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Abstract

In this article, we look for invariance in commutative baric al-
gebras (A,ω) satisfying (x2)2 = ω(x)x3 and in algebras satisfying
(x2)2 = ω(x3)x, using subspaces of kernel of ω that can be obtained
by polynomial expressions of subspaces Ue e Ve of Peirce decomposi-
tion A = Ke⊕Ue⊕Ve of A, where e is an idempotent element. Such
subspaces are called p -subspaces. Basically, we prove that for these
algebras, the p -subspaces have invariant dimension, besides that, we
find out necessary and sufficient conditions for the invariance of the
p-subspaces.
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1. Introduction

Let A be a commutative and not necessarily associative algebra with finite
dimension over K, where K is a field with char (K)6= 2, 3. We consider in
this paper two classes of baric algebras (A,w) satisfying respectively

(x2)2 = ω(x)x3(1.1)

or
(x2)2 = ω(x3)x(1.2)

We present in the next two sections some well known results about these
two classes of algebras. In particular we look for the idempotents in these
classes.

1.1. Algebras satisfying (x2)2 = ω(x)x3

Let (A, ω) be a baric algebra satisfying (x2)2 = ω(x)x3 for all x ∈ A. From
this identity, we have

(x2)2 = 0(1.3)

for all x ∈ N = kerω. By linearization of (1.3), we deduce that

x2
1
(x1x2) = 0(1.4)

x2
1
(x2x3) + 2(x1x2)(x1x3) = 0(1.5)

for every x1, x2, x3, x4 ∈ N . It was proved in [1] that the set of idempotents
of weight 1 in algebras satisfying (1.1) is given by Ip(A) = {z3 ; ω(z) = 1}.
Every e ∈ Ip(A) determines a decomposition A = Ke⊕ Ue ⊕ Ve called the
Peirce decomposition of A, where N = Ue ⊕ Ve and

Ue = {u ∈ A ; eu = 1
2u}

Ve = {v ∈ A ; ev = 0}
and, moreover,

UeVe ⊆ Ue U2
e ⊆ Ve V 2

e ⊆ Ve

The elements u ∈ Ue and v ∈ Ve satisfy the identities

u3 = 0
v3 = 0

uv2 = 2(uv)v
u2v = 2u(uv)(1.6)
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and their linearizations

u2
1u2 + 2u1(u1u2) = 0(1.7)

u1(u2u3) + u2(u3u1) + u3(u1u2) = 0(1.8)
v1(v2v3) + v2(v3v1) + v3(v1v2) = 0(1.9)

u(v1v2) = (uv1)v2 + (uv2)v1(1.10)
(u1u2)v = u1(u2v) + u2(u1v)(1.11)

It was also proved in [1] that Ip(A) = {e + u + u2 ; u ∈ Ue} and if
f = e + u0 + u2

0
, for u0 ∈ Ue then

Uf = {u + 2u0u ; u ∈ Ue}(1.12)
Vf = {v − 2u0v ; v ∈ Ve}(1.13)

Using the previous identities, it is easy to prove that

x1(x
2
1
x2) = 0(1.14)

for every x1, x2 ∈ N . Since A is commutative, the identities (1.4) and
(1.14) imply that N is a Jordan algebra (in fact, of a very special kind:
x2

1(x1x2) = x1(x2
1x2) = 0). For more information see [2]

1.2. Algebras satisfying (x2)2 = ω(x3)x

Etherington showed in [4] that if (A,ω) satisfies the train equation in prin-
cipal powers (of degree 3)

x3 − (1 + γ)ω(x)x2 + γω(x2)x = 0(1.15)

with γ ∈ K, then (A,ω) also satisfies the train equation in plenary powers
(of degree 4)

(x2)2 − (1 + 2γ)ω(x2)x2 + 2γω(x3)x = 0(1.16)

In [6], Walcher proved that (1.15) and (1.16) are equivalent, excepting for
γ = 0 and γ = −1

2 . If γ = 0 in (1.16), then (x2)2 = ω(x2)x2 and, in this
case, (A,ω) is a Bernstein algebra. Now, if γ = −1

