Proyecciones
Vol. 22, N^{o} 1, pp. 91-102, May 2003.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172003000100006

ON THE INVARIANCE OF SUBSPACES IN SOME BARIC ALGEBRAS

I. BASSO *
Universidad del Bío Bío, Chile
R. COSTA ${ }^{\dagger}$
Universidad de Sao Paulo, Brasil
and
J. PICANÇO \ddagger
Universidade Federal do Pará, Brasil

Abstract

In this article, we look for invariance in commutative baric algebras (A, ω) satisfying $\left(x^{2}\right)^{2}=\omega(x) x^{3}$ and in algebras satisfying $\left(x^{2}\right)^{2}=\omega\left(x^{3}\right) x$, using subspaces of kernel of ω that can be obtained by polynomial expressions of subspaces $U_{e} e V_{e}$ of Peirce decomposition $A=K e \oplus U_{e} \oplus V_{e}$ of A, where e is an idempotent element. Such subspaces are called p-subspaces. Basically, we prove that for these algebras, the p-subspaces have invariant dimension, besides that, we find out necessary and sufficient conditions for the invariance of the p-subspaces.

AMS Subject Classification : 17D92.

[^0]
1. Introduction

Let A be a commutative and not necessarily associative algebra with finite dimension over K, where K is a field with char $(K) \neq 2,3$. We consider in this paper two classes of baric algebras (A, w) satisfying respectively

$$
\begin{equation*}
\left(x^{2}\right)^{2}=\omega(x) x^{3} \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(x^{2}\right)^{2}=\omega\left(x^{3}\right) x \tag{1.2}
\end{equation*}
$$

We present in the next two sections some well known results about these two classes of algebras. In particular we look for the idempotents in these classes.

1.1. Algebras satisfying $\left(x^{2}\right)^{2}=\omega(x) x^{3}$

Let (A, ω) be a baric algebra satisfying $\left(x^{2}\right)^{2}=\omega(x) x^{3}$ for all $x \in A$. From this identity, we have

$$
\begin{equation*}
\left(x^{2}\right)^{2}=0 \tag{1.3}
\end{equation*}
$$

for all $x \in N=\operatorname{ker} \omega$. By linearization of (1.3), we deduce that

$$
\begin{align*}
x_{1}^{2}\left(x_{1} x_{2}\right) & =0 \tag{1.4}\\
x_{1}^{2}\left(x_{2} x_{3}\right)+2\left(x_{1} x_{2}\right)\left(x_{1} x_{3}\right) & =0 \tag{1.5}
\end{align*}
$$

for every $x_{1}, x_{2}, x_{3}, x_{4} \in N$. It was proved in [1] that the set of idempotents of weight 1 in algebras satisfying (1.1) is given by $\operatorname{Ip}(A)=\left\{z^{3} ; \omega(z)=1\right\}$. Every $e \in \operatorname{Ip}(A)$ determines a decomposition $A=K e \oplus U_{e} \oplus V_{e}$ called the Peirce decomposition of A, where $N=U_{e} \oplus V_{e}$ and

$$
\begin{aligned}
U_{e} & =\left\{u \in A ; e u=\frac{1}{2} u\right\} \\
V_{e} & =\{v \in A ; e v=0\}
\end{aligned}
$$

and, moreover,

$$
U_{e} V_{e} \subseteq U_{e} \quad U_{e}^{2} \subseteq V_{e} \quad V_{e}^{2} \subseteq V_{e}
$$

