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Abstract

In this note we consider hyperelliptic-M-symmetric Riemann
surfaces, that is, hyperelliptic Riemann surfaces with a symme-
try with maximal number of components of fixed points. These
surfaces can be represented either by real algebraic curves or
by real Schottky groups. To obtain one of these in terms of the
other is difficult. In this note we proceed to describe explicit
transcendental relations between the different sets of parame-
ters these representations give. This can be used to obtain a
computer program which permits obtain numerical approxima-
tions of the algebraic curve in terms of real Schottky group and
viceversa.
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1. Hyperelliptic-M-Symmetric Riemann Surfaces

A closed Riemann surface S of genus g is called M-symmetric if it
has a reflection τ : S → S (that is, an anticonformal automor-
phism of order two with fixed points) with the maximal number of
components of fixed points, that is (g + 1) componets. We also
say that τ is a M-symmetry. If g = 0, 1, we say that S is also a
hyperelliptic-M-symmetric Riemann surface. For g ≥ 2, we say that
S is hyperelliptic-M-symmetric if it is both M-symmetric and hyper-
elliptic. If S is a hyperelliptic-M-symmteric Riemann surface S of
genus g ≥ 2, with hyperelliptic involution j : S → S and M-symmetry
τ : S → S, then the uniqueness of the hyperelliptic involution as-
serts that jτ = τj. For genus g = 0, 1 this is not true due to the
fact that hyperelliptic involution is not unique. Anyway, in that cases
we may choose j so that it commutes with τ . Let us denote by H
the group generated by j and τ , then H ∼= Z/2Z ⊕ Z/2Z. The
quotient surface S/j is the Riemann sphere on which the 2(g + 1)
branch values of order 2 belongs to a common circle L, the fixed
points of the induced reflection by τ . The quotient S/H is a closed
disc with exactly 2(g +1) branch values of order 2 on its boundary. A
hyperelliptic-M-symmetric Riemann surface S can be described by an
algebraic curve of the form y2 = P (x) = x(x−1)

∏2g−1
r=1 (x−ar), where

1 < a1 < a2 < · · · < a2g−1 < +∞. Also, this surface can be described
by a certain real Schottky group (as described in the next section) de-
pending on 2g − 1 real numbers 1 < θ1 < θ2 < · · · < θ2g−1 < +∞. In
this short note we find a relation between these two set of parameters
corresponding to the same surface S. This relation is explicitly given
and can be used to construct a computer program which permits to
obtain one set of parameters from the other at least numerically (it
means approximations). We must remark at this point that in [2] P.
Buser and R. Silhol have considered this type of surfaces of genus two
in order to find numerically an algebraic curve from a Fuchsian uni-
formization. We are replacing the Fuchsian group by a real Schottky
group so his techniques does not work in this case. The idea is then to
use Burnsides’s arguments [1] in order to write down an explicit base
of holomorphic one forms of the surface in terms of the uniformizing
real Schottky group.
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2. A Real Schottky Description of hyperelliptic-
M-symmetric Riemann Surface

Let us consider real numbers 1 < θ1 < θ2 < · · · < θ2g−1 < +∞ and set
σ1 be the reflection on the circle C1, orthogonal to the real line through
the points 1 and θ1, σk be the reflection on the circle Ck, orthogonal to
the real line through the points θ2k−2 and θ2k−1, for k = 2, ..., g, and let
σg+1(z) = −z be the reflection on the circle Cg+1 = {it : t ∈ R}∪{∞}.
Let us also consider σ(z) = z the reflection on the real line. The group
K generated by the reflections σ and σk, k = 1, ..., g + 1, turns out to
be a Kleinian group with connected region of discontinuity Ω, keeping
invariant the real line, with relations

σ2 = σ2
k = (σσk)

2 = 1,

and so that Ω/K is a closed disc with exactly 2(g + 1) branch values
of order two on its border (see figure 1).

Quasiconformal deformation theory and the fact that reflections
has only circles has set of fixed points on the Riemann sphere assert
that S/H = Ω/K, for suitable values of 1 < θ1 < θ2 < · · · < θ2g−1 <
+∞.