2 , then (A,ω) satisfies

(x2)2 = ω(x3)x

These algebras are also studied in [1], [5], and [6]. The following results
are proved in [5]. Every algebra A satisfying (1.2) has an idempotent given
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by e = (d3)3 where ω(d) = 1. Each idempotent e of A determines a Peirce
decomposition A = Ke⊕ Ue ⊕ Ve, where

Ue = {u ∈ kerω ; eu = 1
2u}

Ve = {v ∈ kerω ; ev = −1
2v}

These subspaces satisfy the inclusions

UeVe ⊆ Ue, U2
e ⊆ Ve, V 2

e ⊆ Ve

As in the preceding section, we have N = kerω and N = Ue ⊕ V e. From
(1.2), we have, for every x ∈ N ,

(x2)2 = 0

Likewise, A also satisfies the identities (1.4) and (1.5). Another identity in
algebras satisfying (1.2) is

x1(x2
1x2) = 0(1.17)

From (1.4) and (1.17), N is a Jordan algebra of a very special kind, as
remarked at the end of 1.1. For every u ∈ U and v ∈ V we have

u3 = 0
v3 = 0

u2v = 2u(uv)(1.18)
uv2 = 2v(vu)

By linearization of these identities we obtain

u1(u2u3) + u2(u3u1) + u3(u1u2) = 0(1.19)
v1(v2v3) + v2(v3v1) + v3(v1v2) = 0

(u1u2)v = u1(u2v) + u2(u1v)
u(v1v2) = (uv1)v2 + (uv2)v1

It is proved in [1] that the set of idempotents of weight 1 of A is given by

Ip(A) = {e + u + 1
2u2 ; u ∈ Ue}

and if f = e + u0 + 1
2u0

2, u0 ∈ Ue, is another idempotent, then

Uf = {u + u0u ; u ∈ Ue}
Vf = {v − u0v ; v ∈ Ve}
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2. Invariance of p -subspaces

We will use in this section the same terminology for p -subspaces found
in [3]. Let A = Ke ⊕ Ue ⊕ V e be a Peirce decomposition of an algebra
satisfying (1.1) or (1.2). Subspaces of A obtained by means of a monomial
expression in Ue and V e such as

Ue, Ve U2
e , V 2

e , UeVe, Ue(UeVe), etc

are called p -monomials. If m denotes a p -monomial, then ∂m indicates
the degree of m. The inclusions UV ⊆ U , U2 ⊆ V e V 2 ⊆ V , valid in
both cases (1.1) and (1.2), imply that there are two possibilities for a p
-monomial m : m ⊆ U or m ⊆ V . A p -subspace of A is a sum of p
-monomials. For instance,

Ue, Ve, Ue + Ve, UeVe + V 2
e , U2

e + V 3
e + (UeVe)Ve

are examples of p -subspaces. A p -monomial is, of course, a particular
case of p -subspace. In general, all p -subspaces can be obtained from
an ordinary polynomial p(x, y) in two commutative and non associative
variables upon the substitution of x for Ue and y for Ve. We denote such
p -subspaces by pe or simply by p. Given a p -subspace p, there are two
subspaces g ⊆ U and h ⊆ V of A such that p = g ⊕ h. Choosing another
idempotent f ∈ Ip(A) and proceeding as before for the same polynomial
p(x, y) we obtain a subspace pf . If pe = pf for every e, f ∈ Ip(A), we
say that p is invariant. If dim pe = dim pf for every e, f ∈ Ip(A), we say
that p has invariant dimension. In the next section, we prove that all p
-subspaces of algebras satisfying (1.1) or (1.2) have invariant dimension.
We will also find a necessary and sufficient condition, of easy verification,
for a p -subspace being invariant. Such a condition is also necessary and
sufficient for a p -subspace being an ideal of A. These results allow us to
introduce a large number of numerical invariants both in cases (1.1) and
(1.2), namely the dimension of p -subspaces.

