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JOSÉ AGUAYO
Universidad de Concepción, Chile

Proyecciones
Vol. 20, No 3, pp. 263-279, December 2001.
Universidad Católica del Norte
Antofagasta - Chile

Abstract

In this paper we define the absolutely continuous relation
between nonarchimedean scalar measures and then we give and
prove a version of the Radon-Nykodym Theorem in this setting.
We also define the nonarchimedean vector measure and prove
some results in order to prepare a version of this Theorem in
a vector case.

∗This research was supported by Proyecto Fondecyt 1990341, Conicyt.

rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172001000300001

http://dx.doi.org/10.4067/S0716-09172001000300001


264 Mirta Moraga and José Aguayo

1. Introduction and notations

In the classical case, it is known that the Radon-Nikodym Theorem
involves real or complex valued measures and it becomes a property
if the measures involved are vector valued measures (see [12] and [7]).

In this paper we give a non-archimedean version of the Radon-
Nikodym Theorem for K-valued measures, where K is a non-archime-
dean field with a non-trivial valuation for which it is complete. In the
last part of the paper, we introduce some definitions and statements
which involve scalar valued measures.

Throughout the paper, X will denote a nonempty set, Ω a cover
ring of subset of X and τ the topology generated by the ring Ω.
As we know, any element of Ω is a clopen (closed and open) for this
topology, Ω is a base of it and (X, τ) becomes to be a zero-dimensional
topological space.

All of the following results in this section can be found in [10] and
[11] and we will give a sketch of the proof of few of them.

Definition 1. A set function µ : Ω → K is said to be a non-archime
dean measure or simply measure if:

(i) µ is finitely additive, that is, for A,B ∈ Ω, with A ∩B = ∅,
µ(A) + µ(B) = µ(A ∪B)

(ii) (Uα)α∈I is a net in Ω with Uα ↓ ∅, and if for any α ∈ I, we
choose Vα ∈ Ω with Vα ⊂ Uα, then

lim
λ

µ(Vλ) = 0

(iii) if for each a ∈ X, there exists U ∈ Ω, such that a ∈ U and

{µ(V ) : V ∈ Ω; V ⊂ U} is bounded.

Definition 2. Let µ be a measure over a cover ring Ω of subsets of
X and τ be the topology generated by Ω. For a τ − open W ⊂ X and
a ∈ X, we define:

‖W‖µ = sup {|µ(U)| : U ∈ Ω; U ⊂ W}

Nµ(a) = inf
{
‖W‖µ : W es τ -open, a ∈ W

}
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These definitions satisfy the following properties (see [10] page
191):

Proposition 3. (i) If W1,W2 ∈ τ , with W1 ⊆ W2, then ‖W1‖µ ≤
‖W2‖µ

(ii) If W ∈ τ, then ‖W‖µ = sup
{
‖U‖µ : U ∈ Ω; U ⊂ W

}

(iii) If a ∈ X, then Nµ(a) = inf
{
‖U‖µ : U ∈ Ω; a ∈ U

}

Lemma 4. The function Nµ is τ−upper semicontinuous (u.s.c.).
Proof. Let us take ε > 0 and consider Xε = {x ∈ X : Nµ(x) ≥ ε} .
If x ∈ X \ Xε, then there exists U ∈ Ω, a ∈ U, such that ‖U‖µ < ε.
Now, for z ∈ U, Nµ(z) ≤ ‖U‖µ < ε; hence U ⊂ X \ Xε. This proves
that Nµ is u.s.c.

For a linear space F of functions f : X → K, the collection Ω( F)
given by

Ω(F) = {U ⊆ X : fXU ∈ F , ∀ f ∈ F}
is a cover ring of X. We will denote by τ(Ω(F)) the corresponding
topology.

Definition 5. We will say that F is a Wolfheze space if each f ∈ F is
τ -continuous and for each a ∈ X, there exists f ∈ F , with f(a) 6= 0.

Definition 6. A linear functional I : F → K will be called an integral
if :

(I) for each net (fα)α∈Γ , fα ∈ F with fα ↓ 0 and for any α ∈ Γ,

lim
α∈Γ

I(gα) = 0

for any net (gα)α∈Γ in F with |gα| ≤ |fα| .
Lemma 7. Fix f ∈ F and define

µf : Ω → K
U 7→ µf (U) = I (fXU)

Then, µf is a non-archimedean measure.
Proof. It follows easily from the fact that if (Uα)α∈I is a net in Ω
with Uα ↓ ∅, then f ∗ fα = f ∗ XUα ↓ 0.
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The next lemma gives a relation between those measures given in
the previous lemma (see [10], page 193)

Lemma 8. There exists a unique function NI : X → [0,∞), such
that
|f | NI = Nµf

for each f ∈ F . Even more, NI is τ − u.s.c.