Now, the index two subgroup K+ of K consisting of the orien-
tation preserving transformations turns out to be a Kleinian group
(freely) generated by the involutions Lk = σkσ, k = 1, ..., g + 1. Each
of these conformal involutions has both fixed points on the real line
(see figure 2). We have that Ω/K+ uniformizes the surface S/j. The
index two subgroup J of K+ generated by the hyperbolic transfor-
mations Ak = Lg+1Lk = σg+1σk, k = 1, ..., g, turns out to be a real
Schottky group, with associated reflection σ, so that Ω/G = S (see
figure 3). We have that J is a group of Möbius automorphisms of the
hyperbolic plane H. Let us consider the oriented loops α1,..., αg, and
the oriented paths β1,..., βg, as shown in figure 4. The projection of
these oriented loops and arcs on the Riemann surface S = Ω/G is an
adapted symplectic homology basis. The reflection τ : S → S, which
is induced by σ : Ĉ → Ĉ, in the above adapted symplectic homology
basis, is represented by the following (extended) symplectic matrix

ρ(τ) =

[
−I 0
0 I

]
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Since ρ(τ)(Z) = Z, we have −Z = Z or equivalently

Re(Z) = 0

As a consequence of the results of Burnside [1], we get that the
holomorphic differentials

wk(z) =
1

2πi

∑

γ∈G

γ′(z)

γ(z)− A−1
k (∞)

dz, k = 1, ..., g,

form a lifting of the dual holomorphic one-forms on S respect to the
(projected) oriented loops α1,..., αg. The Riemann matrix of S, com-
puted in the above adapted symplectic homology basis, is then

Z =




z11 · · · z1g
...

...
...

z1g · · · zgg




where

zkr =
i

2π
Log


 ∏

γ∈G

|γ(−qr)− A−1
k (∞)|

|γ(qr)− A−1
k (∞)|


 ,

and

qr =

{
1 r = 1
θ2r−2 2 ≤ r ≤ g

2.1. An Algebraic Description

The surface S can be also represented by an algebraic curve of the
form

y2 = P (x) = x(x− 1)
2g−1∏

r=1

(x− ar)

where 1 < a1 < a2 < · · · < a2g−1 < +∞. In this case the hyperelliptic
involution j and the reflection τ are given by:

j =

{
x 7→ x
y 7→ −y

}
τ =

{
x 7→ x
y 7→ y

}

In [2] P. Buser and R. Silhol have considered this type of surfaces
to determine (for genus two) a relation between the algebraic curve,
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the Fuchsian uniformization and Riemann matrices. We proceed in
a similar fashion to obtain relations between the numbers θ1,..., θ2g−1

and the numbers a1,..., a2g−1, using the Riemann matrices. For this,
first we know there is a conformal 1-1 mapping f : D → H, where D
denotes the common domain inside the hyperbolic plane H bounded
by the circles C1,..., Cg+1. This map is unique if we ask the conditions
f(∞) = −∞, f(0) = 0 and f(1) = 1. In this way, we have that
ak = f(θk), for k = 1, ..., 2g − 1 (see figure 5). Using the principle
of reflection, we can extend f : D → H to a holomorphic branched
covering f : Ω → Ĉ with K+ as covering group. The image under this
branched covering map of the oriented loops αk and paths βk, k =
1, ..., g, is exactly the image under τ of the above projected homology
basis on S. Let us denote by α̂k the projection of αk and by β̂k the
projection of βk on the quotient S/H (see figure 6).

Since the roots of P (x) are given by 0, 1, a1, ..., a2g−1, we may con-

sider a square root
√

P (x) in the simply connected region C − (L0 ∪
L1 ∪ La1 ∪ · · · ∪ La2g−1), where

Lk = {k + iy : y ≤ 0}

For computations we must keep in mind the following facts:

(i) for x < 0, we have
√

P (x) = i
√
|P (x)|;

(ii) for 0 < x < 1, we have
√

P (x) > 0;

(iii) for 1 < x < a1, we have
√

P (x) = −i
√
|P (x)|;

(iv) for a1 < x < a2, we have
√

P (x) < 0;

(v) for a2 < x < a3, we have
√

P (x) = i
√
|P (x)|; etc

A basis of holomorphic one-forms are given by

ηk =
xk−1dx√

P (x)
, k = 1, ..., g.
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Let us consider the (invertible) matrix

A =




∫
α1

η1 · · · ∫
αg

η1

...
...

...∫
α1

ηg · · · ∫
αg

ηg




We have then that W = A−1E, where

W =




w1
...
wg


 and E =




η1
...
ηg




In particular, since we are using the same symplectic homology
basis, we must have that

Z = A−1B

where

B =




∫
β1

η1 · · · ∫
βg

η1

...
...