2.1. Invariance in algebras satisfying (x2)2 = ω(x)x3

We suppose in this section that (A,ω) satisfies the baric equation in the
title. Given e, f ∈ Ip(A), let the functions σ : Ue → Uf and τ : Ve → Vf

be defined by

σ(u) = u + 2u0u

τ(v) = v − 2u0v
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where f = e + u0 + u2
0

with u0 ∈ Ue. From (1.12) and (1.13), σ and τ
are surjective. If u ∈ Ue and v ∈ Ve are such that σ(u) = τ(v) = 0, then
u = −2u0u ∈ Ue ∩ Ve and so u = 0. In the same way, v = 0 so that σ
and τ are injective. Therefore σ and τ are isomorphisms of vector spaces.
Consequently, U and V have invariant dimension. The isomorphism of
vector spaces ϕ : A → A defined by ϕ(αe + u + v) = αf + σ(u) + τ(v)
is called the Peirce transformation of A associated to e and f . The linear
operators ξ : Ue → Ue and ζ : Ve → Ve defined by

ξ(u) = u− 2u2
0
u

ζ(v) = v + 2u2
0
v

are also isomorphisms of vector spaces. In fact, if ξ(u) = 0, then u =
2u2

0
u. Multiplying this equality by u0 and using (1.14), we have that u0u =

2u0(u2
0
u) = 0. Likewise, from (1.7) we have u = 2u2

0
u = −4u0(u0u) = 0.

Therefore, ξ is injective. Now, if ζ(v) = 0, then v = −2u2
0
v. In the same

way, u0v = 0. Thus, from (1.6) we have v = 0.

Lemma 2.1. The functions σ, τ , ξ and ζ satisfy the following identities,
for u, u1, u2 ∈ U and v, v1, v2 ∈ V :

(a) σ(u1)σ(u2) = τ(ξ(u1)ξ(u2));

(b) σ(u)τ(v) = σ(ξ(u)ζ(v));

(c) τ(v1))τ(v2)) = τ(ζ(v1)ζ(v2))).

Proof. From (1.5) and (1.8) we have
σ(u1)σ(u2) = (u1)(u2)− 2u0(u1)(u2)− 2(u0

2)((u1)(u2)). Using (1.3), (1.5)
and (1.11) we have ξ(u1)ξ(u2) = (u1)(u2)− 2u2

0
((u1)(u2)). Hence,

σ(u1)σ(u2) = τ(ξ(u1)ξ(u2)) by (1.14). Now, from (1.5) and (1.11),
σ(u)τ(v) = uv +2u0(uv)+ 2u0

2(uv). It follows from (1.3), (1.5) and (1.10)
that ξ(u)ζ(v) = uv + 2u02(uv). From (1.14) we obtain
σ(u)τ(v) = σ(ξ(u)ζ(v)). Finally (1.5) and (1.10) imply that τ(v1)τ(v2) =
v1v2 − 2u0(v1v2) − 2u0

2(v1v2). Using (1.3), (1.5) and (1.9) we prove that
ζ(v1)ζ(v2) = v1v2 − 2u0

2(v1v2). Therefore, τ(v1)τ(v2) = τ(ζ(v1)ζ(v2)) by
(1.14).

The next corollary follows immediately from the previous lemma.

Corollary 2.2. Let X, X1, X2 ⊆ U and W , W1, W2 ⊆ V be subspaces of
A = Ke⊕ U ⊕ V . Then
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(a) σ(X1)σ(X2) = τ(ξ(X1)ξ(X2));

(b) σ(X)τ(W ) = σ(ξ(X)ζ(W ));

(c) τ(W1)τ(W2) = τ(ζ(W1)ζ(W2)).

In the following proposition we show that p -subspaces of A absorb
products by V .

Proposition 2.3. Every p -subspace p of A satisfies V p ⊆ p.

