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Abstract
Let S be a topological monoid acting on the topological space

M . Let J be a subset of M . Our purpose here is to study the
subsets of M which correspond, under the action of S, to the
relative (with respect to J) invariant control sets for control
systems (see [4] section 3.3). The relation x ∼ y if y ∈ cl(Sx)
and x ∈ cl(Sy) is an equivalence relation and the classes with
respect to this relation with nonempty interior in M are the
control sets for the action of S. It is given conditions for the
existence and uniqueness of relative invariant classes. As it
was done for the control sets, we define an order in the classes
and relate it to the relative invariant classes. We also show
under certain condition that the relative invariant classes are
relatively closed in J .
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1. Introduction

One of the principal dynamical concepts in control theory is the study
of the controllability of the control systems. Many questions about the
control system, especially those related to its controllability depend,
in fact, only on the action of the semigroup of the system, so that it
can be abstracted to arbitrary semigroup actions and solved in a more
general setting. The regions of the state space where the controllability
occurs are called control sets. The control sets for control systems were
studied by Colonius and Kliemann in [1],[2],[3] and [4]. In particular,
Colonius and Kliemann introduced the concept of a control set which
is relatively invariant with respect to a subset of the phase space of
the control system (see Definition 3.1.9, pg. 50, in [4]). From a more
general point of view, the theory of control sets for semigroup actions
was developed by San Martin and Tonelli (see [6],[7] and [8]). Let S be
a topological monoid and suppose that S acts on a topological space
M . Since the control sets are the regions where S is approximate
transitive it is natural to define an equivalence relation by saying that
two points are equivalent if they are approximate attainable by the
action of S. We consider equivalence classes in M with respect to this
relation. We show that a class with nonempty interior in M is a control
set for S. The purpose of this paper is to study the relative invariant
classes in M . We define relatively invariant classes. In case S is the
system semigroup of a control system these relatively invariant classes,
with nonempty interior in M , are the relative invariant control sets
defined by Colonius and Kliemann. We develop the theory of relative
invariant classes. As it was done for the control sets, we define an
order in the classes and relate it to the relative invariant classes. We
give conditions for the existence and uniqueness of relative invariant
classes. Under the hypothesis of accessibility, we show that a relative
invariant class is relatively closed.

2. Relative invariance

First, we define the concept of a topological semigroup. We refer to
[9] for the theory of topological semigroups. Throughout this paper
we always assume that all topological spaces involved are Hausdorff.
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Definition 1. Let S be a non-void topological space which is provided
with an associative multiplication

µ : S × S → S
(x, y) 7→ µ(x, y) = xy

Then S is called a topological semigroup if µ is continuous as a map
between the product space S×S and the space S. If S has an identity
1 then S is called a topological monoid.

Definition 2. Let M be a topological space and S a topological
monoid. We say that S acts on M as a transformation monoid if
there is a map

π : S ×M → M
(g, x) 7→ π(g, x) = g.x

satisfying the following conditions:

1. π is continuous as a map between the product space S×M and
the space M .

2. g.(h.x) = (gh).x for all g, h ∈ S and for all x ∈ M .

3. 1.x = x for all x ∈ M .

We suppose, in this paper, that S acts on a topological space M
as a transformation monoid. We use the notation Sx = {gx : g ∈ S}
and call it the orbit of x under S. Assume that x ∈ cl(Sy). Then

Sx ⊂ Scl(Sy) ⊂ cl(SSy) = cl(Sy)

because the action is continuous. Therefore cl(Sx) ⊂ cl(Sy) if x ∈
cl(Sy). We will use this fact frequently on the text.

The control sets for semigroup actions were defined by San Martin
and Tonelli in [6]. Here, we recall the definition. Let S be a topological
monoid acting on a topological space M .

Definition 3. A control set for S on M is a subset D ⊂ M which
satisfies
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1. int(D) 6= ∅,

2. For every x ∈ D, D ⊂ cl(Sx) and

3. D is maximal with these properties.

The action on M induces the pre-order relation defined by

x ¹ y if y ∈ cl(Sx), x, y ∈ M.

