Proyecciones
Vol. 22, N^{o} 1, pp. 15-30, May 2003.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172003000100002

GREEN'S FUNCTION OF DIFFERENTIAL EQUATION WITH FOURTH ORDER AND NORMAL OPERATOR COEFFICIENT IN HALF AXIS

M. BAYRAMOGLU
and
K. OZDEN KOKLU
Yildiz Technical University, Turkey

Abstract

Let H be an abstract seperable Hilbert space. Denoted by $H_{1}=$ $L_{2}(0, \infty ; H)$, the all functions defined in $[0, \infty)$ and their values belongs to space H, which $\int_{0}^{\infty}\|f(x)\|_{H}^{2} d x<\infty$. We define inner product in H_{1} by the formula $(f, g)_{H_{1}}=\int_{0}^{\infty}(f, g)_{H} d x \quad f(x), g(x) \in H_{1}$, H_{1} forms a seperable Hilbert space[3] where $\|\cdot\|_{H}$ and $(., .)_{H}$ are norm and scalar product, respectively in H.

In this study, in space H_{1}, it is investigated that Green's function (resolvent) of operator formed by the diferential expression $y^{I V}+Q(x) y, \quad 0 \leq x<\infty$, and boundary conditions $y^{\prime}(0)-h_{1} y(0)=0$, $y^{\prime \prime \prime}(0)-h_{2} y^{\prime \prime}(0)=0$, where $Q(x)$ is a normal operator mapping in H and invers of it is a compact operator for every $x \in[0, \infty)$. Assume that domain of $Q(x)$ is independent from x and resolvent set of $Q(x)$ belongs to $|\arg \lambda-\pi|<\varepsilon \quad(0<\varepsilon<\pi)$ of complex plane λ, h_{1} and h_{2} are complex numbers. In addition assume that the operator function $Q(x)$ satisfies the Titchmarsh-Levitan conditions.

1. INTRODUCTION

In this work, Green's function(resolvent) of operator L in $H_{1}=L_{2}(0, \infty ; H)$ space is investigated. Here, operator L is formed by the differential expression

$$
\begin{equation*}
y^{I V}+Q(x) y, \quad 0 \leq x<\infty \tag{1}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
y^{\prime}(0)-h_{1} y(0)=0, y^{\prime \prime \prime}(0)-h_{2} y^{\prime \prime}(0)=0 \tag{2}
\end{equation*}
$$

where $Q(x)$ is a normal operator for every $x \in[0, \infty)$ in H and inverse of it is a compact operator, h_{1}, h_{2} are arbitrary complex numbers. In the case of $Q^{*}(x)=Q(x), h_{1}=h_{2}$ and regular behavior of $Q(x)$ in infinity, Green function of operator L investigated in (Albayrak, Bayramoglu)[1].

Green's fuction of Sturm-Liouville equation given in $(-\infty, \infty)$ with unbounded self-adjoint operator coefficient was first investigated by B.M. Levitan [11].

In the space of $L_{2}(-\infty, \infty ; H)$, Green's function and the asymptotic behaviour for the number of the eigenvalues of the operator formed by differential expression $(-1)^{n} y^{(2 n)}+\sum_{j=2}^{2 n} Q_{j}(x) y^{(2 n-j)}$ was obtained by M. Bayramoğlu 1971 [4], where $Q_{j}(x)(j=2, \ldots, 2 n)$ are the self-adjoint operators in H. Later on many studies (Boymatov, K.Ch.[6], Otelbayev, M.[12], Aslanov, G.I.[2], Kleyman, E.G.[8], Saito, Y.[15]) were published in this subject. Wide reference of these studies is given in (Kostyuchenko, A.G., Sargsyan, I.S. [10], Otelbayev, M. [13]). The main reference related to Green's function for the ordinary differential equation is the book Stakgold, I. [16].