The elements $u \in U_{e}$ and $v \in V_{e}$ satisfy the identities

$$
\begin{array}{r}
u^{3}=0 \\
v^{3}=0 \\
u v^{2}=2(u v) v \\
u^{2} v=2 u(u v) \tag{1.6}
\end{array}
$$

and their linearizations

$$
\begin{align*}
u_{1}^{2} u_{2}+2 u_{1}\left(u_{1} u_{2}\right) & =0 \tag{1.7}\\
u_{1}\left(u_{2} u_{3}\right)+u_{2}\left(u_{3} u_{1}\right)+u_{3}\left(u_{1} u_{2}\right) & =0 \tag{1.8}\\
v_{1}\left(v_{2} v_{3}\right)+v_{2}\left(v_{3} v_{1}\right)+v_{3}\left(v_{1} v_{2}\right) & =0 \tag{1.9}\\
u\left(v_{1} v_{2}\right) & =\left(u v_{1}\right) v_{2}+\left(u v_{2}\right) v_{1} \tag{1.10}\\
\left(u_{1} u_{2}\right) v & =u_{1}\left(u_{2} v\right)+u_{2}\left(u_{1} v\right) \tag{1.11}
\end{align*}
$$

It was also proved in [1] that $\operatorname{Ip}(A)=\left\{e+u+u^{2} ; u \in U_{e}\right\}$ and if $f=e+u_{0}+u_{0}^{2}$, for $u_{0} \in U_{e}$ then

$$
\begin{align*}
U_{f} & =\left\{u+2 u_{0} u ; u \in U_{e}\right\} \tag{1.12}\\
V_{f} & =\left\{v-2 u_{0} v ; v \in V_{e}\right\} \tag{1.13}
\end{align*}
$$

Using the previous identities, it is easy to prove that

$$
\begin{equation*}
x_{1}\left(x_{1}^{2} x_{2}\right)=0 \tag{1.14}
\end{equation*}
$$

for every $x_{1}, x_{2} \in N$. Since A is commutative, the identities (1.4) and (1.14) imply that N is a Jordan algebra (in fact, of a very special kind: $x_{1}^{2}\left(x_{1} x_{2}\right)=x_{1}\left(x_{1}^{2} x_{2}\right)=0$). For more information see [2]

1.2. Algebras satisfying $\left(x^{2}\right)^{2}=\omega\left(x^{3}\right) x$

Etherington showed in [4] that if (A, ω) satisfies the train equation in principal powers (of degree 3)

$$
\begin{equation*}
x^{3}-(1+\gamma) \omega(x) x^{2}+\gamma \omega\left(x^{2}\right) x=0 \tag{1.15}
\end{equation*}
$$

with $\gamma \in K$, then (A, ω) also satisfies the train equation in plenary powers (of degree 4)

$$
\begin{equation*}
\left(x^{2}\right)^{2}-(1+2 \gamma) \omega\left(x^{2}\right) x^{2}+2 \gamma \omega\left(x^{3}\right) x=0 \tag{1.16}
\end{equation*}
$$

In [6], Walcher proved that (1.15) and (1.16) are equivalent, excepting for $\gamma=0$ and $\gamma=-\frac{1}{2}$. If $\gamma=0$ in (1.16), then $\left(x^{2}\right)^{2}=\omega\left(x^{2}\right) x^{2}$ and, in this case, (A, ω) is a Bernstein algebra. Now, if $\gamma=-\frac{1}{2}$, then (A, ω) satisfies

$$
\left(x^{2}\right)^{2}=\omega\left(x^{3}\right) x
$$

These algebras are also studied in [1], [5], and [6]. The following results are proved in [5]. Every algebra A satisfying (1.2) has an idempotent given
by $e=\left(d^{3}\right)^{3}$ where $\omega(d)=1$. Each idempotent e of A determines a Peirce decomposition $A=K e \oplus U_{e} \oplus V_{e}$, where

$$
\begin{aligned}
U_{e} & =\left\{u \in \operatorname{ker} \omega ; e u=\frac{1}{2} u\right\} \\
V_{e} & =\left\{v \in \operatorname{ker} \omega ; e v=-\frac{1}{2} v\right\}
\end{aligned}
$$

These subspaces satisfy the inclusions

$$
U_{e} V_{e} \subseteq U_{e}, \quad U_{e}^{2} \subseteq V_{e}, \quad V_{e}^{2} \subseteq V_{e}
$$