Definition 4. We define x ∼ y if x ¹ y and y ¹ x.

Therefore [x] = [y] if and only if y ∈ cl(Sx) and x ∈ cl(Sy). Thus
∼ is the equivalence relation associated with ¹. The pre-order in M
induces a partial order in the quotient space M/ ∼. This order in
the quotient space is also denoted by ¹. We denote by [x] ∈ M/ ∼
the equivalence class of x ∈ M . From the control theoretic point of
view a class [x] with intM([x]) 6= ∅ is a control set for the action of the
monoid S.

Proposition 1. Let D = [x] be a class with respect to the equivalence
relation ∼. Suppose that intM(D) 6= ∅. Then D is a control set for S
on M .

Proof: We first show that D = [x] ⊂ cl(Sy), for every y ∈ [x]. Take
y ∈ [x] then x ∼ y. For z ∈ [x], we have z ∼ x. By the transitivity of
the relation ∼ we have z ∼ y and y ¹ z. This implies that z ∈ cl(Sy).
Now, suppose D ⊆ D′ with D′ satisfying the condition D′ ⊂ cl(Sz)
for every z ∈ D′. Take y ∈ D′. Then y ∈ cl(Sz), for every z ∈ D′,
in particular for x ∈ D. Therefore y ∈ cl(Sx) and x ¹ y. On the
other hand, since x ∈ D ⊆ D′, we have x ∈ cl(Sy) once y ∈ D′ and
y ¹ x. Hence x ∼ y and y ∈ [x] = D, showing the maximality of D. 2

We define a maximal class.

Definition 5. A class [x] is said maximal if every class [y] with [x] ¹
[y] satisfies [x] = [y].
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We will show later that a maximal class with intM([x]) 6= ∅ is an
invariant control set for the monoid S.

We observe that [x] ⊂ cl(Sx) for every x ∈ M .

Definition 6. We say that a subset A ⊂ M is S-invariant, or invari-
ant for the monoid S, if for every y ∈ A we have cl(Sy) ⊂ A.

A S-invariant class is always maximal. In fact, suppose [x] is S-
invariant. Then cl(Sx) ⊂ [x]. If we take [x] ¹ [y] we have x ¹ y
and y ∈ cl(Sx) ⊂ [x]. Therefore x ∼ y and [x] = [y], showing the
maximality.

We define O = {cl(Sx) ⊂ M : x ∈ M}. Now, we relate maximality
and S-invariance.

Lemma 1. For x ∈ M the following statements are equivalent:

1. [x] is maximal

2. cl(Sx) is minimal in O with respect to the inclusion of sets

3. [x] = cl(Sx)

4. [x] is closed and S-invariant

Proof: Let’s assume that cl(Sy) ⊂ cl(Sx) for some y ∈ M . Take
z ∈ cl(Sy). By the continuity of the action of S on M we have
cl(Sz) ⊂ cl(Sy). Since z ∈ cl(Sx) the maximality of [x] implies that
cl(Sx) ⊂ cl(Sz). Therefore cl(Sx) ⊂ cl(Sy) showing that cl(Sx) is
minimal. Suppose that cl(Sx) is minimal in O. Then cl(Sy) ⊂ cl(Sx)
for all y ∈ cl(Sx). By minimality cl(Sy) = cl(Sx) for all y ∈ cl(Sx).
This implies that cl(Sx) is entirely contained in an equivalence class
so that cl(Sx) = [x]. If [x] = cl(Sx) it is immediate that [x] is closed
and S-invariant. Finally, a S-invariant class is maximal. 2

The maximal classes with nonempty interior in M are the invariant
control sets, more specifically, we have.

