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Abstract

In this paper we define the absolutely continuous relation
between nonarchimedean scalar measures and then we give and
prove a version of the Radon-Nykodym Theorem in this setting.
We also define the nonarchimedean vector measure and prove
some results in order to prepare a version of this Theorem in
a vector case.
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1. Introduction and notations

In the classical case, it is known that the Radon-Nikodym Theorem
involves real or complex valued measures and it becomes a property
if the measures involved are vector valued measures (see [12] and [7]).

In this paper we give a non-archimedean version of the Radon-
Nikodym Theorem for K-valued measures, where K is a non-archime-
dean field with a non-trivial valuation for which it is complete. In the
last part of the paper, we introduce some definitions and statements
which involve scalar valued measures.

Throughout the paper, X will denote a nonempty set, 2 a cover
ring of subset of X and 7 the topology generated by the ring €2.
As we know, any element of 2 is a clopen (closed and open) for this
topology, (2 is a base of it and (X, 7) becomes to be a zero-dimensional
topological space.

All of the following results in this section can be found in [10] and
[11] and we will give a sketch of the proof of few of them.

Definition 1. A set function u : Q) — K is said to be a non-archime
dean measure or simply measure if:
(i) p is finitely additive, that is, for A, B € ), with AN B = (),

u(A) + pu(B) = p(AU B)

(i) (Ua)yes Is a net in Q with U, | 0, and if for any o € I, we
choose V,, € Q with V,, C U,, then

li}\n u(Vy) =0
(iii) if for each a € X, there exists U € ), such that a € U and
{w(V): Ve Q;V C U} is bounded.

Definition 2. Let ;1 be a measure over a cover ring () of subsets of
X and 7 be the topology generated by 2. For a T —open W C X and
a € X, we define:

Wl = sup {[u(U)] : U € ;U C W}

N,(a) = inf{||W||M : W es T-open, a € W}
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These definitions satisfy the following properties (see [10] page
191):

Proposition 3. (i) If Wi, W, € 7, with Wi C Wa, then |[Wi]|, <
[Wall,

(ii) IfW € 7, then |W |, = sup {|U],: U € U c W}

(iii) If a € X, then N, (a) = inf {||U||u U €Qyae U}

Lemma 4. The function N, is T—upper semicontinuous (u.s.c.).
Proof. Let us take € > 0 and consider X, = {x € X : N,,(z) > €}.
If z € X \ X, then there exists U € Q, a € U, such that ||U]|, < e.
Now, for z € U, N,(2) < [[U]|, < € hence U C X \ X.. This proves
that N, is us.c. W

For a linear space F of functions f : X — K, the collection Q( F)
given by
QF)={UCX: fXyeF,V feF}

is a cover ring of X. We will denote by 7(€2(F)) the corresponding
topology.

Definition 5. We will say that F is a Woltheze space if each f € F is
T-continuous and for each a € X, there exists f € F , with f(a) # 0.

Definition 6. A linear functional I : F — K will be called an integral

if :
(I) for each net (fy),cr, fo € F with fo | 0 and for any o € T,
})}gll 1(ga) =0

for any net (ga) ep in F with |go| < | fal -
Lemma 7. Fix f € F and define

pr: 0 — K
U e uglU) = 1(fXy)

Then, py is a non-archimedean measure.
Proof. It follows easily from the fact that if (U,),., is a net in §
with U, | 0, then f* foo=f*Xy, | 0. N
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The next lemma gives a relation between those measures given in
the previous lemma (see [10], page 193)

Lemma 8. There exists a unique function N; : X — [0,00), such
that
|fl Nt = N, for each f € F. Even more, Nj is T — u.s.c.

Let I be an integral over a Wolfheze space F. We denote by
Q=Q(F), 7=71(F). For each g : X — K, we write

lgll; = sup {lg(x)| Ni(z) : z € X}

Then, we have:

Definition 9. A function g is said to be I —integrable if for each § >
0, there exists f € F such that,

If=gll; <0
We denote by L (I) the class of the integrable functions, that is,
L(I)={g: X — K : g is integrable}

This class is a linear space over the non-archimedean field K.
The following theorem gives us a characterization of integrable
functions.

