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Abstract

In this paper, we derive a result concerning eigenvector for the
product of two operators defined on a Lie algebra of endomorphisms
of a vector space. The results given by Radulescu, Mandal and au-
thors follow as special cases of this result. Further using these results,
we deduce certain properties of generalized Hermite polynomials and
Hermite Tricomi functions.
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1. Introduction

The interplay between differential equations, generalized special functions
and Lie theory is particularly useful in applications. The theory of gener-
alized special functions has witnessed a rather significant evolution during
the last years (see Dattoli et al. [1,2,3,4]). In applicative fields, we note
that for some physical problems the use of new classes of special functions
provided solutions hardly achievable with conventional analytical and nu-
merical means.

Radulescu [8] has discussed some properties of Hermite and Laguerre
polynomials [9] using some operators defined on a Lie algebra. Further
Mandal [6] obtained some properties of simple Bessel polynomials consid-
ered by Krall and Frink [5]. Recently Pathan and Khan [7] discussed some
properties of two variable Laguerre polynomials (TVLP) studied by Dattoli
and Torre [3,4].

In this paper, we establish a result concerning eigenvector for the prod-
uct of two operators defined on a Lie algebra of endomorphisms of the
vector space V . The results given by Radulescu [8], Mandal [6] and Pathan
and Khan [7] follow as special cases of this result.

Further, we extend the approach of Radulescu and Mandal [8,6] to de-
duce some properties of two variable Hermite-Kampé de Fériét polynomials
(TVHKdFP) and Hermite-Tricomi functions (HTF). The analytic method-
ology developed in this paper can easily be adopted to the study of some
other special functions of mathematical physics.

The TVHKdFP Hn(x, y) [2] are specified by the series

Hn(x, y) =
[n/2]∑

r=0

n!yrxn−2r

r!(n− 2r)!
, (1.1)

and the generating function for Hn(x, y) is given by
∞∑

n=0

Hn(x, y)
tn

n!
= exp(xt + yt2). (1.2)

The polynomials hn(x, y; ξ) [2] generated by
∞∑

n=0

hn(x, y; ξ)
tn

n!
= exp(2xt− t2 + 2yξt− ξ2t2), (1.3)

can be written in terms of Hn(x, y) as follows :

hn(x, y; ξ) = Hn(2(x + yξ),−(1 + ξ2)). (1.4)
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The use of hn(x, y; ξ) is particularly useful for obtaining a closed expression
for the infinite sum ∞∑

n=0

tjnHjn+m(x)
(pn)!

.

Further we note that the HTF HCn(x, y) are defined by the series ([4]; p.24
(36 b))

HCn(x, y) =
∞∑

s=0

(−1)sHs(x, y)
s!(n + s)!

, (1.5)

and the generating function for HCn(x, y) is given as ([4]; p.25 (47))

∞∑

n=−∞
HCn(x, y)tn = exp(t− x

t
+

y

t2
). (1.6)

For y = 0, the HTF HCn(x, y) reduces to the Tricomi functions Cn(x),
which are linked to the ordinary Bessel functions by the relation [1]

Cn(x) = x−n/2Jn(2
√

x).

2. Main Theorem

Let End V be the Lie algebra of endomorphisms of the vector space V ,
endowed with the Lie bracket [·, ·] defined by [A,B] = AB −BA, for every
A,B ∈ End V . We denote by I the identity operator of V .

The main theorem of the paper is as follows.

Theorem -1: Let A,B ∈ End V be such that [A,B]yn = (a(2n + 1) +
b)yn, where the sequence (yn)n ⊂ V is defined as follows: Ay1 = y0 and
Byn =

(
(a(n2+2n)+bn+1)

(an+bn+1)

)
yn+1, for every n ≥ 0. Then Ayn+1 = (an + bn +

1)yn, and yn is an eigenvector of eigenvalue (a(n2 − 1) + b(n − 1) + 1) for
BA, for every n ≥ 1.

Proof. First we show that

Ayn+1 = (an + bn + 1)yn, for every n ≥ 1.