Corollary 1. Let D = [x] be a maximal class with respect to the
relation ∼. Assume intM(D) 6= ∅. Then D is an invariant control set
for S on M .
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Proof: First we show that cl(D) = cl(Sy) for every y ∈ D. Since [x] is
maximal we have by the Lemma 1 that [x] = cl(Sx). Hence D = cl(D).
For y, z ∈ [x] we have z ∈ cl(Sy). Conversely, take z ∈ cl(Sy), since
x ∼ y we have y ∈ cl(Sx). Therefore z ∈ cl(Sx) = [x]. Now we will
show the maximality of D. Suppose [x] = D ⊆ D′ and D′ satisfies
the equality cl(D′) = cl(Sy) for every y ∈ D′. Take z ∈ D′. Then
cl(D′) = cl(Sz). Since x ∈ D ⊆ D′ ⊆ cl(D′) we have x ∈ cl(Sz) and
z ¹ x. On the other hand, since x ∈ D ⊆ D′ we have cl(D′) = cl(Sx).
But, z ∈ D′ ⊆ cl(D′) = cl(Sx) and therefore x ¹ z. It follows that
x ∼ z and z ∈ [x] = D, showing the maximality of D. 2

On the existence of maximal classes we have the following propo-
sition.

Proposition 2. Let J be a S-invariant compact subset of M . Then
for every x ∈ J there exists a maximal equivalence class [w] ⊂ cl(Sx).

Proof: Fix x ∈ J and consider the family of subsets

Ox = {cl(Sy) : cl(Sy) ⊂ cl(Sx)}.

This family is not empty because it contains cl(Sx). Let us order
Ox by inclusion and show with the aid of Hausdorff ’s maximality
principle that it contains minimal elements: Take a chain {cl(Sy)}y∈I
of subsets in Ox, where I is an index set. Since J is S-invariant
cl(Sx) ⊂ J . Therefore we have a chain of closed subsets of J . Hence
they are compact which implies that the intersection

⋂
y∈I

cl(Sy) is not

empty. Take z ∈ ⋂
y∈I

cl(Sy). Then cl(Sz) belongs to Ox and is con-

tained in cl(Sy) for all y ∈ I. These means that cl(Sz) is a lower
bound of the chain. Applying the maximality principle we conclude
that Ox contains a minimal element, say cl(Sw). Any element of
O = {cl(Sx) ⊂ M : x ∈ M} contained in cl(Sw) is an element of Ox

because cl(Sw) ⊂ cl(Sx). Hence cl(Sw) is also minimal in O so the
proof follows from Lemma 1. 2

Remark: We comment that the Proposition 2 has already been
proved in the context of topological dynamics. Since an invariant
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class [x] is a minimal set the Proposition 2 is the classical result from
topological dynamics which says that every compact invariant set has
a minimal set. (see [5] Theorem 2.22).

We define a maximal class relatively to a subset J contained in M .

Definition 7. Given a subset J ⊂ M a class [x] ⊂ J is said to be
J-maximal, if every class [y] ⊂ J with [x] ¹ [y] satisfies [x] = [y].

For subsets J of M which are compact and S-invariant we have.

Corollary 2. Suppose that J ⊂ M is compact and S-invariant. Then
there are J-maximal classes and they are the maximal classes con-
tained in J .

Proof: Take x ∈ J . Since J is compact and invariant under the action
of S we have by the Lemma 2 that there exist a maximal class, say,
[w] ⊂ cl(Sx) ⊂ J . We also have that [w] is J-maximal. Conversely, a
maximal class contained in J is J-maximal. 2

Now, we define a class which is invariant with respect to a subset
J in M .

Definition 8. For a subset J ⊂ M a class [x] ⊂ J is called SJ-
invariant, if z ∈ cl(Sx) with z /∈ [x] implies z /∈ J .

Therefore, if a class [x] ⊂ J is SJ-invariant it cannot leave by the
closure of an orbit without leaving J .
Remark: The relative invariant control sets for control systems were
studied by Colonius and Kliemann in [4], pg.70, section 3.3. The defi-
nition of a SJ-invariant class was motivated by the definition of a rel-
ative invariant control set (see [4], pg. 50, Definition 3.1.9). Roughly
speaking, a control set D for a control system contained in a subset
J of the phase space is said to be a relative invariant control set, if
x ∈ D and a trajectory of the system starting at x leaves D, for some
time and for some control, then the trajectory also leaves J .