Theorem 10. A function f : X — K is integrable if and only if f
satisfies the following conditions:

(i) f is 7(F)— continuous on each X; = {x € X : Ny(x) > t}

(ii) For each § > 0, there exists a 7(F)—compact P contained in
some X, such that |f| N7 < § off P.
Proof. See [10], pages 195-96. &

Theorem 11. The space L(I) is a Wolfheze space and F is ||||; —dense
in L(I).

Definition 12. Let © : () — K be set function and 1 be an integral
over F. For eacha € X, € K, ¢ €10,1[ and r € R, we write
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1. LIM ©(U) = a, if

U—a
Ve>0)3V eQaecV)UCV;Ue=|0(U)—al<e)
2. LIM, . @(U)ZO&, if
U—a

for each € > 0, there exists a neighborhood V' of a, such that for
all U € Q, with U C V, and |u(U)| > eN,(a) we have

O(U) —al < e

3. LIM, ©(U)=aq,if

U—a

LIM ©O{U)=a«a, VYce]0,1]

U=a pe

4. TIM |©(U)| =r, if

U—a

(Ve > 0)
(AU e QacU)(r—e<sup{|O(V)]|: Ve VCU}<r+e

The proof of the next lemmas follows directly from the definitions
(see [11], page 80).
Lemma 13. For a measure p: Q) — K and a € X we have

L Nyla) = ZIT |u(0)

2. Ny(a) =0 <:>IZ]£A({[ u(U)=0

Lemma 14. If© : Q — K is additive and 0 < ¢ < 1, then

LIM ©(U)=0<=LIMO(U)=0

U—a pe U—a
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2. The Radon-Nikodym Theorem

Throughout this section X will be a set and F a Wolfheze space of
functions from X into K with the assumption that F contains the
constant functions. It follows from this assumption that Xy € F for
all U € Q(F). Since 1 € F, we have that if I : F — K is an integral,
then p: Q(F) — K defined by u (U) = I (Xy) is a non-archimedean
measure. In the sequel, we will use Greek letter to denote integral.
We start with the following lemma [11]:

Lemma 1. If u: F — K is an integral, f € L () and a € X, then
LIM [uy (U) = f(a)u (U)] = 0

Definition 2. Let p, v be two measures over a cover ring (). We will
say that v is absolutely continuous with respect to u, v < pu , if for
each a € X there exists a € K, such that

No—apla) =0

Example 3. Let p: F — K be an integral functional. Let j : X —
K be a u—integrable function. We define

jp: F — K
[ gulf)=n(fi)=[fidu

It is well defined since fj € L(u) and is an integral. Note that its
corresponding measure ju : Q (F) — K is the following:

JuU) = p(Xyj) = p; (U)

(see Lemma 7). We claim that ju is absolutely continuous with respect
to p. In fact, by Lemma 1

LIM [ju(U) = j(a)p(U)] = LIM [u; (U) = j(a)p (U)]

U—a

= 0
and then, by Lemma 13-(2),

Nuj=it@u(a) = 0.
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Theorem 4. (The Radon-Nikodym Theorem)

Let v, i be two measures defined on 2 (F). If v < p, then there
exists a p—integrable function j such that

V=]

Let a € X. Since v < p, there exists «, € K such that

No—auu(a) =0

Using Lemma 13, we can prove the uniqueness of «,. Thus, we
define the function j by:

7 X—=K
oy o, it Ny(a)>0
“’_”(a)_{ 0 ,if/\f:(a)zo

The first step is to prove that j is p-integrable. To do that we will
use Theorem 10, that is, we have to prove that (i) jx, is continuous
and (ii) for each § > 0, there exists a compact set P of X contained
in some X; = {z € X : N,,(z) > t} such that [j| N, < ¢ off P. Take
t > 0and a € X;. By the assumption, N,_j(a), (a) = 0 or, equivalently,
I{]]_)]\g (vv—j(a)p)(U) = 0. Thus, if € > 0 is given, there exists
Uy € Q, with a € Uy, such that

(v—j(a)p) (V)| <e, YV eQV CU

Take b € Uy N Xy; hence N, (b) > t. Since If]H\g (v—7()u)(U) =0,
there exists Uy € 2, with b € Uy, such that

(v—=70)p) (V)| <e, YWeQVCl
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Thus, if VC UyNU; = Uy and V' € €2, then

