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1. Introduction

As in many non-bounded physical situations, the study of the dynamics of
the magneto-micropolar fluid model considered on an unbounded domain
plays an important and useful role. We often find solid-fluid structures in
which a bounded obstacle stops or impedes the flow of the surrounding fluid
and the spatial volume of the external environment of the body, namely
exterior domain, is extensively much larger than the obstacle.

From the modeling point of view, this case may be regarded as a com-
pact domain located in all of IR3. Let K denote this compact subset, and
let Ω denote its complement in IR3, that is, Ω = Kc. We deal with the
existence of a weak solutions for equations that describe the motion of a
viscous incompressible magneto-micropolar fluid in the exterior domain Ω.
Such mathematical model (e.g., see [2]) reads: Find the three-dimensional
fields (u,w,h) : Ω → R9 and the scalar functions (p, q) : Ω → R2 which
satisfy the system of equations:

−(µ+χ)∆u+(u·∇)u+∇(p+
r

2
h·h) = χ rotw+r (h·∇)h+f in Ω, (1.1)

−γ∆w − (α + β)∇ div w + j (u · ∇)w + 2χw = χ rotu + g in Ω, (1.2)

−ν∆h + (u · ∇)h − (h · ∇)u + ∇ q = 0 in Ω, (1.3)

div u = 0, div h = 0 in Ω, (1.4)

u(x) = w(x) = h(x) = 0 on ∂Ω. (1.5)

Here u(x),w(x),h(x) ∈ R3 denote, respectively, the velocity, the mi-
crorotational velocity, and the magnetic field of the fluid at point x ∈ Ω,
and p(x), q(x) ∈ R denote the hydrostatic and magnetic pressures at the
same place. The values µ, χ, r, α, β, γ, j and ν are constants associated to
properties of the material. It follows that these constants satisfy
min{µ, χ, r, j, γ, ν, (α + β), γ} > 0, by physical reasons, and f(x), g(x) ∈ R3

are given external fields.
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To complete the system of equations, we establish the behaviour of the
solution at infinity. We consider the classical homogeneous decay

lim
|x|→∞

u(x) = lim
|x|→∞

w(x) = lim
|x|→∞

h(x) = 0 .(1.1)

It is important to remark that our case involves solutions in the space J(Ω)
defined below, hence no weighted spaces are required. From a physical
viewpoint, we note that the set K represents a non-perfect conductor body
and q is an unknown function concerned with the motion of heavy ions (e.g.
see [3]),

∇ q =
−1
σ

rot j0 ,

where j0 is the density of electric current and σ > 0 is the constant electric
conductivity.

Equation (1.1) has the familiar form of the Navier-Stokes equations
though coupled with (1.2) and (1.3). Equation (1.2) describes the motion
inside the macro-volumes as they undergo microrotational effects, which
are represented by the microrotational velocity vector w. For fluids with
no micro structure, this velocity vanishes and we deal with a magneto-
hydrodynamics system. For Newtonian fluids, where χ = 0, equation (1.1)
decouples from equation (1.2). Equation (1.3), which is the equation for
h, is none other than the Maxwell system in which the electrical field is
determined in a posteriori way. It is also important to note that if h = 0,
we consider the well known stationary asymmetric fluid model.

It is worth citing some earlier work done on the boundary value problem
(1.1)-(1.5) which is related to ours, and locating our contribution therein.
When the magnetic field is absent (i. e. h ≡ 0), the reduced problem on
bounded domains was studied by Lukaszwicz [9] and Galdi & Rionero [10]
; for exterior domains, it was studied by Abid [1] and Padula & Russo
[11]. In [9] under classical regularity assumptions, the existence of weak
solutions for (1.1) − (1.5) was established, which was done by considering
linearization and applying the Leray-Schauder Principle. In addition, using
the regularity arguments of the Stokes equations for u and those of elliptic
systems for w, the regularity of solutions for the entire system is proved ;
furthermore, conditions under which the uniqueness holds are determined.
Again, when h ≡ 0 and in the exteriro case, Abid [1] establishes similar
results to those of Lukaszewicz’s. In this case, they are deduced using
results due to Girault and Sequeira [5] for the Navier-Stokes equations.

In this article, to prove existence of weak solutions we use “the extending
domain method” as in Ladyzhenskaya [8] and Heywood [7]. We also discuss
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the uniqueness of solutions. Thus we study weak solutions the same way
as in the classical study of the Navier-Stokes equations.