We have
[A,B]y1 = (3a + b)y1,

A(By1)−B(Ay1) = (3a + b)y1.
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Also, Ay1 = y0, By0 = y1 and By1 = (3a+b+1)
(a+b+1) y2, and therefore Ay2 =

(a + b + 1)y1.
Next, suppose that Ayn+1 = (an + bn + 1)yn. Now since we may write

[A,B]yn+1 = (a(2n + 3) + b) yn+1,

A(Byn+1)−B(Ayn+1) = (a(2n + 3) + b) yn+1,

(a((n+1)2+2(n+1))+b(n+1)+1)
(a(n+1)+b(n+1)+1) Ayn+2 − (an + bn + 1)Byn

= (a(2n + 3) + b) yn+1,

(a(n2+4n+3)+b(n+1)+1)
(a(n+1)+b(n+1)+1) Ayn+2 −

(
a(n2 + 2n) + bn + 1

)
yn+1

= (a(2n + 3) + b) yn+1,

(a(n2+4n+3)+b(n+1)+1)
(a(n+1)+b(n+1)+1) Ayn+2

=
(
a(n2 + 4n + 3) + b(n + 1) + 1

)
yn+1,

Ayn+2 = (a(n + 1) + b(n + 1) + 1) yn+1.

Hence by mathematical induction Ayn+1 = (an+bn+1)yn, for every n ≥ 1.
It follows that

(BA)yn = (a(n− 1) + b(n− 1) + 1)Byn−1,

i.e. (BA)yn =
(
a(n2 − 1) + b(n− 1) + 1

)
yn.

Hence yn is an eigenvector of eigenvalue (a(n2 − 1) + b(n− 1) + 1) for BA,
for every n ≥ 1.

3. Deductions and Applications of Theorem 1.

We note that, for a = 0, b = 1, Theorem-1 yields the main result of
Radulescu ([8] ; p.67 (Theorem-1)). Again for a = 0, b = 0, it yields the
main result of Mandal ([6] ; p. 273 (Theorem-1)). And finally for a = 1
and b = 0, it gives the main result of Pathan and Khan [7].

First, we consider the case, when a = 0 and b = 1, that is, we recall the
following main theorem of Redulescu [8]:

Theorem-2: Let C, D ∈ End V be such that [C, D] = I. We define
the sequence (Zn)n ⊂ V as follows: CZ0 = 0 and Zn = DZn−1, for every
n ≥ 1. Then CZn = nZn−1 and Zn is an eigenvector of eigenvalue n for
DC, for every n ≥ 1.
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Let V = C∞(IR× IR). We define the operators C,D ∈ End V by

Cf(x, y) = f ′(x, y),

Df(x, y) = 2yf ′(x, y) + xf(x, y),
(3.1)

for every (x, y) ∈ IR × IR, and where f ′ denotes ∂f
∂x . It can be easily seen

that these operators satisfy the commutation relation [C, D] = I.
Next, we prove that

Dnf(x, y) = (−1)n(−y)n/2
[
et2(f(x, y)e−t2)(n)

∣∣∣∣t =
x

2
√−y

]
. (3.2)

From the definition of D, the above equality holds for n = 1. Inductively,
taking into account Dn+1f(x, y) = D(Dnf(x, y)), it follows that

Dn+1f(x, y) = (−1)n+1(−y)
(n+1)

2

[
et2(f(x, y)e−t2)(n+1)

∣∣∣∣t =
x

2
√−y

]
,

which ends our proof.
The TVHKdFP, Hn(x, y) satisfies the following differential equation

2yZ ′′(x, y) + xZ ′(x, y)− nZ(x, y) = 0, (3.3)

where n is a positive integer.
Equation (3.3) may be written as

2yZ ′′(x, y) + xZ ′(x, y) = nZ(x, y),

which by using (3.1) reduces to

DZ ′(x, y) = nZ(x, y).

Therefore
DCZ(x, y) = nZ(x, y).