2. DETERMINATION OF THE PROBLEM

In $H_{1}=L_{2}(0, \infty ; H)$, let consider the differential expression

$$
\begin{equation*}
y^{I V}+Q(x) y+\mu y \tag{3}
\end{equation*}
$$

with boundary conditions

$$
\begin{gather*}
y^{\prime}(0)-h_{1} y(0)=0 \tag{4}\\
y^{\prime \prime \prime}(0)-h_{2} y^{\prime \prime}(0)=0 \tag{5}
\end{gather*}
$$

where $\mu \geq 0$ is a real number. It is assumed that $Q(x)$ is a normal operator mapping in H for every $x \in[0, \infty)$ and satisfies the following specification called Titchmarsh-Levitan conditions:

1) Let $Q(x)$ be a normal operator for each $x \in[0, \infty)$ in H with domain $D(Q(x)) \equiv D$ independent from $x, \bar{D}=H$ (Here \bar{D} shows the closure of D).
2) Let $Q^{-1}(x)$ be compact operator for every $x\left(Q^{-1}(x) \in \sigma_{\infty}\right)$ and $1 \leq$ $\left|\alpha_{1}(x)\right| \leq\left|\alpha_{2}(x)\right| \leq \ldots \leq\left|\alpha_{n}(x)\right| \leq \ldots$ where $\alpha_{1}(x), \alpha_{2}(x), \alpha_{3}(x), \ldots$, are the eigenvalues of $Q(x)$.
3) Assume that resolvent set of $Q(x)$ incluted domain
$S_{\varepsilon}=\{\lambda: \pi-\varepsilon<\arg \lambda<\pi+\varepsilon, 0<\varepsilon<\pi, \varepsilon=$ const $\}$ of complex plane λ.
4) Suppose that function $F(x)=\sum_{k=1}^{\infty} \frac{1}{\left|\alpha_{k}(x)\right|^{7 / 4}}$ belongs to $L(0, \infty)$:
$\int_{0}^{\infty} F(x) d x<\infty$
5) $\begin{aligned} & \left\|Q^{-1 / 4}(x) \cdot Q^{1 / 4}(s)\right\| \leq c \text { and }\left\|Q^{1 / 4}(x) \cdot Q^{-1 / 4}(s)\right\| \leq c \text { while }|x-s| \leq \\ & 1, c=0 \text { stant }\end{aligned}$
6) Assume that $\left\|Q^{-a}(x)[Q(s)-Q(x)]\right\| \leq c|x-s|$ while $|x-s| \leq 1$, where $c=$ constant and $0<a<\frac{5}{4}$.

Different constants are denoted with c.
Let $B(H)$ be a Banach space whose elements are bounded operators mapping in H [7]. $G(x, s ; \mu)$ function which belongs to $B(H)$ for $0 \leq x, s<$ ∞ and satisfies the following conditions is called Green's function of (3)-(5).

1) The operator function $G(x, s ; \mu)$ itself and its two partial derivative according to s are continious functions for variables x and $s \quad(0 \leq$ $x, s \leq \infty)$.
2) When $s \neq x$ third derivative of $G(x, s ; \mu)$ for s is continuous.
3) $\frac{\partial^{3} G}{\partial s^{3}}(x, x+0, \mu)-\frac{\partial^{3} G}{\partial s^{3}}(x, x-0, \mu)=I \quad(I$ is identity operator in
4) When $s \neq x, \frac{\partial^{4} G}{\partial s^{4}}(x, s ; \mu)+G(x, s ; \mu) Q(s)+\mu G(x, s ; \mu)=0$
5) $\left.\frac{\partial G}{\partial s}(x, s ; \mu)\right|_{s=0}-\left.h_{1} G(x, s ; \mu)\right|_{s=0}=0$,

$$
\left.\frac{\partial^{3} G}{\partial s^{3}}(x, s ; \mu)\right|_{s=0}-\left.h_{2} \frac{\partial^{2} G}{\partial s^{2}}(x, s ; \mu)\right|_{s=0}=0 .
$$