Proof. It is enough to prove the statement for monomials. We have, when
the degree of m is 1,

V U ⊆ U

V V ⊆ V

If ∂m ≥ 2 then one of the 3 next possibilities might occur:

m = µν

m = µ1µ2

m = ν1ν2

where µ, µ1, µ2 ⊆ U and ν, ν1, ν2 ⊆ V are p -monomials with lower degree
than ∂m. A generator of V (µν) has the form v(uw), where v ∈ V , u ∈ µ
and w ∈ ν. From (1.10),

v(uw) = u(vw)− w(uv) ∈ µ(V ν) + ν(V µ)

We have that V (µ1µ2) = 〈v((u1)(u2)) ; v ∈ V, u1 ∈ µ1, u2 ∈ µ2〉. Using
(1.11) we obtain

v(u1u2) = u1(u2v) + u2(u1v) ∈ µ1(µ2V ) + µ2(µ1V )

Finally, V (ν1ν2) is spanned by elements having the form v(w1w2), where
v ∈ V , w1 ∈ ν1 and w2 ∈ ν2.

From (1.9),

v(w1w2) = −w1(w2v)− w2(vw1) ∈ ν1(ν2V ) + ν2(V ν1)

Now, by induction on ∂m, we obtain V m ⊆ m. 2
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Corollary 2.4. For all p -subspaces g ⊆ U and h ⊆ V we have

ξ(g) = g

ζ(h) = h

Proof. Let u ∈ g. From the preceding proposition, ξ(u) = u − 2u2
0
u ∈

g + V g = g. Next, ξ(g) ⊆ g and, as ξ is an isomorphism of vector spaces,
ξ(g) = g. In the same way, it is shown that ζ(h) = h. 2

Subsequently, we have the main result referring to algebras satisfying
(1.1).

Theorem 2.5. Let A be a baric algebra satisfying (1.1). Then:

(1) Every p -subspace p of A satisfies ϕ(pe) = p
f
, where ϕ is the Peirce

transformation of A associated to the idempotents e and f . In par-
ticular, every p -subspace has invariant dimension.

(2) The following statements are equivalent relative to the p -subspace p
of A :

(2.1) p is invariant;

(2.2) Up ⊆ p ;

(2.3) p is an ideal of A.

Proof. It suffices to show the statement (1) for a p -monomial m and, for
this, we use induction on ∂m. Let e be an idempotent of weight 1 in A and,
for all u ∈ Ue, we consider f = e+u+u2. Since σ and τ are isomorphisms,
we have

Uf = σ(Ue) = ϕ(Ue)
Vf = τ(Ve) = ϕ(Ve)

Let us suppose that the result is true for all p-monomials with degree
≤ k and let m be a p -monomial with ∂m = k+1. There are 3 possibilities:
m = µν, m = µ1µ2, m = ν1ν2, where µ, µ1, µ2 ⊆ U and ν, ν1, ν2 ⊆ V are
p -monomials with degree ≤ k. If m = µν then,

m
f

= µ
f
ν

f
= σ(µe)τ(νe)
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From corollaries 2.2 and 2.4 we have

mf = σ(ξ(µe)ζ(νe)) = σ(µeνe) = σ(me) = ϕ(me)

The other cases are similar. To prove part (2), we let p = g ⊕ h,
where g and h are p -subspaces with g ⊆ U and h ⊆ V . From part (1),
pf = gf ⊕ h

f
= {σ(x) + τ(w) ; x ∈ g e, w ∈ h e}. Therefore,

(2.20) p
f

= {(x− 2uw) + (w + 2ux) ; x ∈ ge , w ∈ he}
Let us suppose that p is invariant. Then, p f = p e for every e, f ∈ Ip(A).

It follows from (2.20) that for x ∈ g e and w ∈ he, there are x′ ∈ ge and
w′ ∈ he such that x− 2uw = x′ and w + 2ux = w′. Then,

uw =
1
2
(x− x′)

ux =
1
2
(w′ − w)

It means that U ege ⊆ he and Uehe ⊆ g e and so Uepe ⊆ pe. Reciprocally,
let us suppose that Up ⊆ p. We can state (2.20) as

pf = {x + w + 2u(x− w) ; x ∈ ge, w ∈ he}
and so we obtain pf ⊆ pe + Uepe. Now, using the hypothesis, we conclude
that pf ⊆ pe. Since this inclusion is valid for every pair of idempotents,
then pe = pf and p is invariant. Finally, as we know that A = Ke⊕U ⊕V ,
ep = g ⊆ p and V p ⊆ p, and so p is an ideal if and only if Up ⊆ p. 2

2.2. Invariance in algebras satisfying (x2)2 = ω(x3)x

We suppose now that the baric algebra (A,ω) satisfies the baric equation in
the title. The proof of next proposition is the same as that of Proposition
2.3 and will be ommitted.