We will formulate our main results, theorems 2.3 and 2.4, in Section
2. In it, we also state the basic assumptions and results which are used
later on and rewrite system (1.1)-(1.6) in order to define the weak solution
formally. In Section 3 we describe the truncation method used in the proof
of Theorem 2.3, which is done in Section 4. The uniqueness of the weak
solution will be discussed in Section 5.

2. Functional Spaces and Preliminaries

Throughout, the functions are defined on Ωand are either IR or IR3-
valued; we will distinguish these two situations in our notation.

We now give the precise definition of the exterior domain Ωwhere our
boundary value problem, that is original problem (1.1)-(1.6), has been for-
mulated. Let Kbe a non-void compact and connected subset of IR3whose
boundary ∂Kis of class C2. The exterior domain Ωthat we consider is
Ω = Kc, and ∂Ω = ∂K, of course.

The extending domain method was introduced by Ladyzhenkaya [8]
to study the Navier-Stokes equations in unbounded domains. As was re-
marked by Heywood [7], the method is useful in the class of problems of
exterior domain, which is where our problem is located. The principal idea
of the method is as follows: the exterior domain Ωmay be approximated
by interior domains Ωk = Bk ∩ Ω, for every k ≥ 1, with Bkthe ball of
radius kand center at the origin. In each interior domain Ωk, we prove the
existence of a weak solution. For this we use the Galerkin method together
with Brouwer’s Fixed Point Theorem as in Heywood [7]. Next, using the
estimates given in Ladyzhenskaya [8] together with the diagonal argument
and Rellich’s compactness theorem, we obtain the desired weak solution to
the problem (1.1)-(1.6). Moreover, we are able to establish properties of
regularity and uniqueness of this solution.

We establish here some spaces of vector-valued functions. For the sake
of simplicity of the notation, we will call Dthe domain that represents Ωor
Ωk.

W r,p(D) = { v = (vi)i=1,3 ; Dαvi ∈ Lp(D), |α| ≤ r,

(2.1) ∀ i = 1, .., n } ,
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(2.2) W r,p
0 (D) = Closure of C∞

0 (D) in W r,p(D) ,

(2.3) W0(D) = Closure of C∞
0 (D) in norm ‖∇ϕ‖L2(D) ,

(2.4) C∞
0,σ(D) = {ϕ ∈ C∞

0 (D) ; div ϕ = 0} ,

(2.5) H(D) = Closure of C∞
0,σ(D) in norm ‖ϕ‖L2(D) ,

(2.6) J(D) = Closure of C∞
0,σ(D) in norm ‖∇ϕ‖L2(D) ,

(2.7) J0(D) = {v ∈ W0(D) ; div v = 0} ,

where ‖·‖Lp(D)represents the Lp(D)-norm, 1 ≤ p ≤ ∞. As usual W r,2(D) ≡
Hr(D). In particular, W 0,2(D) ≡ L2(D)and its inner product is expressed
solely by (·, ·) ,that is, without subscripts.

Since Dis bounded or an exterior domain, we note that J(D)is equiva-
lent to the space J0(D), which is proved by Heywood [6]. Also, it is clear
that W0(Ωk) = H1

0 (Ωk). The following a priori estimations are crucial and
may be found in Ladyzhenskaya [8].

Lemma 2.1 Let D ⊆ IR3be bounded or unbounded. Then
(a) For any u ∈ J(D)(or W0(D) ,or H1

0 (D)), the following inequality holds:

(2.8) ‖u‖L6(D) ≤ CL ‖∇u‖L2(D) ,

where 0 < CL ≤ (48)1/6.
(b) (Hölder’s inequality) If each integral makes sense, we have

(2.9) | (u · ∇v,w)| ≤ 3
1
p
+ 1

r ‖u‖Lp(D) ‖∇v‖Lq(D)‖w‖Lr(D) ,
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where p, q, r > 0 and
1
p

+
1
q

+
1
r

= 1.

We now state our problem rigorously establishing regularity assump-
tions on the boundary ∂Ω and on the external forces.

(S1) Let O0 be a neighbourhood of the origin. Thus O0 ⊆ intK and K ⊆
B(0, R), R > 0;
(S2) ∂Ω = ∂K ∈ C2;
(S3) The given external fields are regulars: f ∈ L2(Ω) and g ∈ L2(Ω).