Let I be an integral over a Wolfheze space F . We denote by
Ω = Ω(F), τ = τ(F). For each g : X → K, we write

‖g‖I = sup {|g(x)| NI(x) : x ∈ X}

Then, we have:

Definition 9. A function g is said to be I−integrable if for each δ >
0, there exists f ∈ F such that,

‖f − g‖I < δ

We denote by L (I) the class of the integrable functions, that is,

L(I) = {g : X → K : g is integrable}

This class is a linear space over the non-archimedean field K.
The following theorem gives us a characterization of integrable

functions.

Theorem 10. A function f : X → K is integrable if and only if f
satisfies the following conditions:

(i) f is τ(F)− continuous on each Xt = {x ∈ X : NI(x) ≥ t}
(ii) For each δ > 0, there exists a τ(F)−compact P contained in

some Xt such that |f | NI < δ off P .
Proof. See [10] , pages 195-96.

Theorem 11. The space L(I) is a Wolfheze space and F is ‖‖I −dense
in L(I).

Definition 12. Let Θ : Ω → K be set function and µ be an integral
over F . For each a ∈ X,α ∈ K, c ∈ ]0, 1[ and r ∈ R, we write
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1. LIM
U→α

Θ (U) = α, if

(∀ε > 0) (∃V ∈ Ω; a ∈ V ) (U ⊂ V ; U ∈ Ω ⇒ |Θ(U)− α| < ε)

2. LIMµ,c
U→a

Θ (U) = α, if

for each ε > 0, there exists a neighborhood V of a, such that for
all U ∈ Ω, with U ⊂ V, and |µ(U)| ≥ cNµ(a) we have

|Θ(U)− α| < ε

3. LIMµ
U→a

Θ (U) = α, if

LIM
U→a µ,c

Θ(U) = α, ∀ c ∈ ]0, 1[

4. LIM
U→a

|Θ (U)| = r, if

(∀ε > 0)
(∃U ∈ Ω; a ∈ U) (r − ε ≤ sup {|Θ(V )| : V ∈ Ω; V ⊂ U} ≤ r + ε)

The proof of the next lemmas follows directly from the definitions
(see [11] , page 80).

Lemma 13. For a measure µ : Ω → K and a ∈ X we have

1. Nµ(a) = LIM
U→a

|µ(U)|

2. Nµ(a) = 0 ⇐⇒LIM
U→a

µ(U) = 0

Lemma 14. If Θ : Ω → K is additive and 0 < c < 1, then

LIM
U→a µ,c

Θ(U) = 0 ⇐⇒LIM
U→a

Θ(U) = 0
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2. The Radon-Nikodym Theorem

Throughout this section X will be a set and F a Wolfheze space of
functions from X into K with the assumption that F contains the
constant functions. It follows from this assumption that XU ∈ F for
all U ∈ Ω (F) . Since 1 ∈ F , we have that if I : F → K is an integral,
then µ : Ω (F) → K defined by µ (U) = I (XU) is a non-archimedean
measure. In the sequel, we will use Greek letter to denote integral.
We start with the following lemma [11]:

Lemma 1. If µ : F → K is an integral, f ∈ L (µ) and a ∈ X, then

LIM
U→a

[µf (U)− f(a)µ (U)] = 0

Definition 2. Let µ, ν be two measures over a cover ring Ω. We will
say that ν is absolutely continuous with respect to µ, ν ¿ µ , if for
each a ∈ X there exists α ∈ K, such that

Nν−αµ(a) = 0

Example 3. Let µ : F → K be an integral functional. Let j : X →
K be a µ−integrable function. We define

jµ : F → K
f 7→ jµ(f) = µ (fj) =

∫
fjdµ

It is well defined since fj ∈ L (µ) and is an integral. Note that its
corresponding measure jµ : Ω (F) → K is the following:

jµ(U) = µ (XUj) = µj (U)

(see Lemma 7). We claim that jµ is absolutely continuous with respect
to µ. In fact, by Lemma 1

LIM
U→a

[jµ (U)− j(a)µ (U)] = LIM
U→a

[µj (U)− j(a)µ (U)]

= 0

and then, by Lemma 13-(2),

Nµj−j(a)µ(a) = 0.
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Theorem 4. (The Radon-Nikodym Theorem)

Let ν, µ be two measures defined on Ω (F). If ν ¿ µ, then there
exists a µ−integrable function j such that