As in the preceding section, we have $N=\operatorname{ker} \omega$ and $N=U e \oplus V e$. From (1.2), we have, for every $x \in N$,

$$
\left(x^{2}\right)^{2}=0
$$

Likewise, A also satisfies the identities (1.4) and (1.5). Another identity in algebras satisfying (1.2) is

$$
\begin{equation*}
x_{1}\left(x_{1}^{2} x_{2}\right)=0 \tag{1.17}
\end{equation*}
$$

From (1.4) and (1.17), N is a Jordan algebra of a very special kind, as remarked at the end of 1.1. For every $u \in U$ and $v \in V$ we have

$$
\begin{align*}
u^{3} & =0 \\
v^{3} & =0 \\
u^{2} v & =2 u(u v) \tag{1.18}\\
u v^{2} & =2 v(v u)
\end{align*}
$$

By linearization of these identities we obtain

$$
\begin{align*}
u_{1}\left(u_{2} u_{3}\right)+u_{2}\left(u_{3} u_{1}\right)+u_{3}\left(u_{1} u_{2}\right) & =0 \tag{1.19}\\
v_{1}\left(v_{2} v_{3}\right)+v_{2}\left(v_{3} v_{1}\right)+v_{3}\left(v_{1} v_{2}\right) & =0 \\
\left(u_{1} u_{2}\right) v & =u_{1}\left(u_{2} v\right)+u_{2}\left(u_{1} v\right) \\
u\left(v_{1} v_{2}\right) & =\left(u v_{1}\right) v_{2}+\left(u v_{2}\right) v_{1}
\end{align*}
$$

It is proved in [1] that the set of idempotents of weight 1 of A is given by

$$
\operatorname{Ip}(A)=\left\{e+u+\frac{1}{2} u^{2} ; u \in U_{e}\right\}
$$

and if $f=e+u_{0}+\frac{1}{2} u_{0}{ }^{2}, u_{0} \in U_{e}$, is another idempotent, then

$$
\begin{aligned}
U_{f} & =\left\{u+u_{0} u ; u \in U_{e}\right\} \\
V_{f} & =\left\{v-u_{0} v ; v \in V_{e}\right\}
\end{aligned}
$$

2. Invariance of p-subspaces

We will use in this section the same terminology for p-subspaces found in [3]. Let $A=K e \oplus U e \oplus V e$ be a Peirce decomposition of an algebra satisfying (1.1) or (1.2). Subspaces of A obtained by means of a monomial expression in $U e$ and $V e$ such as

$$
U_{e}, \quad V_{e} \quad U_{e}^{2}, \quad V_{e}^{2}, \quad U_{e} V_{e}, \quad U_{e}\left(U_{e} V_{e}\right), \quad \text { etc }
$$

are called p-monomials. If m denotes a p-monomial, then ∂m indicates the degree of m. The inclusions $U V \subseteq U, U^{2} \subseteq V$ e $V^{2} \subseteq V$, valid in both cases (1.1) and (1.2), imply that there are two possibilities for a p -monomial $m: m \subseteq U$ or $m \subseteq V$. A p-subspace of A is a sum of p -monomials. For instance,

$$
U_{e}, \quad V_{e}, \quad U_{e}+V_{e}, \quad U_{e} V_{e}+V_{e}^{2}, \quad U_{e}^{2}+V_{e}^{3}+\left(U_{e} V_{e}\right) V_{e}
$$

are examples of p-subspaces. A p-monomial is, of course, a particular case of p-subspace. In general, all p-subspaces can be obtained from an ordinary polynomial $p(x, y)$ in two commutative and non associative variables upon the substitution of x for U_{e} and y for V_{e}. We denote such p-subspaces by p_{e} or simply by p. Given a p-subspace p, there are two subspaces $g \subseteq U$ and $h \subseteq V$ of A such that $p=g \oplus h$. Choosing another idempotent $f \in \operatorname{Ip}(A)$ and proceeding as before for the same polynomial $p(x, y)$ we obtain a subspace p_{f}. If $p_{e}=p_{f}$ for every $e, f \in \operatorname{Ip}(A)$, we say that p is invariant. If $\operatorname{dim} p_{e}=\operatorname{dim} p_{f}$ for every $e, f \in \operatorname{Ip}(A)$, we say that p has invariant dimension. In the next section, we prove that all p -subspaces of algebras satisfying (1.1) or (1.2) have invariant dimension. We will also find a necessary and sufficient condition, of easy verification, for a p-subspace being invariant. Such a condition is also necessary and sufficient for a p-subspace being an ideal of A. These results allow us to introduce a large number of numerical invariants both in cases (1.1) and (1.2), namely the dimension of p-subspaces.