It follows immediately that a SJ-invariant class is J-maximal. As
a consequence a SM -invariant class is M -maximal and therefore it
is a maximal class. Conversely, by the Lemma 1, a maximal class is
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SM -invariant. Therefore, if intM([x]) 6= ∅ a class [x] is an invariant
control set if and only if [x] is SM -invariant.

On the existence of SJ-invariant classes we have.

Corollary 3. Suppose that J ⊂ M is compact and S-invariant. Then
[x] is a SJ-invariant class if and only if [x] is J-maximal. In this case
there exist SJ-invariant classes.

Proof: Suppose [x] is J-maximal. By the Corollary 2 [x] is an S-
invariant class contained in J . Therefore [x] is a SJ-invariant class.
2

The no-return condition defined bellow was introduced, in the con-
text of control systems, by Colonius and Kliemann (see [4], pg. 50,
Theorem 3.1.10) in the study of relatively invariant control sets.

Definition 9. We say that a subset J ⊂ M satisfy the no-return
condition if z ∈ cl(Sx) for some x ∈ J and cl(Sz)∩J 6= ∅, then z ∈ J .

This condition says that if we leave J we cannot go back to J again
thorough the closure of an orbit of S.

Now, we translate the no-return condition in terms of an union of
equivalence classes.

Proposition 3. Suppose that J ⊂ M satisfy the no-return condition.
Then J is exhaustive for the equivalence relation ∼, i.e., any class [x]
is entirely contained in J or in J c.

Proof: Let [x] be a class such that [x]∩J 6= ∅ and [x]∩J c 6= ∅ and we
will obtain a contradiction. Take z ∈ [x] ∩ J and y ∈ [x] ∩ J c. Then
z ∼ y, i.e., z ∈ cl(Sy) and y ∈ cl(Sz). By the no-return condition we
have that y ∈ J which is a contradiction. 2

Corollary 4. Suppose J satisfies the no-return condition. Then

J =
⋃

x∈J

[x]
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Proof: Take x ∈ J . Then by the Proposition 3 we have x ∈ [x] ⊂ J .
Thus

⋃
x∈J [x] ⊂ J . Conversely, since x ∈ [x] we have J ⊂ ⋃

x∈J [x]. 2

The converse of the last corollary is not always true. In fact, sup-
pose that J =

⋃
[x]∈J

[x]. Take x ∈ J and z ∈ cl(Sx) with cl(Sz)∩J 6= ∅.
Pick w ∈ cl(Sz) ∩ J . Then x ¹ z ¹ w. It follows that [x] ¹ [z] ¹ [w].
Now, It is not always possible to conclude that z ∈ [z] ⊂ J .

The next theorem gives conditions for the existence of SJ-invariant
classes. It also generalizes Proposition 3.3.3, pg. 72, in [4].

Theorem 1. Let J be a subset of M satisfying the no-return condi-
tion. Suppose there is an x ∈ J and a compact set K ⊂ J such that
for all y ∈ cl(Sx) ∩ J

cl(Sy) ∩K 6= ∅
Then there exists a SJ-invariant class [w] ⊂ cl(Sx).

Proof: For y ∈ cl(Sx) ∩ J we define the compact Ky = cl(Sy) ∩K.
Since 1 ∈ S we have that Kx is defined. Now, consider the family

T = {Ky : y ∈ Kx}
define the following order on T

Ky1 ¹ Ky2 if y1 ¹ y2

thus if we assume Ky1 ¹ Ky2 then y2 ∈ cl(Sy1) and Ky2 = cl(Sy2) ∩
K ⊂ cl(Sy1) ∩ K = Ky1 . Now, observe that Ky1 ⊂ Ky2 implies
that Ky2 ¹ Ky1 . In fact, y1 ∈ Ky1 ⊂ Ky2 = cl(Sy2) ∩ K. Thus
y1 ∈ cl(Sy2) and Ky2 ¹ Ky1 . Let {Kyi

: i ∈ I} be a linearly ordered
set. The intersection

⋂
i∈I

Kyi
is a compact set since it is the intersection

of decreasing compact subsets of the compact set K. Take p ∈ ⋂
i∈I

Kyi
.