@) =i O < la) =i BN, ()

< lia)— 3010,

= sl ()= Ol V)V eV )

< sup i (B p (V) 4 (@) (V) =]
VeV clU}

< max{5352 W= (B ) (V)]
sup |(v = j (a) 1) <v>|}
VCcUsz

< €

therefore, jx, is continuous. To prove (ii), take § > 0 and a € X,
with NV, (a) > 0. The set P = {x € X : N, (x) > ¢} is 7—compact in
X. Since N,_j()u(z) =0 for all z € X with N,(z) > 0 and

N () = Njwu(®)| < Ny japu(x) =0

we have

N () = Nj@u(x) = 17 (2)| Nu(z)
Then, for x ¢ P, we have |j ()| N,(x) < ¢. Now, we finish this part
proving that there is t > 0 such that P C X;. If a € P, then there
exists U, € Q, with a € U,, such that

0
|(l/—j(a,)/t)(V)|<§, VVGQa‘/CUa

Thus,
PcuU U,
acP
and since P is compact, there exist aq, as, ..., a,, € P such that
Pc U,
i=1
Now, denote by M = max {|j (a1)|, |j (a2)|, ..., |7 (an)|} and define t =
SM~1. We claim that P C X;; in fact, since
(W) < [ (V) =j(a)p(V)+7(ai) p (V)]
< max {[v (V) —j(a;) p (V)] 5 (a;) p (V)[}

< max{g,aw |u<v>|}
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Then, by Lemma 13, we have
d<N,(a) = LIM|v (V)

V—a

[ p—

< max{Q,at ngﬂngn}
5o

< max 5,(525 N, (a)

and, therefore

Ny(a) >t
To prove that v = ju, we consider the measure

v—ip: @ — K
U — (v—ju)(U)=v(U)— [ Xyjdu

Fix a € X, then

LIM |(v — ju) (U)| =LIM

v(U) — /XUjdu’

Now,
w(U) — [ Xojdp| = |v(U) = ja)u(U) +j(a)p(U) — [ Xujdp)
< max{pU) - jla)uU),
= a)pU) — | Xyjdpul}
Therefore,
LIM |v(U) ~ [ Xurjdp| <

max{LUJM W(U) ~ (@), LIM

j@uw) - [ XUjdu\} —0
Thus,
LIM

U—a

v(U) — /XUjdu‘ =0

and then,
No—ju(a) =0

Since a € X is arbitrary,

/\/’V_ju(a) =0,Vae X
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Therefore,
v—ju=0
or,
V=]
|

3. Non-archimedean vector measures

In this section we will briefly analyze E'—valued measures, where E is
a normed space over the field K. As in the previous sections, X will
be a nonempty set, €2 a cover ring of X and F a Banach space, with
E’# {0} over a non-archimedean field K with a nontrivial valuation
and complete. As we know, the function || ||, : £ — R defined by

l2llg = sup {|2'(z)| : 2" € £ [|l2']] < 1}
is equivalent to the original norm of F.

Definition 1. Let m :  — FE a finitely additive and bounded set
function. We will say that m is a non-archimedean vector measure
or, simply, a vector measure if for each net {Ux},., in €2 such that

Uy | 0 and if, for each A € A, we choose Vy, C Uy and Vy, € Q, then

that is,
(Ve > 0) (B € A) (A > 2o = [m(V3), <€)

Definition 2. Let m : Q0 — E a finitely additive set function. For
U € Q, we define

1Ull,, = sup {llm(B)ll, - B C U; B € Q}
Ny () =mf{||U]|,, : U € Q; z €U}

It is not difficult to prove that this function is 7 (£2) —u.s.c.
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Definition 3. Let © : ) — FE a set function, u : 2 — K a measure,
cel0,1],a € X and r € R.