In what follows, we introduce the classical forms
(2.10)

a(u,v) =
3∑

i,j=1

∫

D

∂uj

∂xi

∂vj

∂xi
dx and b(u,v,w) =

3∑

i,j=1

∫

D
uj

∂vi

∂xj
wi dx

defined for any vector-valued functions u,v,w for which the integrals make
sense.

We next define the meaning of a weak solution for (1.1)-(1.6) and set
out the main results:

Definition 2.2 We say a triplet of functions (u, w, h), defined on Ω, is a
weak solution of (1.1)-(1.6) if and only if

i) u, h ∈ J(Ω) and w ∈ W0(Ω);

ii) u, w, and h satisfy the variational formulation

(2.11) (µ+χ)a(u, ϕ)−b(u, ϕ,u)+rb(h, ϕ,h) = (f , ϕ)+χ(w, rotϕ) ,

(2.12) γa(w, ξ) + (α + β)(div w, div ξ)− jb(u, ξ,w) + 2χ(w, ξ)

(2.13) = (g, ξ) + χ(u, rot ξ) ,

νa(h, ψ)− b(u, ψ,h) + b(h, ψ,u) = 0 ,

for all ϕ,ψ ∈ C∞
0,σ(Ω) and ξ ∈ C∞

0 (Ω).
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Remark. If u, h ∈ J(Ω) and w ∈ W0(Ω), then u|∂Ω = h|∂Ω = w|∂Ω = 0 .
Moreover, for Lemma 2.1

lim
|x|→∞

u(x) = lim
|x|→∞

w(x) = lim
|x|→∞

h(x) = 0 .

We also see that the pressures are recovered by a standard application of
De Rham’s Theorem.

Theorem 2.3 (Existence) Under the hypotheses (S1), (S2) and (S3),
problem (1.1)-(1.6) has a stationary weak solution.

Theorem 2.4 (Uniqueness) Under hypotheses (S1), (S2) and (S3), if
there exists a stationary weak solution satisfying the conditions

(2.14)
√

3CL

2µ
(2 ‖u‖L3(Ω) + ‖w‖L3(Ω) + 2r ‖h‖L3(Ω)) < 1,

(2.15)
√

3CL

ν
(‖u‖L3(Ω) + ‖h‖L3(Ω)) < 1, and

(2.16)
√

3 r CL

2γ
‖w‖L3(Ω) < 1 ,

where 0 < CL ≤ (48)1/6, then the weak solution is unique.

3. The Interior Problem

In this paragraph we are interested in considering the following interior
problem, namely (Pk) in domains Ωk = Bk ∩ Ω, with k ∈ N.

(Pk)





−(µ + χ)∆u + (u · ∇)u +∇(p + r
2h · h) = χ rotw + r (h · ∇)h + f

in Ωk ,
−γ∆w − (α + β)∇div w + j (u · ∇)w + 2χw = χ rotu + g in Ωk ,
−ν∆h + (u · ∇)h − (h · ∇)u + ∇q = 0 in Ωk ,
div u = 0, div h = 0 in Ωk ,
u(x) = w(x) = h(x) = 0 on ∂Ωk .
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It is worth noting that ∂Ωk = ∂Ω∪ ∂Bk . Also, it is straightforward to see
that the mean of weak solution for (Pk) is completely similar to the one for
(1.1)-(1.6).

Proposition 3.1 Problem (Pk) admits at least one weak solution (ũk, w̃k, h̃k) ∈
J(Ωk)×H1

0 (Ωk)× J(Ωk).

To prove existence of weak solutions for system (Pk), we use the Galerkin
method together with Brouwer’s Fixed Point Theorem as in Fujita [4] (see
also Heywood [7]).

We first prove a priori estimates for any weak solution of (Pk).

Lemma 3.2 Let (ũk, w̃k, h̃k) a weak solution of (Pk). Then it satisfies the
estimate

µ ‖∇ũk‖2
L2(Ωk) + γ ‖∇w̃k‖2

L2(Ωk) + 2rν ‖∇h̃k‖2
L2(Ωk) ≤

(3.1)
1
µ
‖f‖2

J(Ω)∗ +
1
γ
‖g‖2

W0(Ω)∗ .