According to parametrics method, the operator function $G(x, s ; \mu)$ will be found as a solution of integral equation given by

$$
\begin{gather*}
G(x, s ; \mu)=r(x-s) g(x, s ; \mu)-\int_{0}^{\infty}\left\{r^{(I V)}(x-\xi) g(x, \xi ; \mu)\right. \\
+4 r^{\prime \prime \prime}(x-\xi) g^{\prime}(x, \xi ; \mu)+6 r^{\prime \prime}(x-\xi) g^{\prime \prime}(x, \xi ; \mu)+4 r^{\prime}(x-\xi) g^{\prime \prime \prime}(x, \xi ; \mu) \\
+r(x-\xi) g(x, \xi ; \mu)[Q(\xi)-Q(x)]\} G(\xi, s ; \mu) d \xi \tag{6}
\end{gather*}
$$

where

$$
r(u)=\left\{\begin{array}{lc}
1 & |u| \leq \rho \\
0 & |u| \geq 2 \rho, \quad 0<\rho<\frac{1}{2}
\end{array}\right.
$$

is any fixed sufficiently smooth function and

$$
\begin{gathered}
g(x, s ; \mu)=\frac{\sqrt{2}}{8} \alpha^{-3}(1+i) e^{-\alpha \frac{\sqrt{2}}{2}[|x-s|+i|x-s|]} \\
+\frac{-\frac{\sqrt{2}}{8} \alpha^{-3}(-1+i) e^{-\alpha \frac{\sqrt{2}}{2}}[|x-s|-i|x-s|]}{\left[\frac{1}{4}(1+i) h_{2}+\frac{\sqrt{2}}{4} \alpha^{-1}(-1+i) h_{1} h_{2}-\frac{\sqrt{2}}{4} \alpha(-1+i)+\frac{1}{4}(1+i) h_{1}\right]} \alpha^{2} i\left(-2 h_{1} h_{2}-\sqrt{2} \alpha\left(h_{1}+h_{2}\right)-2 \alpha^{2}\right)
\end{gathered} e^{-\alpha \frac{\sqrt{2}}{2}(1+i)(x+s)}+\frac{\left[-\frac{1}{2} h_{2}+\frac{\sqrt{2}}{4} \alpha(-1+i)+\frac{1}{2} h_{1}\right]}{\alpha^{2} i\left(-2 h_{1} h_{2}-\sqrt{2} \alpha\left(h_{1}+h_{2}\right)-2 \alpha^{2}\right)} e^{\alpha \frac{\sqrt{2}}{2}[-(x+s)+i(-x+s)]}+\frac{\left[-\frac{1}{2} h_{1}-\frac{\sqrt{2}}{4} \alpha i+\frac{1}{2} h_{2}\right]}{\alpha^{2} i\left(-2 h_{1} h_{2}-\sqrt{2} \alpha\left(h_{1}+h_{2}\right)-2 \alpha^{2}\right)} e^{\alpha \frac{\sqrt{2}}{2}[-(x+s)+i(x-s)]}
$$

$$
+\frac{\left[\frac{1}{4}(-1+i) h_{1}+\frac{\sqrt{2}}{4} \alpha^{-1}(1+i) h_{1} h_{2}-\frac{\sqrt{2}}{4} \alpha(1+i)+\frac{1}{4}(-1+i) h_{2}\right]}{\alpha^{2} i\left(-2 h_{1} h_{2}-\sqrt{2} \alpha\left(h_{1}+h_{2}\right)-2 \alpha^{2}\right)} e^{\alpha \frac{\sqrt{2}}{2}(-1+i)(x+s)}
$$

$$
\begin{equation*}
0 \leq x, s<\infty \tag{7}
\end{equation*}
$$

$\alpha=\sqrt[4]{Q(x)+\mu I}$ and defined by formula of spectral expansion

$$
\sqrt[4]{Q(x)+\mu I}=\sum_{n=1}^{\infty} \sqrt[4]{\alpha_{n}(x)+\mu}\left(., e_{n}\right) e_{n}
$$

where $e_{1}(x), e_{2}(x), \ldots, e_{n}(x), \ldots$ are the ortonormalized eigenvectors corresponding to eigenvalues $\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{n}(x), \ldots$ of $Q(x)$. Branch of the $\sqrt[4]{\alpha_{j}(x)+\mu}$ is defined with $\left|\arg \left(\alpha_{n}(x)+\mu\right)\right|<\pi$. Note that the operator function $g(x, s ; \mu)$ is founded by writing $\alpha=\sqrt[4]{Q(x)+\mu I}$ instead of α in Green function defined with diferential expression

$$
y^{I V}+\alpha^{4} y \quad(\alpha>0)
$$

and boundary conditions

$$
y^{(j)}(0)-h_{(j+1) / 2} y^{(j-1)}(0)=0, \quad j=1,3
$$

in space $L_{2}[0, \infty)$. Let's say that

$$
g=\sum_{i=1}^{6} g_{i} .
$$

It will be shown that integral equation (6) has only one solution and this solution is Green's fuction of the problem (3)-(5).

