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1. Introduction

The propagation of time-harmonic elastic waves

vin(x) = −σ−2grad div [p0 exp(i σL d · x)]
+σ−2 rot rot [p0 exp(i σT d · x)]

by impenetrable bounded obstacle D ⊂ R3 with Ω = R3\D its com-
plement in R3 and polarization p0 ∈ R3 leads to exterior boundary
value problems for the system

b2 ∆v + (a2 − b2) grad (div v) + σ2 v = 0,

here σ ∈ C is the frequency of the incident wave vin and v = vin+vsc,
where v =(v1, v2,v3), vsc = (vsc

1 , vsc
2 , vsc

3 ), denote the displacement of
the refracted and scattered wave, respectively.

The total wave v it is required to fulfill the Kupradze-Sommerfeld
radiation conditions

{
vL(x) = o(1), as |x| → ∞,

∂
∂ |x|v

L(x)− i σL vL(x) = o( 1
|x|), as |x| → ∞,

(1.1)

and {
vT (x) = o(1), as |x| → ∞,

∂
∂ |x|v

T (x)− i σT vT (x) = o( 1
|x|), as |x| → ∞,

(1.2)

uniformly for all directions x̂ = ( 1
|x|) x, where v = vL +vT it is a sum

of an irrotational (lamellar) vector vT and a solenoidal vector vL.
Here b2 = µ and a2 = λ + 2 µ, where λ, µ are the Lamé coeficientes
of the Elastycity Theory, σL ∈ C is the longitudinal (dilational) wave
number, σL = σ

b
and transverse (shear) wave number σT = σ

a
∈ C,

with a2 > (4
3
) b2 > 0.

For a soft obstacle the unknown scattered wave vsc = v − vin

has to satisfy the Dirichlet boundary condition vsc = − vin on ∂Ω
whereas for hard obstacle vsc has to satisfy a Neumann boundary
condition Tnv

sc = −Tnv
in on ∂Ω, where n = (n1, n2, n3) denotes the

unit outward normal to the boundary ∂Ω and Tn is the stress vector
calculated on the surface element

Tn v = 2 b2 ∂ v

∂ n
+ (a2 − 2 b2) n div v + b2 n× rot v,
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where ∂ v
∂ n = (∂ v1

∂ n , ∂ v2

∂ n , ∂ v3

∂ n ) is the derivative with respect to the outer
normal n on ∂Ω.

Problems involving the propagation of time-harmonic elastic waves
as above arise naturally in many situations, particularly those involv-
ing fluid–structure interaction (see for instance [7, 14] and [16]) and
in the existence (localization) of the scattering frequencies (see for
instance [3, 4] and [17]) which are problems of significant interest.

The existence of solutions for the exterior boundary value problems
above based on boundary integral equations, appear, for example in [1,
2, 11, 16] and by other methods in [7, 8], and references therein. Here,
the basic results needed to devolp efficient tools for inverse scattering
problems are provided. This is of great practical interest (see for
instance [9] and [10]).

In this work we consider the scattering of time-harmonic plane
elastic waves in a homogeneus isotropic medium at an obstacle D. We
hence present a simple and short proof of the existence of solutions
for the exterior boundary value problem associated with the reduced
system of elastic wave equations

b2 ∆v(x) + (a2 − b2) grad (div v(x)) + σ2 v(x) = h(x),
x ∈ Ω

(1.3)

together with the Dirichlet boundary condition

v(x) = 0, x ∈ ∂Ω(1.4)

and the Kupradze–Sommerfeld radiation condition (1.1) and (1.2),
respectively. In (1.3) h = (h1, h2,h3) is a given function and σ ∈ C.
To this end, we use a tecnique similar to the one discussed in ([18],
p.p, 35-36) and [5, 6], in this sense our approach is new.

Outline of the work: In section §2 we present the formulation of
the main result. In section §3 we give the proof the main theorem.
Finally, in the section §4 we present the meromorphic extension of the
solution for every σ ∈ C with =(σ) ≤ 0.