Proof. Multiplying (Pk)i, (Pk)ii and (Pk)iii by ũk, w̃k and rh̃k, respec-
tively, and integrating by parts in Ωk we obtain

(µ + χ) a(ũk, ũk) = χ (rot w̃k, ũk) + rb (h̃k, h̃k, ũk) + (f , ũk) ,

γ a(w̃k, w̃k) + (α + β) ‖div w̃k‖2
L2(Ωk) + 2χ ‖w̃k‖2

L2(Ωk) =

χ (rot ũk, w̃k) + (g, w̃k) , rν a(h̃k, h̃k) = r b(h̃k, ũk, h̃k) .

Adding all the above equalities we have

(µ + χ) a(ũk, ũk) + γ a(w̃k, w̃k) + rν a(h̃k, h̃k)+

(α + β) ‖div w̃k‖2
L2(Ωk)

+2χ ‖w̃k‖2
L2(Ωk) = 2χ (rot ũk, w̃k) + (f , ũk) + (g, w̃k) , (3.2)

since r b(h̃k, h̃k, ũk) + r b(h̃k, ũk, h̃k) = 0 .
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We estimate the right side of equality (3.2) obtaining

2χ (rot ũk, w̃k)

≤ 2χ ‖rot ũk‖L2(Ωk) ‖w̃k‖L2(Ωk) = 2χ ‖w̃k‖L2(Ωk) ‖∇ũk‖L2(Ωk)

≤ χ ‖w̃k‖2
L2(Ωk) + χa(ũk, ũk) ,

since ‖rot ũk‖L2(Ωk) = ‖∇ũk‖L2(Ωk). We also have

(f , ũk) ≤ ‖f‖J(Ωk)∗‖∇ũk‖L2(Ωk) ≤
1
2µ
‖f‖2

J(0Ω)∗ +
µ

2
a(ũk, ũk),

(g, w̃k) ≤ ‖g‖W0(Ωk)∗ ‖∇w̃k‖L2(Ωk) ≤
1
2γ
‖g‖2

W0(Ω)∗ +
γ

2
a(w̃k, w̃k) .

Consequently, using the above estimates in (3.2), we obtain

µa(ũk, ũk) + γ a(w̃k, w̃k) + 2r ν a(h̃k, h̃k) + 2χ ‖w̃k‖2
L2(Ωk)

+2 (α + β) ‖div w̃k‖2
L2(Ωk) ≤

1
µ
‖f‖2

J(Ω)∗ +
1
γ
‖g‖2

W0(Ω)∗ ,

which immediately implies (3.1).

Remark. We note that estimate (3.1) is independent of k.
Now we prove the existence of a solution (ũk, w̃k, h̃k) for (Pk). It will be

a limit of a sequence obtained as follows: Let Vm be the finite dimensional
subspace of J(Ωk) spanned by {ϕ1, ..., ϕm}, and let Mm be the finite dimen-
sional subspace of H1

0 (Ωk) spanned by {ξ1, ..., ξm}. As mth-approximate
solution of (Pk), we choose functions

um(x) =
m∑

j=1

cmj ϕj(x), wm(x) =
m∑

j=1

dmj ξj(x) and

(3.3) hm(x) =
m∑

j=1

emj ϕj(x) ,

satisfying the following equalities, for every j ∈ {1, ..,m} :
(3.4)
(µ+χ) a(um, ϕj)+b(um,um, ϕj)−r b(hm,hm, ϕj) = χ (rotwm, ϕj)+(f , ϕj) ,
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γ a(wm, ξj) + (α + β) (div wm, div ξj) + jb (um,wm, ξj) + 2χ (wm, ξj)

(3.5) = χ (rotum, ξj) + (g, ξj) ,

(3.6) ν a(hm, ϕj) + b(um,hm, ϕj)− b(hm,um, ϕj) = 0 .