...∫
β1

ηg · · · ∫
βg

ηg




3. The Transcendental Relations

The computations done in the two above sections give the same Rie-
mann period matrix of the correspondient hyperelliptic-M-symmetric
Riemann surface S. We are in the presence of two (2g − 1)−tupels:

(θ1, ..., θ2g−1); for the uniformizing Real Schottky group

and
(a1, ..., a2g−1); for the respective algebraic curve

To obtain relations between these two sets of parameters we ob-
serve that (because of the choice of the region on which we are com-
puting the square root of P (x))
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∫

α1

ηr = 2
∫

α̂1

ηr = −2
∫ a1

1

xr−1dx√
P (x)

= −2i
∫ a1

1

xr−1dx√
|P (x)|

∈ −i(0, +∞)

∫

β1

ηr = 2
∫

β̂1

ηr = 2
∫ 1

0

xr−1dx√
P (x)

∈ (0, +∞)

and for k = 2, ..., g,
∫
αk

ηr = 2
∫
α̂k

ηr = (−1)k2i
∫ a2k−1
a2k−2

xr−1dx√
|P (x)| ∈ (−1)ki(0, +∞) ;

k = 2, ..., g

and (by direct inspection of figure 6)

∫

βk

ηr = 2




∫

β̂1

ηr +
k−1∑

j=2

(−1)k
∫ a2j−2

a2j−3

xr−1dx√
P (x)


 ∈ R

In this way, if we use the equality B = AZ, then we get ex-
plicit transcendental relations between the numbers θ1,..., θ2g−1 and
the numbers a1,..., a2g−1.

4. The classical Case: Genus One

In the case of genus one Riemann surfaces the situation is very sim-
ple. In fact, each Riemann surface S of genus one is represented by a
parameter η ∈ H. That is, S = H/Γη, where Γη is generated by the
translations A(z) = z + 1 and Bη(z) = z + η. A Schottky group Gη

uniformizing the same surface is generated by the loxodromic trans-
formation Cη(z) = e2πηz. An algebraic curve C representing S is given
by

y2 = 4x3 − g2(η)x− g3(η),

where

g2(η) = 60
∑

γ∈Γη−{I}

1

γ(0)4

and

g3(η) = 140
∑

γ∈Γη−{I}

1

γ(0)6
.
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As consequence of this note, we can also see this situation (for the
case of genus one surfaces with a reflection with two components of
fixed points) as follows. The algebraic curve of S has the form

y2 = x(x− 1)(x− a)

where a > 1, and the real Schottky group depends on a real number
θ > 1. In this case, we get the equality

i

2π
Log


 ∏

k∈Z

|Ak(−1)− θ+1
2
|

|Ak(1)− θ+1
2
|


 =

i
∫ 1
0

dx√
x(x−1)(x−a)∫ a

1
dx√

x(x−1)(a−x)

where

A(z) =
−(θ + 1)z + 2θ

2z − (θ + 1)

Let us consider

Q(z) =
z −√θ

z +
√

θ
= w

and set

λθ = Q(−θ) =
1 +

√
θ√

θ − 1
> 1

Then Q(1) =
−1

λθ

, Q(−1) = −λθ, and Q(θ) =
1

λθ

.

If we set B(w) = Q(A(Q−1(w))) = λ2
θw, then the surface S is also

uniformized by the real Schottky group generated by B. It follows then
that S is uniformized by the group Fθ = 〈E(u) = u+1, F (u) = u+ηθ〉,
where

ηθ =
iLogλθ

π
and in particular,

Logλθ

π
=

1

2π
Log


 ∏

k∈Z

|Ak(−1)− θ+1
2
|

|Ak(1)− θ+1
2
|




In this way, we have the most direct relation between a and θ as

Log

(
1 +

√
θ√

θ − 1

)
=

π
∫ 1
0

dx√
x(x−1)(x−a)∫ a

1
dx√

x(x−1)(a−x)
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Example. For instance, if we consider a = 2, then the torus repre-
sented by the curve

y2 = x(x− 1)(x− 2)

admits an extra automorphism of order 4, given by A(x) = 2/(2− x).
This corresponds to the parameter η = i in the hyperbolic plane. The
equality above then asserts that

θ ≈ 1.18882...