2.1. Invariance in algebras satisfying $\left(x^{2}\right)^{2}=\omega(x) x^{3}$

We suppose in this section that (A, ω) satisfies the baric equation in the title. Given $e, f \in \operatorname{Ip}(A)$, let the functions $\sigma: U_{e} \rightarrow U_{f}$ and $\tau: V_{e} \rightarrow V_{f}$ be defined by

$$
\begin{aligned}
\sigma(u) & =u+2 u_{0} u \\
\tau(v) & =v-2 u_{0} v
\end{aligned}
$$

where $f=e+u_{0}+u_{0}^{2}$ with $u_{0} \in U_{e}$. From (1.12) and (1.13), σ and τ are surjective. If $u \in U_{e}$ and $v \in V_{e}$ are such that $\sigma(u)=\tau(v)=0$, then $u=-2 u_{0} u \in U_{e} \cap V_{e}$ and so $u=0$. In the same way, $v=0$ so that σ and τ are injective. Therefore σ and τ are isomorphisms of vector spaces. Consequently, U and V have invariant dimension. The isomorphism of vector spaces $\varphi: A \rightarrow A$ defined by $\varphi(\alpha e+u+v)=\alpha f+\sigma(u)+\tau(v)$ is called the Peirce transformation of A associated to e and f. The linear operators $\xi: U_{e} \rightarrow U_{e}$ and $\zeta: V_{e} \rightarrow V_{e}$ defined by

$$
\begin{aligned}
& \xi(u)=u-2 u_{0}^{2} u \\
& \zeta(v)=v+2 u_{0}^{2} v
\end{aligned}
$$

are also isomorphisms of vector spaces. In fact, if $\xi(u)=0$, then $u=$ $2 u_{0}^{2} u$. Multiplying this equality by u_{0} and using (1.14), we have that $u_{0} u=$ $2 u_{0}\left(u_{0}^{2} u\right)=0$. Likewise, from (1.7) we have $u=2 u_{0}^{2} u=-4 u_{0}\left(u_{0} u\right)=0$. Therefore, ξ is injective. Now, if $\zeta(v)=0$, then $v=-2 u_{0}^{2} v$. In the same way, $u_{0} v=0$. Thus, from (1.6) we have $v=0$.

Lemma 2.1. The functions σ, τ, ξ and ζ satisfy the following identities, for $u, u_{1}, u_{2} \in U$ and $v, v_{1}, v_{2} \in V$:
(a) $\sigma\left(u_{1}\right) \sigma\left(u_{2}\right)=\tau\left(\xi\left(u_{1}\right) \xi\left(u_{2}\right)\right)$;
(b) $\sigma(u) \tau(v)=\sigma(\xi(u) \zeta(v))$;
(c) $\left.\left.\left.\tau\left(v_{1}\right)\right) \tau\left(v_{2}\right)\right)=\tau\left(\zeta\left(v_{1}\right) \zeta\left(v_{2}\right)\right)\right)$.