We shall use the standart notation: Here and throughout this work
we assume that Ω = R3\D is the exterior of D with smooth boundary
∂Ω. Also, we denote by grad the gradient, by rot the rotational vector,
∆v = (4v1, 4v2, 4v3), where 4 is the usual Laplacian operator
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and div the divergence. For any positive integer p and 1 ≤ s ≤ ∞
we consider the Sobolev space W p,s(Ω) of (classes of) functions in
Ls(Ω) which together with their derivatives up to order p belong to
Ls(Ω). The norm of W p,s(Ω) will denoted by ‖·‖p,s in the case s = 2

we write Hp(Ω) instead of W p,2(Ω). If E is a vector space then we
denoted [E]3 = ⊕3

i=1E and the norm of a vector v wich belong to
[E]3 will be denoted by ‖·‖[E]3 . C∞

0 (R3) denotes the space of all C∞

functions defined on R3 with compact support. If E is a Banach space,
we consider the space B(E, E) of linear bounded operators in E. If
h :R3 → R3, h = (h1,h2, h3) then we denoted by supp h = ∩3

i=1 supp
hi the support of h and

∫

R3
h dx =

(∫

R3
h1 dx,

∫

R3
h2 dx

∫

R3
h3 dx

)
.

If R > 0 then B(R) is the ball centered at zero and radius R. Also,
we denoted by

∂B(R) =
{
x ∈ R3 : |x| = R

}

and by [L2
R(R3)]3 the space

[L2
R(R3)]3 =

{
v ∈ [L2(R3)]3 : v = 0, if |x| ≥ R

}
.

With all these notations we stablish now our main theorem

2. Formulation of result

In this section we shall establish the existence of solutions for the
systems of elastic waves




b2 ∆v(x) + (a2 − b2) grad(div v(x)) + σ2 v(x) = h(x), x ∈ Ω,
v(x) = 0, x ∈ ∂Ω,
Radiation condition.

This will be done based on [5, 6]. Our starting point is the following
lemma whose proof appears in [6, 11].

Lemma 1. Let σ ∈C with =(σ) > 0 and take v ∈ [H2(R3)]3 solution
of system

b2 ∆v(x) + (a2 − b2) grad (div v(x)) + σ2 v(x) = 0, x ∈ R3,
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satisfying the Kupradze–Sommerfeld radiation condition for a2 > (4
3
)

b2. Then we have
∫

|x|=R
v ·Tnv ds = 0, as R →∞.

Lemma 2. Let σ ∈C with =(σ) > 0. Then, for any g ∈ [L2
R(R3)]3,

the system

b2 ∆v(x) + (a2 − b2) grad (div v(x))
+σ2 v(x) = g(x), x ∈ R3,

(2.1)

admits a solution v ∈ [H2(R3)]3 and v = A(σ) g, where

A(σ) : [L2
R(R3)]3 → [H2(R3)]3

is a linear continuous operator. In particular, if v1and v2 solves
(2.1) and satisfies the Kupradze–Sommerfeld radiation condition, then
v1(x) = v2(x) for all x ∈ R3. See [5] for the proof.

Let f ∈ [L2(Ω)]3 and take f0 given by

f0(x) =

{
ψ(x) f(x), if x ∈ Ω,
0, if x ∈ D,

(2.2)

where ψ is the function

ψ(x) =

{
1, if x ∈ ΩR,
0, if x /∈ ΩR,

(2.3)

and ΩR = {x ∈ Ω : |x| < R} .

Let σ ∈C be such that =(σ) > 0 and v0 ∈ [H2(R3)]3 a solution of
the system

b2 ∆v0(x) + (a2 − b2) grad(div v0(x)) + σ2 v0(x) = f0(x), x ∈ R3.
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Lemma 3. The system of elastic waves





b2 ∆w(x) + (a2 − b2) grad(div w(x)) = 0, x ∈ ΩR,
w(x) = −v0(x), x ∈ ∂Ω,
w(x) = 0, x ∈∂B(R)

has a (unique) solution on [H2(ΩR)]3. See [6] for the proof.

Next we summarize the well known result given, for example in
[15].

Lemma 4. Let w ∈ [H2(B(R))]3 be a solution of the system

b2 ∆w(x) + (a2 − b2) grad (div w(x)) = 0, x ∈ B(R)

and
w(x) = 0, x ∈ ∂B(R).

Then w(x) = 0 for every x ∈ B(R). See [15] or [6] for the proof.
At this point, we derive from the above lemmas the proof the main

theorem.