Note that the solutions (um,wm,hm) must satisfy estimate (3.1). In
fact, this identity is obtained multiplying (3.4), (3.5), (3.6) by, respectively,
the coefficients cmj , dmj , emj , next summing over j from 1 to m, and finally
following the idea given in the proof of Lemma 3.2. Therefore the sequence
{(um,wm,hm)}m∈N is uniformly bounded in J(Ωk) × H1

0 (Ωk) × J(Ωk).
Thus, assuming that the system (3.4,5,6) admits at least one weak solution,
we have:
Proof of Proposition 3.1 Since J(Ωk) (respectively H1

0 (Ωk)) is com-
pactly embedded in H(Ωk) (respectively L2(Ωk)), we may choose subse-
quences which, again, we denote by (um,wm,hm), and elements ũk ∈
J(Ωk), w̃k ∈ H1

0 (Ωk), and h̃k ∈ J(Ωk) such that

um → ũk

hm → h̃k

}
weakly in J(Ωk) and strongly in H(Ωk) ,

wm → w̃k weakly in H1
0 (Ωk) and strongly in L2(Ωk) .

It suffices to take the limit as m goes to infinity in equations (3.4), (3.5),
(3.6) and the proof now follows straightforwardly.

Finally, to prove the solvability of system (3.4,5,6) for any k, m ∈ N, we
follow Heywood [7] in applying Brouwer’s Fixed Point Theorem. For every
(ϕ, ξ, ψ) ∈ Vm ×Mm × Vm, we consider the unique solution of L(ϕ, ξ, ψ) =
(u,w,h) ∈ Vm ×Mm × Vm of the linearized equations

(3.7) (µ+χ) a(u, ϕj)+ b(ϕ,u, ϕj)− r b(ψ,h, ϕj)−χ (rotw, ϕj) = (f , ϕj) ,

γ a(w, ξj) + (α + β) (div w, div ξj) + j b(ϕ,w, ξj) + 2χ (w, ξj)
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(3.8) −χ (rotu, ξj) = (g, ξj) ,

(3.9) ν a(h, ϕj) + b(ϕ,h, ϕj)− b(ψ,u, ϕj) = 0 ,

for all 1 ≤ j ≤ m. This is a system of 3m linear equations for the coeffi-
cients in (3.3).

Equations (3.7), (3.8), and (3.9) have a unique solution, since the asso-
ciated homogeneous system (f = 0, g = 0) has an unique one. In fact, if
(u,w,h) is a solution of the homogeneous system and proceeding as before,
we obtain

(µ + χ) ‖∇u‖2
L2(Ωk) = χ (rotw,u) + r b(ψ,h,u) ,

γ ‖∇w‖2
L2(Ωk) + (α + β) ‖div w‖2

L2(Ωk) + 2χ ‖w‖2
L2(Ωk) = χ (rotu,w),

rν ‖∇h‖2
L2(Ωk) = r b(ψ,u,h).

Adding the above identities we obtain

(µ + χ) ‖∇u‖2
L2(Ωk) + γ ‖∇w‖2

L2(Ωk) + rν ‖∇h‖2
L2(Ωk)

+2χ ‖w‖2
L2(Ωk) + (α + β)‖div w‖2

L2(Ωk) = 2χ(rotu,w)

≤ 2χ‖∇u‖L2(Ωk) ‖w‖L2(Ωk)

≤ χ‖∇u‖2
L2(Ωk) + χ‖w‖2

L2(Ωk) .

Consequently

µ ‖∇u‖2
L2(Ωk) + γ ‖∇w‖2

L2(Ωk) + rν ‖∇h‖2
L2(Ωk)

+χ ‖w‖2
L2(Ωk) + (α + β)‖div w‖2

L2(Ωk) ≤ 0 ,

hence u = 0, w = 0 and h = 0.
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The continuity of L follows from arguments similar to those used for
taking the limit in (3.4,5,6). We also have the estimate

µ ‖∇u‖2
L2(Ωk)+γ ‖∇w‖2

L2(Ωk)+2rν ‖∇h‖2
L2(Ωk) ≤

1
µ
‖f‖2

J(Ω)∗+
1
γ
‖g‖2

W0(Ω)∗ ,

which are shown exactly in the same way as was done for a solution
(ũk, w̃k, h̃k) in Lemma 3.2. Then

(3.10) ‖∇u‖2
L2(Ωk) ≤

1
µ2
‖f‖2

J(Ω)∗ +
1

γµ
‖g‖2

W0(Ω)∗ ≡ `2
1 ,

(3.11) ‖∇w‖2
L2(Ωk) ≤

1
µγ

‖f‖2
J(Ω)∗ +

1
γ2
‖g‖2

W0(Ω)∗ ≡ `2
2 ,

(3.12) ‖∇h‖2
L2(Ωk) ≤

1
2rνµ

‖f‖2
J(Ω)∗ +

1
2rνγ

‖g‖2
W0(Ω)∗ ≡ `2

3 .