Proof. From (1.5) and (1.8) we have
$\sigma\left(u_{1}\right) \sigma\left(u_{2}\right)=\left(u_{1}\right)\left(u_{2}\right)-2 u_{0}\left(u_{1}\right)\left(u_{2}\right)-2\left(u_{0}^{2}\right)\left(\left(u_{1}\right)\left(u_{2}\right)\right)$. Using (1.3), (1.5) and (1.11) we have $\xi\left(u_{1}\right) \xi\left(u_{2}\right)=\left(u_{1}\right)\left(u_{2}\right)-2 u_{0}^{2}\left(\left(u_{1}\right)\left(u_{2}\right)\right)$. Hence, $\sigma\left(u_{1}\right) \sigma\left(u_{2}\right)=\tau\left(\xi\left(u_{1}\right) \xi\left(u_{2}\right)\right)$ by (1.14). Now, from (1.5) and (1.11), $\sigma(u) \tau(v)=u v+2 u_{0}(u v)+2 u_{0}{ }^{2}(u v)$. It follows from (1.3), (1.5) and (1.10) that $\xi(u) \zeta(v)=u v+2 u_{0} 2(u v)$. From (1.14) we obtain
$\sigma(u) \tau(v)=\sigma(\xi(u) \zeta(v))$. Finally (1.5) and (1.10) imply that $\tau\left(v_{1}\right) \tau\left(v_{2}\right)=$ $v_{1} v_{2}-2 u_{0}\left(v_{1} v_{2}\right)-2 u_{0}^{2}\left(v_{1} v_{2}\right)$. Using (1.3), (1.5) and (1.9) we prove that $\zeta\left(v_{1}\right) \zeta\left(v_{2}\right)=v_{1} v_{2}-2 u_{0}^{2}\left(v_{1} v_{2}\right)$. Therefore, $\tau\left(v_{1}\right) \tau\left(v_{2}\right)=\tau\left(\zeta\left(v_{1}\right) \zeta\left(v_{2}\right)\right)$ by (1.14).

The next corollary follows immediately from the previous lemma.
Corollary 2.2. Let $X, X_{1}, X_{2} \subseteq U$ and $W, W_{1}, W_{2} \subseteq V$ be subspaces of $A=K e \oplus U \oplus V$. Then
(a) $\sigma\left(X_{1}\right) \sigma\left(X_{2}\right)=\tau\left(\xi\left(X_{1}\right) \xi\left(X_{2}\right)\right)$;
(b) $\sigma(X) \tau(W)=\sigma(\xi(X) \zeta(W))$;
(c) $\tau\left(W_{1}\right) \tau\left(W_{2}\right)=\tau\left(\zeta\left(W_{1}\right) \zeta\left(W_{2}\right)\right)$.

In the following proposition we show that p-subspaces of A absorb products by V.

Proposition 2.3. Every p-subspace p of A satisfies $V p \subseteq p$.
Proof. It is enough to prove the statement for monomials. We have, when the degree of m is 1 ,

$$
\begin{aligned}
& V U \subseteq U \\
& V V \subseteq V
\end{aligned}
$$

If $\partial m \geq 2$ then one of the 3 next possibilities might occur:

$$
\begin{aligned}
m & =\mu \nu \\
m & =\mu_{1} \mu_{2} \\
m & =\nu_{1} \nu_{2}
\end{aligned}
$$

where $\mu, \mu_{1}, \mu_{2} \subseteq U$ and $\nu, \nu_{1}, \nu_{2} \subseteq V$ are p-monomials with lower degree than ∂m. A generator of $V(\mu \nu)$ has the form $v(u w)$, where $v \in V, u \in \mu$ and $w \in \nu$. From (1.10),

$$
v(u w)=u(v w)-w(u v) \in \mu(V \nu)+\nu(V \mu)
$$

We have that $V\left(\mu_{1} \mu_{2}\right)=\left\langle v\left(\left(u_{1}\right)\left(u_{2}\right)\right) ; v \in V, u_{1} \in \mu_{1}, u_{2} \in \mu_{2}\right\rangle$. Using (1.11) we obtain

$$
v\left(u_{1} u_{2}\right)=u_{1}\left(u_{2} v\right)+u_{2}\left(u_{1} v\right) \in \mu_{1}\left(\mu_{2} V\right)+\mu_{2}\left(\mu_{1} V\right)
$$

Finally, $V\left(\nu_{1} \nu_{2}\right)$ is spanned by elements having the form $v\left(w_{1} w_{2}\right)$, where $v \in V, w_{1} \in \nu_{1}$ and $w_{2} \in \nu_{2}$.