Theorem 1. Let σ ∈ C with =(σ) > 0. Then, for any h ∈ [L2(Ω)]3

with supp h ⊂ Ω R the system of elastic waves





b2 ∆v(x) + (a2 − b2) grad(div v(x)) + σ2 v(x) = h(x), x ∈ Ω,
v(x) = 0, x ∈ ∂Ω,
Radiation condition

(2.4)
has a unique solution v ∈ [H2(Ω)]3. Furthermore, v can be extended
in a meromorphic way to σ ∈C with =(σ) ≤ 0 except, for some
countable number of poles in Ξ = {σ ∈ C : =(σ) ≤ 0}.

3. Proof of theorem 1

The proof of Theorem 1 is divided into two parts.
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Proof. Uniqueness: Let v be the difference of two solutions v1

and v2 of (2.4), then v satisfies (2.4) with h = 0. Now, let R > 0 be
such that ∂B(R) is contained in Ω and denoted by
ΩR = {x ∈ Ω : |x| ≤ R}, the Bettis-Green formula (see for instance
[11] or [13]) yields to

∫

ΩR

v · ∆̃vdx +
∫

ΩR

e(v,v)dx =
∫

∂ΩR

v · Tnv ds,

where

e(v,v) =
3a2 − 4b2

3
|divv|2+b2

2

∑

p6=q

∣∣∣∣∣
∂vp

∂xq

+
∂vq

∂xp

∣∣∣∣∣
2

+
b2

3

3∑

p,q=1

∣∣∣∣∣
∂vp

∂xp

− ∂vq

∂xq

∣∣∣∣∣
2

and
∆̃v = b2 ∆ v + (a2 − b2) grad(div v).

Recall that ∆̃v = −σ2 v on ΩR ⊂ Ω and ∂ΩR = ∂B(R) ∪ ∂Ω. A
direct calculation shows that

−σ2
∫
ΩR
||v||2dx +

∫
ΩR

e(v, v)dx =
∫
∂B(R) v · Tnvds

− ∫
∂Ω v · Tnvds.

(3.1)

Now, using (3.1) toghether with Lemma 1, the homogeneus bound-
ary condition and passing to the limit as R →∞ we get

∫

Ω
e(v, v) dx = σ2

∫

Ω
||v||2dx,

so

∫

Ω
e(v, v)dx = [(<(σ)2 −=(σ)2)− 2i<(σ)=(σ)]

∫

Ω
||v||2dx.(3.2)

From (3.2) we obtain

0 = 2<(σ)=(σ)
∫

Ω
||v||2dx(3.3)

and ∫

Ω
e(v, v)dx = [<(σ)2 −=(σ)2]

∫

Ω
||v||2dx.(3.4)

Thus, we have two possibilities
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(a) If <(σ) = 0, from (3.4) we get

∫

Ω
e(v, v)dx = [<(σ)2 −= (σ)2]

∫

Ω
||v||2dx.

With the formula above, =(σ) > 0 and

∫

Ω
e(v, v)dx ≥ 0,

it is easy to see that v = 0 on Ω. Similarly, (b) If <(σ) 6= 0, taking
into account the fact that =(σ) > 0, from (3.3) we obtain

∫

Ω
||v||2dx = 0.

Hence, v = 0 on Ω. Therefore, (a) and (b) implies v1 = v2. And
the uniqueness is proved for all σ ∈ C with =(σ) > 0.

Existence: Now we study the existence of solutions for the system
(2.4), to this end, we assume that ∂Ω is sufficiently regular for the
use of the Betti-Green formula. Let R > 0 and R0 > 0 be such
that B(R0) ⊂ D, ∂Ω ⊂ B(R). We start with an arbitrary function
ζ ∈ C∞

0 (R3) satisfying
(ζ1) supp ζ ⊂ B(R)/B(R0),
(ζ2) ζ = 1, in a neighborhood of ∂Ω

and
(ζ3) ζ = 0, if |x| = R.

In order to analyze our existence problem we introduce here the
following function

v(x) = v0(x) + ζ(x) ũ(x), x ∈ R3,(3.5)

where ũ is the Calderón extension to R3 of a (see for instance [12],
Theorem 5.3.1) solution w ∈ [H2(ΩR)]3 of the system (see Lemma 3)

(w1) b2 ∆w(x) + (a2 − b2) grad(div w(x)) = 0, x ∈ ΩR,
(w2) w(x) = −v0(x), x ∈ ∂Ω

and
(w3) w(x) = 0, x ∈ ∂B(R).
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Here, v0 satisfies (see Lemma 2) the differential equations

b2 ∆v0(x) + (a2 − b2) grad(div v0(x)) + σ2 v0(x) = f0(x), x ∈ R3

and the Kupradze–Sommerfeld radiation condition. From (3.5) and
(w2) we obtain

v(x) = v0(x) + w(x) = 0, x ∈ ∂Ω.