1. LIM ©(U) = e means

U—a

(Ve>0) AU € QaclU)(VCU,VeQ=OV)—el, <e)

2. LIM, . ©(U) = e means

U—a
(Ve >0)(3U € QaeU)
(V UV e Qu(V)| 2 cNu(a) = |O(V) —elly <€)

3. LIM,, ©(U) = e means

U—a

LIM,.OU) =e¢

U—a

for all ¢ €10, 1]
4. If]IM |19(U)|| = r means

(Ve >0)(3U € Q;a € )
(r—e<sup{[|O(V)],: VeV CU}<r+e

Lemma 4. Let m : Q) — E a vector measure and a € X. Then,
1. Now(a) =ZT30 [fm(©)]
2. Nip(a) =0 SLIM m(U) =06

Proof. In both cases, the proof follows easily from the definition
and we omit them. W

We will denote by S(X) the vector space spanned by ({ Xy : U € Q}),
that is, f € S(X), if

f = Z aiXUi
=1

where o; € K, U; € €, and CJ U; = X. We can assume that {U;}] is
i=1

pairwise disjoint.
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Definition 5. Let m be a non-archimedean vector measure. We will
define the E-valued linear operator [ on S(X) by

/XUdm =m(U)

Lemma 6. This operator satisfies

|/ fam| <151
Proof. It follows from the fact that
| [ Asdm| = Jm@)
< U,
< sup N (2)
zelU
< sup [AY| N (o)
xeX
< | Xully

Definition 7. A function f : X — K is said to be m-integrable if
there exists a sequence { fn},.;n of S(X) such that
Tim [If = fully =0
We will denote by L(m) the space of all m-integrable functions.
Since S(X) is |||,y —dense in L(m), we have that the linear operator
J has a unique extension to L(m) and this extension satisfies the
condition:

[ fdm| < WSl ¥F € Lm)
For U € Q) and e € E, we define the function Xy ® e by

Xye: X — FE
e if ze€U
r = AyRe(x)=
0 if z¢U
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We denote by
SX,E)=({Xy®e:UeQeec E})
Thus, f e S(X,E) means

[ = ZXUi X €;
i=1

Now, if p: Q@ — K a measure and f € S(X, F), then we define the
set function
uRf: Q@ — FE
U = pef(U)=YXpUnU)e

=1

3

Lemma 8. y® f is a vector measure and satisfies the following prop-
erty

Nuss(a) = [If (@) Nus ) (@)

Proof. Trivially, u ® f is finitely additive. To see u ® f is bounded,
take U € 2. Then,

1Ulluss: = sup{lln@ f(V)llg: V eV CU}
Now, since

@ f(V)]lp =sup {2’ (n& f(V))] : || <1}
where,
Ype V) = o (EuUinv)e)
= S pUNV)2(e)
i=1
we have,

@ (e fV)] < max [ (U0 V)] [a'(c))
ma | (U A V)] el
M max ||[U; N V||

1<i<n K

MU U0V,
MU,

1 VAN VAN VAN VAN
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where M = sup {|le||,:i=1,2,...,n}.
From this,

Ul < MU,

and since p is a measure, we have
{HU”u@f: U € Q} is bounded.

Now, consider a net {Uy},., in Q such that Uy | § and choose
V\ C Uy with V), € Q for any A € A. Then,

A 1<i<n

= Z hIIl,U, (Ul N V)\) €;

1<i<n A

= 0

since p is measure and {U; N Vi},, is a net in Q with U; NV, C Uy
for each A. This proves that u ® f is a vector measure
For the second part, let a € X; hence there exists a unique i €

{1,2,3,...,n} such that a € U;, where f = i Xy, ® e;. By Lemma 4,
i=1
we have

Niss (@) =L ||u® (V)]

Thus, if U € Q, with a € U, is small enough, that is, U C U; for
some 7, then

p@ f(U) = pU)e;
and therefore,
Nuogla) = TI |[n(U)e|
— e TI |u(V)
= [If(a)| Nu(a)
|

Definition 9. Let m : Q) — FE and u : 2 — K two non-archimedean
measures. We will say that m is absolutely continuous with respect
to pu if:

(Va € X) (3 € B) (N_yse(a) = 0)
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Lemma 10. For any f € S(X,E), u® f is absolutely continuous
with respect to .

Proof. Let a € X; hence, a € U;, where f = an Xu, ® e;. Now, if
i=1
U € (), with a € U, is small enough, then
p® f(U) = pU)e;

where f(a) = e;. Thus,

p® f(U)—p® fla)(U)=0

and then,
LIMy—o[p® f(U) — p® f(a)(U)] =0

Therefore, by Lemma 4, we get

Nu®ffu®f(a) (a) =0
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