From (1.9),

$$
v\left(w_{1} w_{2}\right)=-w_{1}\left(w_{2} v\right)-w_{2}\left(v w_{1}\right) \in \nu_{1}\left(\nu_{2} V\right)+\nu_{2}\left(V \nu_{1}\right)
$$

Now, by induction on ∂m, we obtain $V m \subseteq m$.

Corollary 2.4. For all p-subspaces $g \subseteq U$ and $h \subseteq V$ we have

$$
\begin{aligned}
\xi(g) & =g \\
\zeta(h) & =h
\end{aligned}
$$

Proof. Let $u \in g$. From the preceding proposition, $\xi(u)=u-2 u_{0}^{2} u \in$ $g+V g=g$. Next, $\xi(g) \subseteq g$ and, as ξ is an isomorphism of vector spaces, $\xi(g)=g$. In the same way, it is shown that $\zeta(h)=h$.

Subsequently, we have the main result referring to algebras satisfying (1.1).

Theorem 2.5. Let A be a baric algebra satisfying (1.1). Then:
(1) Every p-subspace p of A satisfies $\varphi\left(p_{e}\right)=p_{f}$, where φ is the Peirce transformation of A associated to the idempotents e and f. In particular, every p-subspace has invariant dimension.
(2) The following statements are equivalent relative to the p-subspace p of A :
(2.1) p is invariant;
(2.2) $U p \subseteq p$;
(2.3) p is an ideal of A.

Proof. It suffices to show the statement (1) for a p-monomial m and, for this, we use induction on ∂m. Let e be an idempotent of weight 1 in A and, for all $u \in U_{e}$, we consider $f=e+u+u^{2}$. Since σ and τ are isomorphisms, we have

$$
\begin{array}{r}
U_{f}=\sigma\left(U_{e}\right)=\varphi\left(U_{e}\right) \\
V_{f}=\tau\left(V_{e}\right)=\varphi\left(V_{e}\right)
\end{array}
$$

Let us suppose that the result is true for all p-monomials with degree $\leq k$ and let m be a p-monomial with $\partial m=k+1$. There are 3 possibilities: $m=\mu \nu, m=\mu_{1} \mu_{2}, m=\nu_{1} \nu_{2}$, where $\mu, \mu_{1}, \mu_{2} \subseteq U$ and $\nu, \nu_{1}, \nu_{2} \subseteq V$ are p-monomials with degree $\leq k$. If $m=\mu \nu$ then,

$$
m_{f}=\mu_{f} \nu_{f}=\sigma\left(\mu_{e}\right) \tau\left(\nu_{e}\right)
$$

From corollaries 2.2 and 2.4 we have

$$
m_{f}=\sigma\left(\xi\left(\mu_{e}\right) \zeta\left(\nu_{e}\right)\right)=\sigma\left(\mu_{e} \nu_{e}\right)=\sigma\left(m_{e}\right)=\varphi\left(m_{e}\right)
$$

The other cases are similar. To prove part (2), we let $p=g \oplus h$, where g and h are p-subspaces with $g \subseteq U$ and $h \subseteq V$. From part (1), $p_{f}=g_{f} \oplus h_{f}=\left\{\sigma(x)+\tau(w) ; x \in g_{e}, w \in h_{e}\right\}$. Therefore,

$$
\begin{equation*}
p_{f}=\left\{(x-2 u w)+(w+2 u x) ; x \in g_{e}, w \in h_{e}\right\} \tag{2.20}
\end{equation*}
$$

Let us suppose that p is invariant. Then, $p_{f}=p_{e}$ for every $e, f \in \operatorname{Ip}(A)$. It follows from (2.20) that for $x \in g_{e}$ and $w \in h_{e}$, there are $x^{\prime} \in g_{e}$ and $w^{\prime} \in h_{e}$ such that $x-2 u w=x^{\prime}$ and $w+2 u x=w^{\prime}$. Then,

$$
\begin{aligned}
& u w=\frac{1}{2}\left(x-x^{\prime}\right) \\
& u x=\frac{1}{2}\left(w^{\prime}-w\right)
\end{aligned}
$$