Proposition 2.6. If p is a p -subspace of any algebra satisfying (1.2) then
V p ⊆ p.

2

For any u0 ∈ U and α, β ∈ K we consider the linear operator
T(α,β) : N → N defined by

T(α,β)(x) = x + αu0x + βu2
0x

Such operators satisfy the following properties:
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Lemma 2.7. For every u0 ∈ U and α, β ∈ K, we have:
T(α,β) is an automorphism of vector spaces;
T(0,β)(p) = p for every p -subspace p of A.

Proof. Let x = u + v ∈ N (u ∈ U and v ∈ V ) be such that T(α,β)(x) = 0.
Then u + v + αu0(u + v) + βu2

0
(u + v) = 0, and so

u + αu0v + βu2
0
u = 0

v + αu0u + βu2
0
v = 0

Multiplying these identities by u0 and using (1.17), (1.18) and (1.19),
we obtain

u0u + 1
2αu2

0
v = 0

u0v − 1
2αu2

0
u = 0

Again, multiplying by u0 the latest 2 equalities and using (1.17), (1.18)
and (1.19), we have u0

2u = u0
2v = 0. Then u0u = u0v = 0. Therefore

u = v = 0, T(α,β) is injective and so it is an isomorphism. Let x ∈ p ; we
know that u0

2 ∈ V , and so from Proposition 2.6, we have

T(0,β)(x) = x + βu2
0
x ∈ p + V p = p

Hence T(0,β)(p) ⊆ p and, since T(α,β) is injective, we have T(0,β)(p) = p. 2

Given e, f ∈ Ip(A), where f = e + u0 + 1
2u02, u0 ∈ Ue, we use the

following notations:
σ = T(1,0)|Ue, τ = T(−1,0)|Ve, ξ = T(0,− 1

2
)|Ue, ζ = T (0, 1

2)|Ve. We have that
σ : Ue → Uf , τ : Ve → Vf , ξ : Ue → Ue and ζ : Ve → Ve. The vector
space isomorphism ϕ : A → A defined by ϕ(αe+u+v) = αf +σ(u)+ τ(v)
is the Peirce transformation of A associated to e and f . The next result is
proved similarly to Lemma 2.1:

Lemma 2.8. The functions σ, τ , ξ and ζ satisfy the identities:

(a) σ(u1)σ(u2) = τ(ξ(u1)ξ(u2));

(b) σ(u)τ(v) = σ(ξ(u)ζ(v));

(c) τ(v1))τ(v2)) = τ(ζ(v1)ζ(v2));



On the Invariance of Subspaces in Some Baric Algebras 101

for every u, u1, u2 ∈ Ue and v, v1, v2 ∈ Ve.

Finally, as we have done before, we can prove the next theorem.

Theorem 2.9. Let A be a baric algebra satisfying (1.2). Then

(1) Every p-subspace p of A satisfies ϕ(pe) = pf . In particular, every
p-subspace has invariant dimension.

(2) The following statements about a p -subspace p of A are equivalent:

(2.1) p is invariant;

(2.2) Up ⊆ p ;

(2.3) p is an ideal.

References

[1] M. T. Alcalde, C. Burgueño and C. Mallol. Les Pol(n,m)-algèbres: iden-
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Linear Algebra and its Applications, 225, pp. 187–194, (1995).

[6] S. Walcher. Algebras which satisfy a train equation for the first three
plenary powers. Arch. Math. 56, pp. 547–551, (1991).

Received : December, 2002.



102 I. Basso, R. Costa and J. Picanço

I. Basso
Dpto.de Cs. Básicas. Facultad de Ciencias
Universidad del Bio-Bio
Campus Chillán
Casilla 447
Chillán
Chile
e-mail: ibasso@pehuen.chillan.ubiobio.cl

R. Costa
Instituto de Matemática e Estat́ıstica
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66075-000 – Belém
Brazil
e-mail: jps@ufpa.br