Equation (6) will be investigated in these spaces; $X_{2}, X_{3}^{(1)}, X_{4}^{(-1 / 4)}$, X_{5}. These are shown that they are Banach spaces and given by Levitan, B.M. [11].

Consider that integral Eq.(6) is in the space X_{2}. Let us show that this equation has one solution in X_{2} for $\mu \gg 0$ (μ is a big enough positive value) and the solution can be found by successive aproximation method. For this it is enough to show that $g(x, s ; \mu) \in X_{2}$ and the operator of

$$
\begin{aligned}
& N A=\int_{0}^{\infty}\left\{r^{(I V)}(x-\xi) g(x, \xi ; \mu)+4 r^{\prime \prime \prime}(x-\xi) g^{\prime}(x, \xi ; \mu)\right. \\
& +6 r^{\prime \prime}(x-\xi) g^{\prime \prime}(x, \xi ; \mu)+4 r^{\prime}(x-\xi) g^{\prime \prime \prime}(x, \xi ; \mu) \\
& +r(x-\xi) g(x, \xi ; \mu)[Q(\xi)-Q(x)]\} A(\xi, s ; \mu) d \xi
\end{aligned}
$$

is constriction operator in X_{2} for $\mu \gg 0$.

LEMMA 1: If operator function $Q(x)$ satisfies the conditions 4-) and 6 -) for $\mu \gg 0$, operator N is constriction operator in the space X_{2}.

PROOF: If it is shown that the norm of operator N for $\mu \gg 0$ are small enough, it is demonstrated that N is constriction operator at large values of $\mu>0$.

$$
N A=\sum_{i=1}^{5} N_{j} A
$$

$N_{1} A=\int_{0}^{\infty}[r(x-\xi) g(x, \xi ; \mu)[Q(x)-Q(\xi)]] A(\xi, \eta) d \xi$
$N_{2} A=\int_{0}^{\infty} 4 r^{\prime}(x-\xi) g^{\prime \prime \prime}(x, \xi ; \mu) A(\xi, \eta) d \xi$
$N_{3} A=\int_{0}^{\infty} 6 r^{\prime \prime}(x-\xi) g^{\prime \prime}(x, \xi ; \mu) A(\xi, \eta) d \xi$
$N_{4} A=\int_{0}^{\infty} 4 r^{\prime \prime \prime}(x-\xi) g^{\prime}(x, \xi ; \mu) A(\xi, \eta) d \xi$
$N_{5} A=\int_{0}^{\infty} r^{(I V)}(x-\xi) g(x, \xi ; \mu) A(\xi, \eta) d \xi$
$\|N\| \leq \sum_{i=1}^{5}\left\|N_{i}\right\|$ can be written from nature of norm. Let's do the operations for operator $N_{1} A$.

$$
\begin{aligned}
& g(x, s ; \mu)=\sum_{i=1}^{6} g_{i} \\
& N_{1} A=\int_{0}^{\infty}[r(x-\xi) g(x, \xi ; \mu)[Q(x)-Q(\xi)]] A(\xi, \eta) d \xi \\
& =\int_{0}^{\infty}\left[r(x-\xi) \sum_{i=1}^{6} g_{i}(x, \xi ; \mu)[Q(x)-Q(\xi)]\right] A(\xi, \eta) d \xi \\
& N_{1} A=\sum_{i=1}^{6} N_{1 i} A \\
& \left\|N_{1}\right\| \leq \sum_{i=1}^{6}\left\|N_{1 i}\right\| \\
& N_{11} A=\int_{0}^{\infty} r(x-\xi) g_{1}(x, \xi ; \mu)[Q(x)-Q(\xi)] A(\xi, \eta) d \xi \\
& =\int_{|x-\xi| \leq 1} r(x-\xi) g_{1}(x, \xi ; \mu)[Q(x)-Q(\xi)] A(\xi, \eta) d \xi \\
& +\int_{|x-\xi|>1} r(x-\xi) g_{1}(x, \xi ; \mu)[Q(x)-Q(\xi)] A(\xi, \eta) d \xi \\
& =b_{1}+b_{2}
\end{aligned}
$$

where $b_{2}=0$ according to $r(u)=0,|u|>1$.