It means that $U_{e} g_{e} \subseteq h_{e}$ and $U_{e} h_{e} \subseteq g_{e}$ and so $U_{e} p_{e} \subseteq p_{e}$. Reciprocally, let us suppose that $U p \subseteq p$. We can state (2.20) as

$$
p_{f}=\left\{x+w+2 u(x-w) ; x \in g_{e}, w \in h_{e}\right\}
$$

and so we obtain $p_{f} \subseteq p_{e}+U e p_{e}$. Now, using the hypothesis, we conclude that $p_{f} \subseteq p_{e}$. Since this inclusion is valid for every pair of idempotents, then $p_{e}=p_{f}$ and p is invariant. Finally, as we know that $A=K e \oplus U \oplus V$, $e p=g \subseteq p$ and $V p \subseteq p$, and so p is an ideal if and only if $U p \subseteq p$.
2.2. Invariance in algebras satisfying $\left(x^{2}\right)^{2}=\omega\left(x^{3}\right) x$

We suppose now that the baric algebra (A, ω) satisfies the baric equation in the title. The proof of next proposition is the same as that of Proposition 2.3 and will be ommitted.

Proposition 2.6. If p is a p-subspace of any algebra satisfying (1.2) then $V p \subseteq p$.

For any $u_{0} \in U$ and $\alpha, \beta \in K$ we consider the linear operator $T_{(\alpha, \beta)}: N \rightarrow N$ defined by

$$
T_{(\alpha, \beta)}(x)=x+\alpha u_{0} x+\beta u_{0}^{2} x
$$

Such operators satisfy the following properties:

Lemma 2.7. For every $u_{0} \in U$ and $\alpha, \beta \in K$, we have:
$T_{(\alpha, \beta)}$ is an automorphism of vector spaces;
$T_{(0, \beta)}(p)=p$ for every p-subspace p of A.
Proof. Let $x=u+v \in N(u \in U$ and $v \in V)$ be such that $T_{(\alpha, \beta)}(x)=0$. Then $u+v+\alpha u_{0}(u+v)+\beta u_{0}^{2}(u+v)=0$, and so

$$
\begin{aligned}
u+\alpha u_{0} v+\beta u_{0}^{2} u & =0 \\
v+\alpha u_{0} u+\beta u_{0}^{2} v & =0
\end{aligned}
$$

Multiplying these identities by u_{0} and using (1.17), (1.18) and (1.19), we obtain

$$
\begin{aligned}
u_{0} u+\frac{1}{2} \alpha u_{0}^{2} v & =0 \\
u_{0} v-\frac{1}{2} \alpha u_{0}^{2} u & =0
\end{aligned}
$$

Again, multiplying by u_{0} the latest 2 equalities and using (1.17), (1.18) and (1.19), we have $u_{0}{ }^{2} u=u_{0}{ }^{2} v=0$. Then $u_{0} u=u_{0} v=0$. Therefore $u=v=0, T_{(\alpha, \beta)}$ is injective and so it is an isomorphism. Let $x \in p$; we know that $u_{0}{ }^{2} \in V$, and so from Proposition 2.6, we have