Furthermore, it is easy to see from (ζ1) and (3.5) that v(x) =
v0(x), for every x ∈ R3/B(R). Now, the function v0 satisfies the
Kupradze–Sommerfeld radiation condition (1.1) and (1.2). In view
of this, the function v has this property. Thus, for any h ∈[L2(Ω)]3

with supp h ⊂ ΩR and σ ∈C with =(σ) > 0 the function v(x) =
v0(x) + ζ(x) ũ(x), x ∈ R3, will be a solution of the system (2.4) if
only if, for every x ∈ Ω, we obtain

h(x) = b2 ∆v(x) + (a2 − b2) grad(div v(x)) + σ2 v(x) =

= f0(x) + b2 ∆ ζ(x)ũ(x) + (a2 − b2) grad(div ζ(x)ũ(x)) + σ2 ζ(x)ũ(x).
(3.6)

It is simple to see from (ζ1), (ζ3) and (2.3) that (3.6) is valid on
the set ΩR = {x ∈ Ω : |x| ≥ R}, since supp h ⊂ ΩR. Thus,

v(x) = v0(x) + ζ(x)ũ(x), x ∈ R3,

well be solution of the system (3.6) if only if, for every x ∈ ΩR, we
have

h(x) = f(x) + b2 ∆ ζ(x)w(x) + (a2 − b2) grad (div ζ(x) w(x))+

+ ζ(x) w(x).
(3.7)

Applying to div w the operator grad, on ΩR we find

rot (rot w(x)) = −∆ w(x) + grad (div w(x)).

Now, w on ΩR solves

b2 ∆ w(x) + (a2 − b2) grad (div w(x)) = 0.
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Therefore, the ansatz (3.7) takes the form

h = f + Gζ(σ)w,(3.8)

where Gζ(σ) is a continuous linear operator

Gζ(σ) : [H2(ΩR)]3 → [H1(ΩR)]3(3.9)

given by the formula

Gζ(σ)w = (a2 + b2)[(grad ζ · grad) w] + [b24ζ + σ2ζ] w+

+(a2 − b2)[(w · grad) grad ζ + grad ζ × rot w + grad ζ div w].
(3.10)

On the other hand, the solution operator P (σ) associated with
the system (w1-w3) above, that is, P (σ) g = w, where g = −v0 ∈
[H1/2(∂Ω)]3, is well defined, of course, P (σ) is a continuous linear
operator

P (σ) : [H1/2(∂Ω)]3 → [H2(ΩR)]3,(3.11)

and depends analytically from σ ∈ C, because v0 has this property.
In a similar fashion, the trace

Λn : [H2(ΩR)]3 → [H1/2(∂Ω)]3,(3.12)

is a continuous linear operator. Thus, with this operators and taking
into account the fact that v0= v0|ΩR

on ΩR, (3.8) can be written in
the form

h = f −Gζ(σ)P (σ)ΛnFR(σ)Ã(σ)f ,(3.13)

where FR(σ)v0= v0|ΩR
,

FR(σ) : [H2(R3)]3 → [H2(ΩR)]3(3.14)

is a restriction, continuous linear operator. Also,

Ã(σ) : [L2(ΩR)]3 → [H2(R3)]3,(3.15)

is a continuous linear operator given by the compotition
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Ã(σ)r = A(σ)Mψr, where A(σ) it is the solution operator of the sys-
tem b2 ∆v0(x)+ (a2− b2) grad(div v0(x))+σ2 v0(x) = f0(x), x ∈ R3,
(see Lemma 2) and Mψ it is the multiplication operator

(Mψr)(x) =

{
r(x), if x ∈ ΩR,
0, if x /∈ ΩR.

Note that

‖Mψr‖2
[L2(R3)]3 = ‖ψr‖2

[L2(R3)]3 =
∫

R3
|ψ|2||r||2dx =

∫

ΩR

|ψ| ||r||2dx < ∞.