Thus (3.10), (3.11), and (3.12) define a continuous mapping L from the
closed and convex set

S = {(ϕ, ξ, ψ) ∈ Vm ×Mm × Vm ;

‖∇ϕ‖L2(Ωk) ≤ `1, ‖∇ξ‖L2(Ωk) ≤ `2, ‖∇ψ‖L2(Ωk) ≤ `3}
into itself. We now state a result which finish the proof of existence of a
weak solution (ũk, w̃k, h̃k) of (Pk).

Corollary 3.4 The finite dimensional problem (3.4)-(3.6) admits at least
one weak solution ∀ k, m ∈ N.

Proof. By Brouwer’s Fixed Point Theorem the map L has at least one
fixed point, which is none other than a solution of (3.4), (3.5), (3.6).

4. Proof of the Existence Theorem 2.3

We begin by extending the functions considered (ũk, w̃k, h̃k)k∈N to the
whole domain Ω.
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Lemma 4.1 Let (ũk, w̃k, h̃k) be a weak solution for (Pk) obtained in Propo-
sition 3.3. Set

uk(x) =

{
ũk(x) if x ∈ Ωk,
0 if x ∈ Ω \Ωk,

wk(x) =

{
w̃k(x) if x ∈ Ωk,
0 if x ∈ Ω \Ωk,

hk(x) =

{
h̃k(x) if x ∈ Ωk,
0 if x ∈ Ω \Ωk.

Then
(uk,wk,hk) ∈ J(Ω)×W0(Ω)× J(Ω) ;

furthermore

‖∇uk‖L2(Ωk) ≤ `1 , ‖∇wk‖L2(Ωk) ≤ `2 , ‖∇hk‖L2(Ωk) ≤ `3 ,

where the constants `1, `2 and `3 were defined above and are independent
of k .

Proof. It is easy to show that (uk,wk,hk) ∈ J(Ω)×W0(Ω)× J(Ω) . The
estimates are directly deduced from estimates (3.10) through (3.12) and
the lower semi-continuity of the norm.

Proof of Theorem 2.3 From the estimates given above in Lemma 4.1, by
Rellich’s compactness theorem, and from the diagonal argument, it follows
that there exist subsequences, again denoted (uk,wk,hk), and elements
u,h ∈ J(Ω) and w ∈ W0(Ω) such that

uk → u
hk → h

}
weakly in J(Ω) and strongly in L2

loc(Ω) ,(4.1)

wk → w weakly in W0(Ω) and strongly in L2
loc(Ω) .(4.2)

Once we obtain these convergences and limits, we can show that (u,w,h)
is the desired stationary weak solution for (1.1)-(1.6). Indeed, let (ϕ, ξ, ψ)
be any arbitrary test function. Then we find a bounded domain Ω′ and
k0 such that supp ϕ, supp ξ, supp ψ ⊆ Ω′ ⊆ Ωk0 ⊆ Ωk, for all k ≥ k0.
Moreover, by Lemmas 2.1 and 3.2

|((uk ·∇)ϕ,wk)−((u·∇)ϕ,w)| ≤ |(((uk−u)·∇)ϕ,w)|+|((uk ·∇)ϕ,w−wk)|
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≤ 3
√

9 ‖uk − u‖L2(Ω′) ‖∇ϕ‖L3(Ω′)‖w‖L6(Ω′)

+ 3
√

9 ‖uk‖L6(Ω′)‖∇ϕ‖L3(Ω′) ‖w −wk‖L2(Ω′) ,

≤ 3
√

9CL

(
`2‖uk − u‖L2(Ω′) ‖∇ϕ‖L3(Ω′) + `1‖w −wk‖L2(Ω′) ‖∇ϕ‖L3(Ω′)

)
.

By convergences (4.1) and (4.2)

|((uk · ∇)ϕ,wk)Ω − ((u · ∇)ϕ,w)Ω| → 0 ,

as k → ∞. The other convergences are analogously established. Thus
(u,w,h) is a stationary weak solution for (1.1)-(1.6).