ν = jµ

Let a ∈ X. Since ν ¿ µ, there exists αa ∈ K such that

Nν−αaµ(a) = 0

Using Lemma 13, we can prove the uniqueness of αa. Thus, we
define the function j by:

j : X → K

a 7−→ j (a) =

{
αa , if Nµ (a) > 0
0 , if Nµ (a) = 0

The first step is to prove that j is µ-integrable. To do that we will
use Theorem 10, that is, we have to prove that (i) j|Xt is continuous
and (ii) for each δ > 0, there exists a compact set P of X contained
in some Xt = {x ∈ X : Nµ(x) ≥ t} such that |j| Nµ < δ off P . Take
t > 0 and a ∈ Xt. By the assumption, Nv−j(a)µ (a) = 0 or, equivalently,
LIM
U→a

(νv − j (a) µ) (U) = 0. Thus, if ε > 0 is given, there exists

U0 ∈ Ω, with a ∈ U0, such that

|(ν − j (a) µ) (V )| < ε, ∀V ∈ Ω, V ⊂ U0

Take b ∈ U0 ∩Xt; hence Nµ(b) ≥ t. Since LIM
U→b

(ν − j (b) µ) (U) = 0,

there exists U1 ∈ Ω, with b ∈ U1, such that

|(ν − j (b) µ) (V )| < ε, ∀V ∈ Ω, V ⊂ U1
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Thus, if V ⊂ U0 ∩ U1 = U2 and V ∈ Ω, then
|j (a)− j (b)| t ≤ |j (a)− j (b)| Nµ (b)

≤ |j (a)− j (b)| ‖U2‖µ

= sup {|j (a)− j (b)| |µ (V )| : V ∈ Ω, V ⊂ U2}
≤ sup {|v − j (b) µ (V ) + j (a) µ (V )− ν| :

V ∈ Ω, V ⊂ U2}
≤ max

{
sup

V⊂U2

|(ν − j (b) µ) (V )| ,

sup
V⊂U2

|(ν − j (a) µ) (V )|
}

≤ ε

therefore, j|Xt is continuous. To prove (ii), take δ > 0 and a ∈ X,
with Nµ(a) > 0. The set P = {x ∈ X : Nν(x) ≥ δ} is τ−compact in
X. Since Nν−j(x)µ(x) = 0 for all x ∈ X with Nµ(x) > 0 and

∣∣∣Nν(x)−Nj(x)µ(x)
∣∣∣ ≤ Nν−j(x)µ(x) = 0

we have
Nν(x) = Nj(x)µ(x) = |j (x)| Nµ(x)

Then, for x /∈ P, we have |j (x)| Nµ(x) < δ. Now, we finish this part
proving that there is t > 0 such that P ⊂ Xt. If a ∈ P, then there
exists Ua ∈ Ω, with a ∈ Ua, such that

|(ν − j (a) µ) (V )| < δ

2
, ∀V ∈ Ω, V ⊂ Ua

Thus,
P ⊂ ∪

a∈P
Ua

and since P is compact, there exist a1, a2, ..., an ∈ P such that

P ⊂
n⋃

i=1

Uai

Now, denote by M = max {|j (a1)| , |j (a2)| , ..., |j (an)|} and define t =
δM−1. We claim that P ⊂ Xt; in fact, since

|ν (V )| ≤ |ν (V )− j (ai) µ (V ) + j (ai) µ (V )|
≤ max {|ν (V )− j (ai) µ (V )| , |j (ai) µ (V )|}
≤ max

{
δ

2
, δt−1 |µ (V )|

}
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Then, by Lemma 13, we have

δ ≤ Nν(a) = LIM
V→a

|ν (V )|

≤ max

{
δ

2
, δt−1 LIM

V→a
|µ (V )|

}

≤ max

{
δ

2
, δt−1Nµ(a)