Since p ∈ cl(Syi) for every i ∈ I and yi ∈ cl(Sx) ∩ J we have that
p ∈ cl(Syi) ⊂ cl(Sx) and Kp =

⋂
i∈I

Kyi
, showing that Kp ∈ T . The

Zorn’s lemma implies that the family T has a maximal element Kr.
Since r ∈ Sr ∩K we have r ∈ Kr ⊂ J . Let’s define

D = cl(Sr) ∩ J.
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We will show that D ⊂ cl(Sx) is a SJ-invariant class. We know that
r ∈ Sr ∩ J ⊂ D. By its only definition, every z ∈ D is approximately
reachable from r and r ¹ z. Conversely, take z ∈ D and we will show
that z ¹ r. Since z ∈ D we have z ∈ cl(Sr) and by the definition
of Kr we have r ∈ cl(Sx). Thus z ∈ cl(Sx) ∩ J . It follows from the
hypothesis that Kz = cl(Sz) ∩ K 6= ∅. Pick an element z0 ∈ Kz. It
is obvious that z ¹ z0. Then Kz0 ∈ T and by the maximality of
Kr one obtains z0 ¹ r. The transitivity of ¹ implies that z ¹ r.
Therefore we have approximate transitivity in D. We also have that
D is a class. Otherwise, there exists a class [w] ⊃ D containing a
point w /∈ D = cl(Sr) ∩ J . The no-return condition and Proposition
3 implies that D ⊂ [w] ⊂ J . It follows that w ∼ r and w ∈ cl(Sr)∩ J
contradicting the choice of w. It remains to show the SJ-invariance
of D. Take z ∈ D = cl(Sr) ∩ J and suppose that there exists k ∈
cl(Sz)∩ J . Then k ∈ cl(Sz) ⊂ cl(Sr) and k ∈ cl(Sr)∩ J , showing the
SJ-invariance of D. 2

The theorem above allows us to show that the J-maximal and
JS-invariant classes coincide.

Corollary 5. Let J ⊂ M be a subset satisfying the no-return condi-
tion. Take x ∈ J and assume that there exists a compact set K ⊂ J
such that for all y ∈ cl(Sx) ∩ J

cl(Sy) ∩K 6= ∅

Then for a class [w] ⊂ cl(Sx)∩J we have that [w] is J-maximal if and
only if [w] is SJ-invariant.

Proof: Suppose [w] is J-maximal. Assume that there exists y ∈ [w] ⊂
cl(Sx) and z ∈ cl(Sy) ∩ J with z /∈ [w]. By the last proposition there
exist a SJ-invariant class [w1] ⊂ cl(Sy) ⊂ cl(Sx). Thus [w] ¹ [w1]
and [w] 6= [w1]. This contradicts the J-maximality of [w]. Hence [w]
is SJ-invariant. 2

We will see next that a closed subset is a maximal class if and only
if it is the closure of the orbit of its elements.
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Proposition 4. Let C be a closed subset of M . Then C is maximal
class if and only if C = cl(Sx) for every x ∈ C.

Proof: Suppose C = cl(Sx) for every x ∈ C. Then for x, y ∈ C
we have y ∈ cl(Sx) and x ∈ cl(Sy), i.e., x ∼ y and therefore C
is contained in a equivalence class, say, [x] ⊃ C. Furthermore, for
y ∈ [x] we have y ∈ cl(Sx), and therefore [x] ⊂ cl(Sx) = C, showing
that [x] = C. Now, suppose that C = [x] ¹ [y]. Then x ¹ y and
y ∈ cl(Sx) = [x]. Therefore C = [x] = [y] is a maximal class. Con-
versely, assume that C = [x] is a maximal class. Thus by the Lemma
1 we have C = [x] = cl(Sx) for every x ∈ C. 2

Now, we give conditions for the existence of a unique SJ-invariant
class.