$$
\left\|N_{11} A(x, \xi)\right\|_{2}=\left\|b_{1}\right\|_{2}
$$

$\left(\|\cdot\|_{2}\right.$ is a norm in space $\left.X_{2}\right)$
$\left\|b_{1}\right\|_{2}^{2}=\left\|\int_{|x-\xi| \leq 1} r(x-\xi) g_{1}(x, \xi ; \mu)[Q(x)-Q(\xi)] A(\xi, \eta) d \xi\right\|_{2}^{2}$
$\leq\left[\int_{|x-\xi| \leq 1}\left\|r(x-\xi) g_{1}(x, \xi ; \mu)[Q(x)-Q(\xi)] A(\xi, \eta)\right\|_{2} d \xi\right]^{2}(8)$
$\left\|b_{1}\right\|_{2}^{2} \leq c^{2} \mu^{2 q}\left[\int_{|x-\xi| \leq 1}|x-\xi|^{-\varepsilon}\|A(\xi, \eta)\|_{2} d \xi\right]^{2}$
is found. Hence

$$
\left\|b_{1}\right\|_{2}^{2} \leq \int_{0}^{\infty} \int_{0}^{\infty} c \mu^{2 q}\left[\int_{|x-\xi| \leq 1}|x-\xi|^{-\varepsilon}\|A(\xi, \eta)\|_{2} d \xi\right]^{2} d x d \eta
$$

is obtained, or

$$
\left\|b_{1}\right\|_{2} \leq c \mu^{2 q}\|A(x, \eta)\|_{2}<\infty
$$

Therefore,

$$
\left\|N_{11} A\right\|_{2}^{2} \leq c \mu^{2 q}\|A(x, \eta)\|_{2}
$$

is derived. Here, $q<0$ is constant. Thus, operator $N_{11} A(x, \xi)$ is bounded with small enough norm of large $\mu>0$. In a similar way, operators $N_{1 i} A$ ($i=1, \ldots, 6$) are bounded with small enough norm of large $\mu>0$. Then it is obtained that operator $N A$ is constriction operator in space X_{2} for $\mu \gg 0$. Thus Lemma 1 is proved.

If it can be shown that $r(x-s) g(x, s ; \mu)$ belongs to the space X_{2}, then, it is obtained that Eq.(6) has only one solution belonging to X_{2} for $\mu \gg 0$.

$$
\|g\|_{2} \leq \sum_{i=1}^{6}\left\|g_{i}\right\|_{2}
$$

can be written.
Now let us show that $r g$ belongs to space X_{2} assuming that the condition $4-)$ of function $Q(x)$ is fulfilled. Let us perform the operation for any term included by $r g$, for example the term $r(x-s) g_{1}(x, s ; \mu)$. That is, let us show that $r g_{1} \in X_{2}$. In a same manner, it is indicated that other terms also belong to X_{2}. Since $r(x-s) g_{1}(x, s ; \mu)$ is a function of normal operator valued function $Q(x)$, using the spectral expansion formula for normal operators [17]:
$\left\|r g_{1}\right\|_{2}^{2}=$

$$
\begin{aligned}
& \sum_{j=1}^{\infty}\left(\frac{\sqrt{2}}{8}\right)^{2}\left|r(x-s)(1+i)\left(\alpha_{j}(x)+\mu\right)^{-3 / 4} e^{-\left(\alpha_{j}(x)+\mu\right)^{1 / 4} \frac{\sqrt{2}}{2}(1+i)|x-s|}\right|^{2} \\
& \left\|r g_{1}\right\|_{2}^{2} \leq(1 / 16) \sum_{j=1}^{\infty}\left|\alpha_{j}(x)+\mu\right|^{-3 / 2} e^{-\sqrt{2} \delta|x-s| \operatorname{Re}\left(\alpha_{j}(x)+\mu\right)^{1 / 4}} \$ \\
& (\delta=\text { const }>0)
\end{aligned}
$$