}

and, therefore
Nµ(a) ≥ t

To prove that ν = jµ, we consider the measure

ν − jµ : Ω → K
U → (ν − jµ) (U) = ν(U)− ∫ XUjdµ

Fix a ∈ X, then

LIM
U→a

|(ν − jµ) (U)| =LIM
U→a

∣∣∣∣ν(U)−
∫
XUjdµ

∣∣∣∣

Now,

|ν(U)− ∫ XUjdµ| = |ν(U)− j(a)µ(U) + j(a)µ(U)− ∫ XUjdµ|
≤ max {|ν(U)− j(a)µ(U)| ,

|j(a)µ(U)− ∫ XUjdµ|}
Therefore,

LIM
U→a

∣∣∣∣ν(U)−
∫
XUjdµ

∣∣∣∣ ≤

max
{
LIM
U→a

|ν(U)− j(a)µ(U)| , LIM
U→a

∣∣∣∣j(a)µ(U)−
∫
XUjdµ

∣∣∣∣
}

= 0

Thus,

LIM
U→a

∣∣∣∣ν(U)−
∫
XUjdµ

∣∣∣∣ = 0

and then,
Nν−jµ(a) = 0

Since a ∈ X is arbitrary,

Nν−jµ(a) = 0,∀ a ∈ X



272 Mirta Moraga and José Aguayo

Therefore,

ν − jµ = 0

or,

ν = jµ

3. Non-archimedean vector measures

In this section we will briefly analyze E−valued measures, where E is
a normed space over the field K. As in the previous sections, X will
be a nonempty set, Ω a cover ring of X and E a Banach space, with
E’6= {θ} over a non-archimedean field K with a nontrivial valuation
and complete. As we know, the function ‖ ‖0 : E → R defined by

‖x‖0 = sup {|x′(x)| : x′ ∈ E ′; ‖x′‖ ≤ 1}

is equivalent to the original norm of E.

Definition 1. Let m : Ω → E a finitely additive and bounded set
function. We will say that m is a non-archimedean vector measure
or, simply, a vector measure if for each net {Uλ}λ∈Λ in Ω such that
Uλ ↓ ∅ and if, for each λ ∈ Λ, we choose Vλ ⊂ Uλ and Vλ ∈ Ω, then

lim
λ

m(Vλ) = 0

that is,

(∀ε > 0) (∃λ0 ∈ Λ) (λ > λ0 ⇒ ‖m(Vλ)‖0 < ε)

Definition 2. Let m : Ω → E a finitely additive set function. For
U ∈ Ω, we define

‖U‖m = sup {‖m(B)‖0 : B ⊂ U ; B ∈ Ω}

Nm (x) = inf {‖U‖m : U ∈ Ω; x ∈ U}

It is not difficult to prove that this function is τ (Ω)−u.s.c.
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Definition 3. Let Θ : Ω → E a set function, µ : Ω → K a measure,
c ∈ ]0, 1[ , a ∈ X and r ∈ R.

1. LIM
U→a

Θ(U) = e means

(∀ε > 0) (∃U ∈ Ω; a ∈ U) (V ⊂ U ; V ∈ Ω ⇒ ‖Θ(V )− e‖0 < ε)

2. LIMµ,c
U→a

Θ(U) = e means

(∀ε > 0) (∃U ∈ Ω; a ∈ U)
(V ⊂ U ; V ∈ Ω; |µ(V )| ≥ cNµ(a) ⇒ ‖Θ(V )− e‖0 < ε)

3. LIMµ
U→a

Θ(U) = e means

LIMµ,c
U→a

Θ(U) = e

for all c ∈ ]0, 1[

4. LIM
U→a

‖Θ(U)‖ = r means

(∀ε > 0) (∃U ∈ Ω; a ∈ U)
(r − ε ≤ sup {‖Θ(V )‖0 : V ∈ Ω; V ⊂ U} ≤ r + ε)

Lemma 4. Let m : Ω → E a vector measure and a ∈ X. Then,

1. Nm(a) =LIM
U→a

‖m(U)‖

2. Nm(a) = 0 ⇔LIM
U→a

m(U) = θ

Proof. In both cases, the proof follows easily from the definition
and we omit them.

We will denote by S(X) the vector space spanned by 〈{XU : U ∈ Ω}〉,
that is, f ∈ S(X), if

f =
n∑

i=1

αiXUi

where αi ∈ K, Ui ∈ Ω, and
n⋃

i=1
Ui = X. We can assume that {Ui}n

1 is

pairwise disjoint.
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Definition 5. Let m be a non-archimedean vector measure. We will
define the E-valued linear operator

∫
on S(X) by

∫
XUdm = m(U)

Lemma 6. This operator satisfies

∥∥∥∥
∫

fdm

∥∥∥∥ ≤ ‖f‖N

Proof. It follows from the fact that
∥∥∥∥
∫
XUdm

∥∥∥∥ = ‖m(U)‖
≤ ‖U‖m

≤ sup
x∈U

N (x)

≤ sup
x∈X

|XU | N (x)

≤ ‖XU‖N

Definition 7. A function f : X → K is said to be m-integrable if
there exists a sequence {fn}n∈IN of S(X) such that

lim
n→∞ ‖f − fn‖N = 0

We will denote by L(m) the space of all m-integrable functions.
Since S(X) is ‖‖N −dense in L(m), we have that the linear operator∫

has a unique extension to L(m) and this extension satisfies the
condition: ∥∥∥∥

∫
fdm

∥∥∥∥ ≤ ‖f‖N , ∀f ∈ L(m)