Therefore, Mψ is a continuos linear operator
Mψ : [L2(ΩR)]3 → [L2

R(R3)]3, since, Mψr =0, if |x| ≥ R. Thus,
Mψr ∈ [L2

R(R3)]3 for every r ∈[L2(ΩR)]3. Let Bζ(σ)be the operator
defined by

Bζ(σ)f = −Gζ(σ)P (σ)ΛnFR(σ)Ã(σ)f .(3.16)

Thus, (3.13) can be written as

h = f + Bζ(σ)f .(3.17)

From these considerations we see that the theorem will be proved if:

(I) The set of operators {Bζ(σ)}, σ ∈C with =(σ) > 0 given in
(3.16) is a family of compact operators of [L2(ΩR)]3onto itself,
and

(II) the homogeneous equation f + Bζ(σ)f = 0, has only the trivial
solution.

Proof.
(I): We denote by Sg ⊂ [H2(ΩR)]3 the space (g = −v0 ∈ [H1/2(∂Ω)]3)

of solutions of the system





b2 ∆w(x) + (a2 − b2) grad(div w(x)) = 0, x ∈ ΩR,
w(x) = −v0 (x) , x ∈ ∂Ω
w(x) = 0, x ∈ ∂B (R).
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Now, the definitions for Gζ(σ), P (σ), Λn, FR(σ), Ã(σ), given in
(3.10), (3.11), (3.12), (3.14) and (3.15), the ansatz (3.16) together with
the Rellich type compactness theorem (i : [H1(ΩR)]3 → [L2(ΩR)]3)
yield to (II). 2

We are now ready to prove (II).

Proof. Take f ∈ [L2(ΩR)]3 such that

f + Bζ(σ)f = 0.(3.18)

Then, the equation (3.17) yields to h = 0. Therefore, the funcion
v is solution of homogeneus system





b2 ∆v(x) + (a2 − b2) grad(div v(x)) + σ2v(x) = 0, x ∈ Ω,
v (x) = 0, x ∈ ∂Ω
Radiation condition.

This implies that v = 0 on Ω (see uniqueness above). Hence, in
particular we obtain

− ζ ũ = v0, on Ω.(3.19)

Now, from (3.19) we obtain v0 = 0 on ΩR = {x ∈ R3 : |x| > R}, since
supp ζ ⊂ B(R)/B(R0). Moreover, ζ = 0on ∂B(R) implies v0 = 0 on
∂B(R). We now introduce on B(R) the following function

ϑ(x) = χ(x)v0(x) + (1− χ(x))ũ(x),(3.20)

where

χ(x) =
1, if x ∈ D,
0, if x ∈ ΩR . ∪ ∂B (R) .

We note that ϑ ∈ [H2(B(R))]3. Furthermore, ϑ(x) = v0(x),
x ∈ D. Now, in a neighborhood of D we have f0(x) = 0, since ψ(x) = 0
when x /∈ ΩR. This yields to b2 ∆ϑ (x) + (a2 − b2) grad(div ϑ(x)) =
−σ2v0(x), if x∈ D. Also, ϑ(x) = ũ(x)(x) = w(x), if x ∈ ΩR. There-
fore, b2 ∆ϑ (x) + (a2 − b2) grad(div ϑ(x)) = 0, here. Note also that
ϑ(x) = 0 on ∂B(R), because v0(x) = ũ(x) = 0 on ∂B(R). Now, using
the Bettis-Green formula on B(R), we obtain

∫

B(R)
ϑ · ∆̃ϑdx +

∫

B(R)
e(ϑ, ϑ)dx = −

∫

∂ B(R)
ϑ ·Tnϑ ds = 0,
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ie., ∫

B(R)
e(ϑ, ϑ)dx = σ2

∫

D
‖v0‖2 dx.(3.21)

Thus, ∫

B(R)
e(ϑ, ϑ)dx = [<(σ)2 −=(σ)2]

∫

D
||v0||2dx(3.22)

and
0 = 2<(σ)=(σ)

∫

D
||v0||2dx.(3.23)

If <(σ) 6= 0, of (3.23) and =(σ) > 0 it is easy to see that v0 = 0, on D,
since

∫
B(R) e(ϑ, ϑ)dx ≥ 0. Therefore, for all σ ∈ C with =(σ) > 0,the

function ϑ ∈ [H2(B(R))]3 in the ansatz (3.20) solves the system

b2 ∆ϑ (x) + (a2 − b2) grad(div ϑ(x) = 0, x ∈ B(R),
ϑ (x) = 0 x ∈ ∂B(R).