By Theorem-2, it follows that Zn(x, y) is a solution of the differential equa-
tion (3.3). Setting Z0(x, y) = 1, we obtain Zn(x, y) = Dn(1). Therefore
defining Hn(x, y) = Zn(x, y), we deduce the Rodrigues-type formula

Hn(x, y) = (−1)n(−y)n/2
[
et2

(
d

dt

)n

e−t2
∣∣∣∣t =

x

2
√−y

]
.

Proceeding in this manner we are able to deduce other properties of
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TVHKdFP Hn(x, y).
Since Hn(x, y) = Zn(x, y) = Dn(1), we can use the equality CZn =

nZn−1. Now from the definition of the operator C, it follows that

Z ′n(x, y) = nZn−1(x, y), (3.4)

i.e.
∂

∂x
Hn(x, y) = nHn−1(x, y),

Again, by the definition of the operator D, we have

DZn(x, y)− 2yZ ′n(x, y)− xZn(x, y) = 0,

which by using (3.4) can be written as

Zn+1(x, y)− 2nyZn−1(x, y)− xZn(x, y) = 0, (3.5)

or equivalently

Hn+1(x, y) + xHn(x, y)− 2nyHn−1(x, y) = 0.

Further, we may derive corresponding properties for hn(x, y; ξ) using (1.4).
Next, we consider the case when a = 0 and b = 0, that is, we consider

the following theorem of Mandal [6] :

Theorem-3: Let E, F ∈ End V be such that [E,F ] = 0. We define
the sequence (Wn)n ⊂ V as follows: EW1 = W0 and Wn+1 = FWn for
every n ≥ 0. Then EWn+1 = Wn for every n ≥ 1 and Wn is an eigenvector
of eigenvalue 1 for FE for every n ≥ 1.

Let V = C∞(IR× IR× IR). We define the operators E,F ∈ End V by

Eu(x, y, t) = x
t ux + 2y

t uy + ut,
Fu(x, y, t) = −tux,

(3.6)

for every (x, y, t) ∈ IR× IR× IR, where ux, uy and ut denote ∂u
∂x , ∂u

∂y and ∂u
∂t

respectively. It can be easily seen that these operators satisfy the commu-
tation relation [E, F ] = 0.

Now if u(x, y, t) assumes the form Wn(x, y, t) = Vn(x, y)tn ∈ C∞(IR ×
IR × IR), then FWn = Wn+1 =⇒ EWn+1 = Wn by virtue of Theorem-3.
Now the relation FWn = Wn+1 yields

(
−t

∂

∂x

)
(Vn(x, y)tn) = Vn+1(x, y)tn+1,
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i.e.
∂

∂x
Vn(x, y) = −Vn+1(x, y). (3.7)

Again the relation EWn+1 = Wn yields
(

x

t

∂

∂x
+

2y

t

∂

∂y
+

∂

∂t

)
(Vn(x, y)tn) = Vn−1(x, y)tn−1,

i.e. (
x

∂

∂x
+ 2y

∂

∂y
+ n

)
Vn(x, y) = Vn−1(x, y), (3.8)

which by using (3.7) can be written as

xVn+1(x, y)− (2y
∂

∂y
+ n)Vn(x, y) + Vn−1(x, y) = 0, (3.9)

Again by virtue of Theorem-3, we can write

FEWn(x, y, t) = Wn(x, y, t),

i.e. (
−t

∂

∂x

) (
x

t

∂

∂x
+

2y

t

∂

∂y
+

∂

∂t

)
(Vn(x, y)tn) = Vn(x, y)tn,

i.e. (
x

∂2

∂x2
+ 2y

∂2

∂x∂y
+ (n + 1)

∂

∂x
+ 1

)
Vn(x, y) = 0. (3.10)

Now it is evident from the differential equation (3.10) that HTF HCn(x, y)
(1.5)-(1.6) is a solution of the above differential equation. It is interesting to
note that (3.7), (3.8) and (3.9) are differential recurrence relations satisfied
by HCn(x, y).
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