For U ∈ Ω and e ∈ E, we define the function XU ⊗ e by

XU ⊗ e : X → E

x 7→ XU ⊗ e(x) =





e if x ∈ U

θ if x /∈ U
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We denote by

S(X, E) = 〈{XU ⊗ e : U ∈ Ω; e ∈ E}〉
Thus, f ∈ S(X, E) means

f =
n∑

i=1

XUi
⊗ ei

Now, if µ : Ω → K a measure and f ∈ S(X, E), then we define the
set function

µ⊗ f : Ω → E

U 7→ µ⊗ f(U) =
n∑

i=1
µ (Ui ∩ U) ei

Lemma 8. µ⊗f is a vector measure and satisfies the following prop-
erty

Nµ⊗f (a) = ‖f(a)‖Nµ⊗f(a)(a)

Proof. Trivially, µ⊗ f is finitely additive. To see µ⊗ f is bounded,
take U ∈ Ω. Then,

‖U‖µ⊗f : = sup {‖µ⊗ f(V )‖0 : V ∈ Ω; V ⊂ U}
Now, since

‖µ⊗ f(V )‖0 = sup {|x′ (µ⊗ f(V ))| : ‖x′‖ ≤ 1}
where,

x′ (µ⊗ f(V )) = x′
(

n∑
i=1

µ (Ui ∩ V ) ei

)

=
n∑

i=1
µ (Ui ∩ V ) x′(ei)

we have,

|x′ (µ⊗ f(V ))| ≤ max
1≤i≤n

|µ (Ui ∩ V )| |x′(ei)|
≤ max

1≤i≤n
|µ (Ui ∩ V )| ‖ei‖0

≤ M max
1≤i≤n

‖Ui ∩ V ‖µ

≤ M ‖∪n
i=1Ui ∩ V ‖µ

= M ‖U‖µ
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where M = sup {‖ei‖0 : i = 1, 2, ..., n} .
From this,

‖U‖µ⊗f : ≤ M ‖U‖µ

and since µ is a measure, we have
{
‖U‖µ⊗f : : U ∈ Ω

}
is bounded.

Now, consider a net {Uλ}λ∈Λ in Ω such that Uλ ↓ ∅ and choose
Vλ ⊂ Uλ with Vλ ∈ Ω for any λ ∈ Λ. Then,

lim
λ

µ⊗ f(Vλ) = lim
λ

∑
1≤i≤n

µ (Ui ∩ Vλ) ei

=
∑

1≤i≤n
lim

λ
µ (Ui ∩ Vλ) ei

= θ

since µ is measure and {Ui ∩ Vλ}λ∈Λ is a net in Ω with Ui ∩ Vλ ⊂ Uλ

for each λ. This proves that µ⊗ f is a vector measure
For the second part, let a ∈ X; hence there exists a unique i ∈

{1, 2, 3, ..., n} such that a ∈ Ui, where f =
n∑

i=1
XUi

⊗ ei. By Lemma 4,

we have
Nµ⊗f (a) =LIM

U→a
‖µ⊗ f(U)‖

Thus, if U ∈ Ω, with a ∈ U, is small enough, that is, U ⊂ Ui for
some i, then

µ⊗ f(U) = µ(U)ei

and therefore,

Nµ⊗f (a) = LIM
U→a

‖µ(U)ei‖
= ‖ei‖ LIM

U→a
|µ(U)|

= ‖f(a)‖Nµ(a)

Definition 9. Let m : Ω → E and µ : Ω → K two non-archimedean
measures. We will say that m is absolutely continuous with respect
to µ if:

(∀a ∈ X) (∃e ∈ E) (Nm−µ⊗e(a) = 0)



A Radon Nikodym Theorem in the Non-Archimedean 277

Lemma 10. For any f ∈ S(X, E), µ ⊗ f is absolutely continuous
with respect to µ.

Proof. Let a ∈ X; hence, a ∈ Ui, where f =
n∑

i=1
XUi

⊗ ei. Now, if

U ∈ Ω, with a ∈ U, is small enough, then

µ⊗ f(U) = µ(U)ei

where f(a) = ei. Thus,

µ⊗ f(U)− µ⊗ f(a)(U) = 0

and then,
LIMU→a [µ⊗ f(U)− µ⊗ f(a)(U)] = 0

Therefore, by Lemma 4, we get

Nµ⊗f−µ⊗f(a)(a) = 0
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