is implied. From the fourth property of $Q(x)$
$(c=$ const $>0) \quad \int_{0}^{\infty} \int_{0}^{\infty}\left\|r g_{1}\right\|_{2}^{2} d s d x=c \int_{0}^{\infty} \sum_{j=1}^{\infty} \frac{d x}{\left|\alpha_{j}(x)+\mu\right|^{7 / 4}}<\infty$,
is obtained. Thus it is denoted that $r g_{1} \in X_{2}$. Therefore the following theorem has been proved.

THEOREM 1: If the conditions 4-) and 6-) of operator $Q(x)$ are satisfied, then, for $\mu \gg 0$, there exists a solution in the space X_{2} for Eq.(6) and it is unique. This solution can be found by successive aproximation method.

The following lemma can be proved.
LEMMA 2: If operator fuction $Q(x)$ satisfies the conditions in Lemma 1 then for $\mu \gg 0$, operator N is a constriction operator in every spaces $X_{2}, X_{3}^{(1)}, X_{4}^{(-1 / 4)}$ and X_{5}. At the same time in addition to the conditions 1 -) and 6-), if operator fuction $Q(x)$ satisfies the condition $\left\|Q^{1 / 4}(x) Q^{-1 / 4}(s)\right\| \leq c, c=$ constant, then $g \in X_{4}^{(-1 / 4)}$.

3. DERIVATIONS OF GREEN'S FUNCTION

Let us try to show that operator function $G(x, s ; \mu)$ has the derivatives $\frac{\partial^{J} G(x, s ; \mu)}{\partial s^{J}}(j=1,2,3)$. If the derivatives of both sides of Eq.(6) is calculated according to s

$$
\begin{align*}
& \frac{\partial^{J} G(x, s ; \mu)}{\partial s^{J}}=\frac{\partial^{J}[r(x-s) g(x, s ; \mu)]}{\partial s^{J}}-\int_{0}^{\infty}\left\{r^{(I V)}(x-\xi) g(x, \xi ; \mu)\right. \\
& +4 \mathrm{r}^{\prime \prime \prime}(x-\xi) g^{\prime}(x, \xi ; \mu)+6 r^{\prime \prime}(x-\xi) g^{\prime \prime}(x, \xi ; \mu)+4 r^{\prime}(x-\xi) g^{\prime \prime \prime}(x, \xi ; \mu) \\
& +r(x-\xi) g(x, \xi ; \mu)[Q(\xi)-Q(x)]\} \frac{\partial^{J} G(\xi, s ; \mu)}{\partial s^{J}} d \xi(9) \\
& \quad K_{j}(x, s ; \mu)=\frac{\partial^{J}[r(x-s) g(x, s ; \mu)]}{\partial s^{J}}-N K_{j}(\xi, s ; \mu) \quad(j=1,2,3) \tag{10}
\end{align*}
$$