5. Genus Two Case

Let us consider a symmetric situation in order to make the computa-
tions more precise. For this we consider the one real parameter family
of hyperelliptic-M-symmetric Riemann surfaces of genus 2 with an
extra automorphism W of order 3 which also commutes with the re-
flection τ . These surfaces correspond to the algebraic curves defined
by a1 = a2−a+1

a
, a2 = a and a3 = 1 − a + a2, for a > 1, where

W (x) = x−a3

x−a2
. At the level of the real Schottky groups they corre-

spond to have θ1 = 1−θ+θ2

θ
, θ2 = θ and θ3 = 1− θ + θ2, for some value

θ > 1. Similarly, the above automorphism W of order 3 can be seen
in the Schottky group as W (z) = (z − θ3)/(z − θ2). The action of
the automorphism W at the level of the symplectic homology basis
we have considered is given by

W =




0 −1 0 0
1 −1 0 0
0 0 −1 −1
0 0 1 0




The Riemann period matrix Z is then of the form

Z =
ti

2

[
2 1
1 2

]

for some t > 0. From the real Schottky group we have the relation

1

2π
Log


 ∏

γ∈G

|γ(−1)− θ1+1
2
|

|γ(1)− θ1+1
2
|


 = t
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The relation with the parameter a is given by

t = −i

∫
α2

η2

∫
β1

η1 −
∫
α2

η1

∫
β1

η2∫
α2

η2

∫
α1

η1 −
∫
α2

η1

∫
α1

η2

In particular, we obtain the relation

1

2π
Log


 ∏

γ∈G

|γ(−1)− θ1+1
2
|

|γ(1)− θ1+1
2
|


 = −i

∫
α2

η2

∫
β1

η1 −
∫
α2

η1

∫
β1

η2∫
α2

η2

∫
α1

η1 −
∫
α2

η1

∫
α1

η2

Computationally, we evaluate the left hand side of the above equal-
ity just by using words of lenght at most certain L > 0 in G. For the
right hand side, there are numerical methods to obtain approximate
values.

Example. Let us consider the following particular case. For a =
2, the above values a1 = 3/2, a2 = 2 and a3 = 3, correspond to
the hyperelliptic-M-symmetric closed Riemann surface of genus two
admitting an extra automorphisms of order 6 (this is also described
by the algebraic curve y2 = x6 − 1). The automorphism of order 6 is
given by T (x) = 3/(3−x) and its square is W . At the level of the real
Schottky group, this corresponds to some value θ1 = 1−θ+θ2

θ
, θ2 = θ

and θ3 = 1− θ + θ2, for some value θ > 1.

The matrices A, B and Z in this case give (numerical approxima-
tions):

A =

[
−2.52083i 1.84538i
−3.19628i 4.3662i

]

B =

[
1.84537 −0.675454
1.16992 −3.19628

]

Z = A−1B =

[
1.1547i 0.57735i

0.57735i 1.1547i

]

This Riemann period matrix is known to be exactly

Z =
i√
3

[
2 1
1 2

]
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that is, t = 2√
3
. Now, to obtain the value (numerical approximation)

of θ we need to consider the equation

1

2π
Log


 ∏

γ∈G

|γ(−1)− A−1
1 (∞)|

|γ(1)− A−1
1 (∞)|


 = 1.1547... =

2√
3

For this, we proceed to compute the left hand for words of G of
lenght less than certain L > 0. In this way, we obtain an equation on
θ to be pluged into Mathematica. For instance, using L = 3 we obtain
that θ ≈ 1.87...

6. Ending Remark.

The above two examples can be generalized for every genus g ≥ 3. In
fact, we use one real parameters of surfaces which are hyperelliptic-
M-symmetric Riemann surfaces of genus g which admit an extra au-
tomorphism W of order g + 1 which commutes with the reflection
τ . These families are codified by a parameter a > 1 in the sense of
the algebraic curves and by a parameter θ > 1 in the sense of real
Schottky groups. These families contains a unique parameter a and θ
corresponding to the Riemann surface with an square root automor-
phism of W ; such a surface is described also by the algebraic curve
y2 = x2(g+1) − 1. Then, using the above equalities, we are able to
find (in a similar way) numerical approximations of the values of a
and θ corresponding to such a surface. In this case, we have that the
automorphism W of order g + 1 at the level of the algebraic curve is
given by

W =
1√

(1− a1)(1− a2)(a2 − a1)

[
a2 − a1 a1(1− a2)
a2 − a1 1− a2

]

where

a1 =
4(1− a2)a2 cos2( π

g+1
)− 1

4(1− a2) cos2( π
g+1

)− 1

The case a1 = 2− 1
a2

corresponds to the symmetric case

y2 = x2g+2 − 1
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At the level of he real Schottky group the form of W is equivalent just
by replacing the letter “a” by the letter “θ” in the above formulae.
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