Proposition 5. Let J ⊂ M be a subset satisfying the no-return con-
dition. Take x ∈ J and assume that there exists a compact set Kx ⊂ J
which is S-invariant and such that for all y ∈ cl(Sx) ∩ J

cl(Sy) ∩Kx 6= ∅

Suppose that

C =
⋂

x∈J

⋂

y∈cl(Sx)∩J

(cl(Sy) ∩Kx) 6= ∅

Then C is a unique SJ-invariant class contained in J .

Proof: First, we show that C is a SJ-invariant class. It is easy to
see that C is closed and it is contained in J . By the Proposition
4 and Corollary 5 it is enough to show that C = cl(Sx) for every
x ∈ C. Take x ∈ J and y ∈ cl(Sx) ∩ J . Then cl(Sy) ⊂ cl(Sx) and
cl(Sx) ∩Kx ⊂ cl(Sx). Therefore C ⊂ ⋂

x∈J
(cl(Sx)) ⊂ cl(Sx) for every

x ∈ C. Now take w ∈ cl(Sz) with z ∈ C. Then for every x ∈ J and
every y ∈ cl(Sx)∩J we have z ∈ cl(Sy) ∩Kx. Since Kx is S-invariant
we have w ∈ cl(Sz) ⊂ cl(Sy) ∩Kx. Thus w ∈ C. It remains to show
the uniqueness of C. Suppose that C1 ⊂ J is a maximal class. By the
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Proposition 4, cl(Sx) = C1 for every x ∈ C1.Thus C1 =
⋂

x∈C1

cl(Sx).

Therefore

C =
⋂

x∈J

⋂

y∈cl(Sx)∩J

(cl(Sy) ∩Kx) ⊂
⋂

x∈J

(cl(Sx)) ⊂ ⋂

x∈C1

cl(Sx) = C1.

By the maximality of C it follows that C = C1. 2

As the invariant control sets are closed in M under the hypoth-
esis of accessibility of S, we show that the SJ-invariant classes are
relatively closed in J .

Definition 10. We say that a subset J ⊂ M satisfies the J-accessibility
condition for a monoid S if for all y ∈ J , intM(Sy ∩ J) 6= ∅.

Remark: The hypothesis of J-accessibility was also considered in the
context of control systems (see [4], pg. 50, Theorem 3.1.10).

The next theorem generalizes Proposition 3.3.4, pg. 72, in [4].

Theorem 2. Suppose that J ⊂ M satisfy the J-accessibility condi-
tion for S. Then any SJ-invariant class [w] ⊂ J is relatively closed in
J , i.e., (∂([w])− [w]) ∩ J = ∅.

Proof: Assume that [w] is a SJ-invariant class and (∂([w])−[w])∩J 6=
∅. Pick y ∈ (∂([w])− [w])∩J . We have that Sy∩ [w] = ∅. Otherwise,
there exist g ∈ S such that gy ∈ [w]. Thus [w] ⊂cl(Sgy) ⊂ cl(Sy) and
we would have y ∈ [w], cause if y ∈ ∂([w]) is not in [w] then cl(Sy) do
not contains [w]. Since y ∈ J the J-accessibility condition guarantees
the existence of z ∈ (int(Sy ∩ J))− [w]. There exists g ∈ S such that
gy = z. Let V be a neighborhood of z contained in Sy∩J and outside
[w]. Now, g−1V is an open neighborhood of y ∈ ∂([w]). Therefore
there exists x ∈ [w] such that gx ∈ V , which is a contradiction with
the SJ-invariance of [w]. 2



Relative invariance for monoid actions 293

References

[1] Colonius, F. and Kliemann, W.: Linear control semigroups acting
on projective spaces. Journal of Dynamics and Differential Equa-
tions, vol. 5, 3 (1993) 495-528.

[2] Colonius, F. and Kliemann,W.: Some aspects of control systems
as dynamical systems. Journal of Dynamics and Differential Equa-
tions, vol. 5, 3 (1993) 469-494.

[3] Colonius, F. and Kliemann, W.: The Lyapunov spectrum of fami-
lies of time-varying matrices. Transactions of the American Math-
ematical Society, vol 348, 11, (1996) 4389-4408.

[4] Colonius, F. and Kliemann, W.: “The dynamics of control”.
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