$$
T_{(0, \beta)}(x)=x+\beta u_{0}^{2} x \in p+V p=p
$$

Hence $T_{(0, \beta)}(p) \subseteq p$ and, since $T_{(\alpha, \beta)}$ is injective, we have $T_{(0, \beta)}(p)=p$.
Given $e, f \in \operatorname{Ip}(A)$, where $f=e+u_{0}+\frac{1}{2} u_{0} 2, u_{0} \in U e$, we use the following notations:
$\sigma=T_{(1,0)}\left|U_{e}, \tau=T_{(-1,0)}\right| V_{e}, \xi=T_{\left(0,-\frac{1}{2}\right)}\left|U_{e}, \zeta=T\left(0, \frac{1}{2}\right)\right| V_{e}$. We have that $\sigma: U_{e} \rightarrow U_{f}, \tau: V_{e} \rightarrow V_{f}, \xi: U_{e} \rightarrow U_{e}$ and $\zeta: V_{e} \rightarrow V_{e}$. The vector space isomorphism $\varphi: A \rightarrow A$ defined by $\varphi(\alpha e+u+v)=\alpha f+\sigma(u)+\tau(v)$ is the Peirce transformation of A associated to e and f. The next result is proved similarly to Lemma 2.1:

Lemma 2.8. The functions σ, τ, ξ and ζ satisfy the identities:
(a) $\sigma\left(u_{1}\right) \sigma\left(u_{2}\right)=\tau\left(\xi\left(u_{1}\right) \xi\left(u_{2}\right)\right)$;
(b) $\sigma(u) \tau(v)=\sigma(\xi(u) \zeta(v))$;
(c) $\left.\left.\tau\left(v_{1}\right)\right) \tau\left(v_{2}\right)\right)=\tau\left(\zeta\left(v_{1}\right) \zeta\left(v_{2}\right)\right) ;$
for every $u, u_{1}, u_{2} \in U_{e}$ and $v, v_{1}, v_{2} \in V_{e}$.
Finally, as we have done before, we can prove the next theorem.
Theorem 2.9. Let A be a baric algebra satisfying (1.2). Then
(1) Every p-subspace p of A satisfies $\varphi\left(p_{e}\right)=p_{f}$. In particular, every p-subspace has invariant dimension.
(2) The following statements about a p-subspace p of A are equivalent:
(2.1) p is invariant;
(2.2) $U p \subseteq p$;
(2.3) p is an ideal.

References

[1] M. T. Alcalde, C. Burgueño and C. Mallol. Les $\operatorname{Pol}(\mathrm{n}, \mathrm{m})$-algèbres: identités polynomiales symétriques des algèbres. Linear Algebra and its Applications, 191, pp. 213-234, (1993)
[2] R. Andrade and A. Labra. On a class of Baric Algebras. Linear Algebra and its Applications, 245, pp. 49-53, (1996)
[3] R. Costa and J. Picanço. Invariance of dimension of p-subspaces in B ernstein algebras. Communications in Algebra, 27 (8), pp. 4039-4055 (1999).
[4] I. M. H. Etherington. Commutative train algebras of ranks 2 and 3. J. London Math. Soc. 15, pp. 136-149, (1940)
[5] C. Mallol and R. Varro. A propos des algèbres vérifiant $x^{[3]}=\omega(x)^{3} x$. Linear Algebra and its Applications, 225, pp. 187-194, (1995).
[6] S. Walcher. Algebras which satisfy a train equation for the first three plenary powers. Arch. Math. 56, pp. 547-551, (1991).

Received: December, 2002.

I. Basso

Dpto.de Cs. Básicas. Facultad de Ciencias
Universidad del Bio-Bio
Campus Chillán
Casilla 447
Chillán
Chile
e-mail: ibasso@pehuen.chillan.ubiobio.cl

R. Costa

Instituto de Matemática e Estatística
Universidade de São Paulo
Caixa Postal 66281 - Agência Cidade de São Paulo
05315-970 - São Paulo
Brazil
e-mail: rcosta@ime.usp.br
and
J. Picanço

Centro de Ciências Exatas e Naturais
Universidade Federal do Pará
Campus do Guamá
66075-000 - Belém
Brazil
e-mail: jps@ufpa.br

[^0]: *Sponsored partially by DIPRODE, Proyecto 012707 1, U. del Bio-Bio
 ${ }^{\dagger}$ Sponsored by CNPq, Research Fellowship Proc. 300645/93-7
 ${ }^{\ddagger}$ Sponsored partially by CCEN-PROPESP, Proc. 020184/99, UFPA