can be written. Let us investigate integral Eq.(10) in Banach space $X_{3}^{(1)}$. In Lemma 2, N was denoted is a constriction operator in the space $X_{3}^{(1)}$ for $\mu \gg 0$. If it is implied that operator function $\frac{\partial^{J}[r(x-s) g(x, s ; \mu)]}{\partial s^{J}}(j=1,2,3)$ belongs to $X_{3}^{(1)}$, it is shown that there exists a solution for Eq.(10) in $X_{3}^{(1)}$
for $\mu \gg 0$. It is seen that $\frac{\partial^{J} r g}{\partial s^{J}} \in X_{3}^{(1)}$, that is,
$\underset{0 \leq x<\infty}{\operatorname{Sup}} \int_{0}^{\infty}\left\|\frac{\partial^{J}(r g)}{\partial s^{J}}\right\|_{H} d s<\infty$ from clear expression of operator function $g(x, s ; \mu)$. It is demonstrated that $\frac{\partial^{J} G(x, s ; \mu)}{\partial s^{J}}-\frac{\partial^{J}[r(x-s) g(x, s ; \mu)]}{\partial s^{J}}$
$(\mathrm{j}=1,2,3)$ is a continuous function for $s,(s \neq x)$, performing the similar operations as in [10] and [4]. On the other hand, since $\frac{\partial^{J}[r(x-s) g(x, s ; \mu)]}{\partial s^{J}}(j=$ $1,2)$ is continuous, function $\frac{\partial^{J} G(x, s ; \mu)}{\partial s^{J}}(j=1,2)$ is also continuous for according to s. From $\frac{\partial^{3}[r(x-s) g(x, s ; \mu)]}{\partial s^{3}}$, it is denoted that this function satisfies the condition $\frac{\partial^{3}[r g(x, x+0 ; \mu)]}{\partial s^{3}}-\frac{\partial^{3}[r g(x, x-0 ; \mu)]}{\partial s^{3}}=I$ at the point $s=x$. This results in that operator function $\frac{\partial^{3} G}{\partial s^{3}}$ fulfilles the condition 4-) from the continuity of $\frac{\partial^{3} G}{\partial s^{3}}-\frac{\partial^{3} r g}{\partial s^{3}}$.

The following Lemma can be proved.
LEMMA 3: Assume that operator function $Q(x)$ satisfies the conditions 1-) and 3-) and

$$
\begin{equation*}
\left\|Q^{1 / 4}(x) Q^{-1 / 4}(s)\right\| \leq c \tag{11}
\end{equation*}
$$

while $|x-s| \leq 1$. In this case;

$$
\frac{\partial^{4}[r(x-s) g(x, s ; \mu)]}{\partial s^{4}} \in X_{4}^{(-1 / 4)}
$$

that is

$$
\underset{0 \leq x<\infty}{\operatorname{Sup}} \int_{0}^{\infty}\left\|\frac{\partial^{4}[r(x-s) g(x, s ; \mu)}{\partial s^{4}} Q^{-1 / 4}(s)\right\| d s<\infty .
$$

4. THE FOURTH DERIVATIVE OF GREEN'S FUNCTION

In previous part it has been shown that the derivative $\frac{\partial^{3} G}{\partial s^{3}}$ of Green's function $G(x, s ; \mu)$ belongs to the space X_{3} and it satisfies the continuity $(x \neq s)$ for the variable s and the following expression

$$
\begin{equation*}
\frac{\partial^{3} G(x, s ; \mu)}{\partial s^{3}}=\frac{\partial^{3}[r(x-s) g(x, s ; \mu)]}{\partial s^{3}}-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{3} G(\xi, s ; \mu)}{\partial s^{3}} d \xi \tag{12}
\end{equation*}
$$

where

$$
P(x, \xi ; \mu)=r^{(I V)}(x-\xi) g(x, \xi ; \mu)+4 r^{\prime \prime \prime}(x-\xi) g^{\prime}(x, \xi ; \mu)
$$

$$
\begin{aligned}
& +6 r^{\prime \prime}(x-\xi) g^{\prime \prime}(x, \xi ; \mu)+4 r^{\prime}(x-\xi) g^{\prime \prime \prime}(x, \xi ; \mu) \\
& +r(x-\xi) g(x, \xi ; \mu)[Q(\xi)-Q(x)] .
\end{aligned}
$$

Let us write Eq.(9) as follows

$$
\begin{equation*}
L(x, s ; \mu)=l(x, s ; \mu)-\int_{0}^{\infty} P(x, \xi ; \mu) L(\xi, s ; \mu) d \xi . \tag{13}
\end{equation*}
$$