Now, thanks to Lemma 4, we obtain ϑ(x) = 0, for any x ∈ B(R),
i.e., ũ(x) = 0, on ΩR. From this together with −ζ(x) ũ(x) = v0(x),
for all x ∈ ΩR ⊂ Ω. Thus,

0 = b2∆v0(x) + (a2 − b2) grad (div v0(x)) + σ2 v0(x) = f(x), x ∈ ΩR.

Now, from the Fredholm theory, the equation f + Bζ(σ)f = h is
uniquely solvable and proof is complet. 2

4. Meromorphic Extension

In the previous sections the existence and uniqueness of solutions for
the system





b2 ∆v(x) + (a2 − b2) grad(div v(x)) + σ2 v(x) = h(x), x ∈ Ω,
v(x) = 0, x ∈ ∂Ω,
Radiation condition,

(4.1)
with σ ∈ C such that =(σ) > 0 is proved. Now, in this section we
present the extension of the solution for all σ ∈ C such that =(σ) ≤ 0
except, for some countable number of complex singularities, called
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“resonant frequencies”. Our approach follows the main ideas of the
previous sections and the subjet iniciated in [5] and [6], but it is related
to some other works mainly [3], [4], [17] among other. The basic tools
for the proof is the Steinberg theorem [20] about families of compact
operators depending on a complex parameter (see, also [19]). With
the same notations of the section §2 and §3, we stablish the following

Lemma 5. Let σ ∈ C with =(σ) > 0. Fix ζ ∈ C∞
0 (R3), with prop-

erties (ζ1− ζ3) (see section §2). Then for any h ∈ [L2(Ω)]3 such that
supp h ⊂ ΩR the function v(x) = v0(x) + ζ(x)ũ(x), x ∈ R3, solves
the system (4.1) if only if, f ∈ [L2(ΩR)]3 solves

h = f + Bζ(σ)f .(4.2)

Here, Bζ(σ) is given by

Bζ(σ)f = −Gζ(σ)P (σ)ΛnFR(σ)Ã(σ)f ,(4.3)

where the operators Gζ(σ), P (σ), Λn, FR(σ), Ã(σ) are given in (3.10),
(3.11), (3.12), (3.14) and (3.15) respectively.

Proof. The proof is implicit in Theorem 1. 2

Lemma 6. The set operators {Bζ(σ)}, σ ∈ C with =(σ) > 0 given
in (3.16) is an analytic family of compact operators of [L2(ΩR)]3 onto
itself.
Proof. Since the solution v0 from system

b2∆v0(x) + (a2 − b2) grad (div v0(x)) + σ2 v0(x) = f0(x), x ∈ R3.

depend analitically of σ ∈ C with =(σ) > 0, the operators Gζ(σ),
P (σ), Λn, FR(σ), Ã(σ) given in (3.10), (3.11), (3.12), (3.14) and (3.15)
have this property. From this and (4.1), the operators {Bζ(σ)} depend
analitically of σ ∈ C. The compactness follow from (I) above. 2

Theorem 2. The inverse operators [I+Bζ(σ).]−1 have an analytic ex-
tension from =(σ) > 0 to all the complex plane except foe a countable
set of poles, called resonant frequencies. Furthermore, σ is a resonant
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frequency of the operator [I+Bζ(σ).]−1 if and only if the system (4.1)
with h = 0 has non zero solutions.

Proof. From Lemma 6 we have that the set {Bζ(σ)} with σ ∈ C and
=(σ) > 0 is a analityc family of compact operators of [L2(ΩR)]3onto
itself. By the Steinberg theorem ??, either (a) the operators [I +
Bζ(σ)]−1 are never invertible for σ ∈ C, or (b) there is σ0 ∈ C such
that the operator [I + Bζ(σ0)]

−1 is invertible. From Theorem 1 we
have the existence and uniqueness of the solution for the system (4.1)
for all σ ∈ C with =(σ) > 0, by the equivalence established in Lemma
5 we are in the (b) case. In this case, Steinberg Theorem also states
that [I + Bζ(σ)]−1 is defined analytically on C except for a countable
set of poles. Now, Lemma 5 yields to the equivalence stament. 2
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