬁ”f”Lg
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is obtain from the last inequality. Since f is the arbitary element of
L} we find

d 1
—(L; + \I)7? —
I L+ 207 <

Thus, the terms belonging to the second sum in (10) are

, d -1 2 _ € [T 2
(12) e (L AD P < S [ @R Az
dx A j—1
If we consider (10), (11), (12) inequalities we find
2 X it c X itt
IBIP < 5 X [ @S S [ 1)
j=—00 J—1 j=—o0 J—1

¢ = J+1
XY [ @R

. j—1

j=—o0

= 25 ([ @ipde+ [ @)

IA

j=—00
= Y [ W@+ Y [ If@Pd
)\ j=—00 J—1 )\ j=—00 7
2 oo 2
= 5 If@lPde = AP
Thus,
Cc
1By <25

where in big pozitive values of A, it is found that ||B,| is as small
as desired.Therefore, we can write

My = (L+ X))+ By)
formula as

(L+X)"' = My(I+ By

Lemma 3: If Q(z)M, is bounded, then L operator is separable.

Proof: According to Lemma 1, if Q(z)(L + AI)~! is bounded,
then L is separable. By the equation

(L+X)"' = My(I+By)™
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the proof of Lemma 3 is obtained.

Lemma 4: If sup ||Q(x)(L;+ M)~ < oo, then Q(x) M, operator
J

is bounded.
Proof:
- 2
1Q(x)MyfI? = .Z 0 (@) (L + M), f

< 1Y e+ an s
j=—o00
< 3 Jee@@san e

< sw (@@L + A7) 3 fus
= 24||fll,
Thus, |Q(x) My f]|*> < 2A]f||* . From this we find
1Q(z) M, < V24

and Lemma is proved. Let us show that ||Q(z)(L; +AI)™!| is finite.
When |z —y| <2 let us assume that

(13) Q) = Q)™ (W) <9
(6 = const. > 0) Let us consider the following boundary value problem
' +Qx)y = f

v~ 1) =y(i+1) =0

Let us write this problem as

(14) ="+ (=QU) + Q@))y + QUy = f

y(i—1)=y(G+1) =0
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Let
"+ Qy=v
and
Ay =—y" +Q0)y

Then v = Ajy . If we consider these, we can write (14) as

f=Ly = Ay+ Q) —Q()yl
v+ (Q(r) —QUNA v = (I+(Qx) — QUA;!

Let us evaluate the norm of operator (Q(z) — Q(j))A;" . For this
let us write the expression as

(Qx) — QUNAT" = (Q(z) — QU)QU)(QU)A;)
If we use the condition (13) we can write
(16) 1(Q(z) — QUNA; I < dllQ()A; |
Now let us prove the following Lemma.

Lemma 5: The set of Q( j)Aj_1 operator is smooth bounded with
1.

lQG)A; I <1

Proof: We will prove the Lemma by using opening formula ac-
cording to eigenvector of ()(j) operator.
—1 . N oA—1
Let us find A; " operator in order to show that [|Q(j)A; 7| <1
Let us consider

A7) Ay =—y"+Q(y=f(2)f(z) € Lo(j—1,j+1;H)

(18) y(j—1)=0 y(G+1)=0
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where Q7!(j) complete continous and therefore its spectrum is
pure-disjoint.
Let eigenvalues of Q(j) be

a1(f) < a(f) < ...
and the corresponding eigenvectors to these eigenvalues be

91(5), 92(4), ---

These form a base in H.

()
S hi()ge () hi(z) = (f(2), 9(j))

(19) (@)
S ues@ali) (o) = W), 00)

If we put these equations in (17) we find

(20) = 532 () s () + 35 o () we () e (3) = 5 o () g ()
— yp (@) + (e = hi(z)  k=1,2,...
> ye(@)gx () =0 , D yl@)gr(y) =0
k=1 r=j—1 k=1 r=j+1
S ul-Dal) =0 . S ul+ Dgl) =0
k=1 k=1

Thus, (17),(18) problems are transformed

(21) k(@) + a(f)yr = hi(z)

(22) w(i—1)=0 , w(i+1)=0
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The eigenvalues of these problems are

k272

4

A

The corresponding normalized eigenvectors are the following:

if 5 is odd;
km

=sin —=x
Y 2

if j even and k is odd;

km
Yk,; = COS 737
if k is even;
. km
Yk,; = S ?ZE

(23) Yki = D o

J+1
(hon) = | b))
Let us consider (23) in (19)

yj<as>=§:l(i

m=0

1
7}1,’ i i y
Am+ak(j)( ks Pm.j) P ,J> g (J)

(24) QAT f = Q())y; ()

TS (f: 1.)<hk,¢m,j>¢m,j) 00)

k=1 \m=0 Am + i (j

S (i 1)<hk,¢m,j)gpm,j> Q)gn(7)

k=1 \m=0 Am + i (j

Do PAG

k=1 Lm=0 )\m + Oék(j)

187
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Thus,

QU)f =Aj'f = Z Z)\Ojj(%(hk,SDm,j)(Pm,j 91(7)

Since  {@m;(z)}_, functions form a complete ortonormal system
in Ly(j —1,j+1) ,and the element {gx(j)};2, form a complete
ortonormal system in H  {@m;(2)gr(j)}_gsey forms a complete
ortonormal system in Hilbert space.

Since the system {¢n,;(2)gr(j)},,—g 4=y forms a complete ortonor-
mal system in Ly; = Ly(j — 1,7 + 1; H) if we use Parseval equation

we can write from (24)
2 k() >2 2
A h m,j
@) 1AM = 3 () )

Since ax(j) > 1, Amoj’:ék)(]) <1 and

QAT FIP < 32 37 (s pmy)[* = II£1?

k=1m=0

or

1QG)AT Il < II£1

that is [|Q(j)A4;"|| <1 . Thus, we have proved Q(j)A;' operators
are straight bounded.
According to Lemma, (16) becomes

H(Q(z) — Q()) A; 'l < 0
Let us assume that 6 <1 . Then from (15) we find
v=(I+(Qx) - QA f

Let
Ty = (I +(Qx) = Q1)) A; )™

The last expression becomes

v="T;f
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and we obtain
y(x) = A7V f
Thus

Qx)y ()| I(Q@)Q ((QU)A;T Tif)

1Q()Q ™ (7)lel|Z; /1l
1Q@)Q™ (lleall £l Lo,

If we consider here condition

I(Q(z) = QUNQ (I <0

(26)

VAVANI

then we find
1Q(x)Q™(j) = Il <o

Therefore, inequality (26) becomes

1Q(@)y(2) || < cal[ f|L,,

Here, if we consider y(z) = Lj’1 f, the last inequality takes the form of

Q@)L fI| < call £z,

If we consider, then we find

1Q(@)(L; + AT Il < el fl 2,

or

Q) (L; + M) < e

Thus, we have proved the theorem of separability.

Theorem: When the conditions 1) - 3) are satisfied, L operator
is separable in H;.
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