5. Proof of the Uniqueness Theorem 2.4

Let (u1,w1,h1) and (u2,w2,h2) be two different weak solutions of (1.1)-
(1.6). Setting u = u1 − u2, w = w1 −w2 and h = h1 − h2 we have

µ + χ) (∇u,∇ϕ) + (u · ∇u1, ϕ) + (u2 · ∇u, ϕ) = χ (rotw, ϕ)

+ r (h · ∇h1, ϕ) + r (h2 · ∇h, ϕ) ,

γ (∇w,∇ξ) + (α + β) (div w, div ξ) + 2χ (w, ξ)

+ j (u · ∇w1, ξ) + j (u2 · ∇w, ξ) = χ (rotu, ξ) ,

ν (∇h,∇ψ) + (u · ∇h1, ψ) + (h2 · ∇h, ψ)− (h · ∇u1, ψ)− (h2 · ∇u, ψ) = 0 .

We take ϕ = u, ξ = w and ψ = r h in the above equalities and obtain
(5.1)
(µ+χ) ‖∇u‖2

L2(Ω) = χ (rotw,u)−(u·∇u1,u)+r (h·∇h1,u)+r (h2 ·∇h,u) ,

(5.2)
γ ‖∇w‖2

L2(Ω)+(α+β) ‖div w‖2
L2(Ω)+2χ ‖w‖2

L2(Ω) = χ (rotu,w)− (u·∇w1,w) ,
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(5.3) rν ‖∇h‖2
L2(Ω) = r (h · ∇u1,h) + r (h2 · ∇u,h)− r (u · ∇h1,h) .

By Lemma 2.1 we have
|(u · 5u1,u)| = |(u · 5u,u1)| ≤

√
3 ‖u‖L6(Ω) ‖5u‖L2(Ω) ‖u1‖L3(Ω)

≤ √
3CL ‖5u‖2

L2(Ω) ‖u1‖L3(Ω) ,

|r (h · 5h1,u)| = |r (h · 5u,h1)| ≤
√

3r ‖h‖L6(Ω) ‖5u‖L2(Ω) ‖h1‖L3(Ω)

≤ √
3rCL ‖5h‖L2(Ω) ‖5u‖L3(Ω) ‖h1‖L3(Ω) ,

|X (rotw,u)| = |X (w, rotu)| ≤ X ‖w‖L2(Ω) ‖5u‖L2(Ω)

≤ X
2

(
‖w‖2

L2(Ω) + ‖5u‖2
L2(Ω)

)
,

|(u · 5w1,w)| = |(u · 5w,w1)| ≤
√

3 ‖u‖L6(Ω) ‖5w‖L2(Ω) ‖w1‖L3(Ω)

≤ √
3CL ‖5u‖L2(Ω) ‖5w‖L2(Ω) ‖w1‖L3(Ω) ,

|r (h · 5u1,h)| = |r (h · 5h,u1)| ≤
√

3r ‖h‖L6(Ω) ‖5h‖L2(Ω) ‖u1‖L3(Ω)

≤ √
3rCL ‖5h‖2

L2(Ω) ‖u1‖L3(Ω) ,

|(u · 5h1,h)| = |r (u · 5h,h1)| ≤
√

3r ‖u‖L6(Ω) ‖5h‖L2(Ω) ‖h1‖L3(Ω)

≤ √
3rCL ‖5u‖L2(Ω) ‖5h‖L2(Ω) ‖h1‖L3(Ω)

Consequently, adding equalities (5.1) through (5.3), using Young’s in-
equality, and the above estimates we obtain

µ ‖∇u‖2
L2(Ω) + γ ‖∇w‖2

L2(Ω) + (α + β) ‖div w‖2
L2(Ω) + r ν ‖∇h‖2

L2(Ω)

+χ ‖w‖2
L2(Ω) ≤

√
3

2 CL

(
2‖u1‖L3(Ω)+‖w1‖L3(Ω)+2r ‖h1‖L3(Ω)

)
‖∇u‖2

L2(Ω)

+
√

3 r CL

(
‖u1‖L3(Ω) + ‖h1‖L3(Ω)

)
‖∇h‖2

L2(Ω)

+
√

3
2 r CL ‖w1‖L3(Ω) ‖∇w‖2

L2(Ω) ,

and together with hypothesis (2.14) - (2.16) we have

‖∇u‖L2(Ω) = 0, ‖∇w‖L2(Ω) = 0, ‖∇h‖L2(Ω) = 0 .

Hence u = 0, w = 0, and h = 0, and the proof of the uniqueness is now
complete.
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