Here
$L(x, s ; \mu)=\frac{\partial^{3} G}{\partial s^{3}}-\frac{\partial^{3}(r g)}{\partial s^{3}}$
and
$l(x, s ; \mu)=-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{3}(r g)(\xi, s ; \mu)}{\partial s^{3}} d \xi$.
Let us derive the Eq.(13) according to s as formal. From this $\frac{\partial L(x, s ; \mu)}{\partial s}=\frac{\partial l(x, s ; \mu)}{\partial s}-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial L(\xi, s ; \mu)}{\partial s} d \xi$
is obtained. If the expression

$$
\frac{\partial^{3}[r(x-(x+0)) g(x, x+0 ; \mu)]}{\partial s^{3}}-\frac{\partial^{3}[r(x-(x-0)) g(x, x-0 ; \mu)]}{\partial s^{3}}=I
$$

is used and if we write as

$$
\begin{aligned}
& l(x, s ; \mu)=-\left(\int_{0}^{s-0} P(x, \xi ; \mu) \frac{\partial^{3}(r g)(\xi, s ; \mu)}{\partial s^{3}} d \xi+\int_{s+0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{3}(r g)(\xi, s ; \mu)}{\partial s^{3}} d \xi\right), \\
& \frac{\partial l(x, s ; \mu)}{\partial s}=-P(x, s ; \mu)-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{4}(r g)(\xi, s ; \mu)}{\partial s^{4}} d \xi
\end{aligned}
$$

is found. Let us say that

$$
\frac{\partial l(x, s ; \mu)}{\partial s}=l_{1}(x, s ; \mu) .
$$

If it can be shown that element l_{1} belongs to $X_{4}^{(-1 / 4)}$, according to Lemma 2. It is obtained that there exists a derivative of the function $\frac{\partial^{3} G}{\partial s^{3}}-\frac{\partial^{3}(r g)}{\partial s^{3}}$ according to s and $\frac{\partial}{\partial s}\left(\frac{\partial^{3} G}{\partial s^{3}}-\frac{\partial^{3}(r g)}{\partial s^{3}}\right) \in X_{4}^{(-1 / 4)}$. From this point according to Lemma $3, \frac{\partial^{4} G}{\partial s^{4}} \in X_{4}^{(-1 / 4)}$ is obtained. It is found that the element l_{1} belongs to $X_{4}^{(-1 / 4)}$ by the studies [11], [4].

5. SATISFYING DIFFERENTIAL EQUATION OF GREEN'S FUNCTION

Let us show that Green's function $G(x, s, \mu)$ for $x \neq s$ satisfies the equation $\frac{\partial^{4} G}{\partial s^{4}}+G(x, s, \mu)[Q(s)+\mu I]=0$.
Let $f \in D$. Then,
$\frac{\partial^{4} G}{\partial s^{4}}(f)+r g[Q(x)+\mu I](f)=$
$-r g[Q(s)-Q(x)](f)-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{4} G(\xi, s ; \mu)}{\partial s^{4}}(f) d \xi$
or

$$
\begin{equation*}
\frac{\partial^{4} G}{\partial s^{4}}(f)=-r g[Q(s)+\mu I](f)-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{4} G(\xi, s ; \mu)}{\partial s^{4}}(f) d \xi \tag{14}
\end{equation*}
$$

is obtained Let $[Q(s)+\mu I] f=\varphi$. From this, Eq.(14) becomes as follows,

$$
\frac{\partial^{4} G}{\partial s^{4}}[Q(s)+\mu I]^{-1} \varphi=-r g \varphi-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{4} G(\xi, s ; \mu)}{\partial s^{4}}[Q(s)+\mu I]^{-1} \varphi d \xi
$$

Compairing this equation with Eq.(6),

$$
\frac{\partial^{4} G}{\partial s^{4}}\left\{-[Q(s)+\mu I]^{-1} \varphi\right\}=G(x, s ; \mu) \varphi
$$

is found. From the last expression, fourth property is obtained as elements' set of φ for every constant $s \geq 0$ is dence everywhere in H.

6. SATISFACTION OF BOUNDARY CONDITIONS

Let us show that $G(x, s ; \mu)$ satisfies the conditions

$$
\begin{aligned}
& \left.\frac{\partial G(x, s ; \mu)}{\partial s}\right|_{s=0}-\left.h_{1} G(x, s ; \mu)\right|_{s=0}=0 \\
& \left.\frac{\partial^{3} G(x, s ; \mu)}{\partial s^{3}}\right|_{s=0}-\left.h_{2} \frac{\partial^{2} G(x, s ; \mu)}{\partial s^{2}}\right|_{s=0}=0
\end{aligned}
$$

that is Green's function fulfilles the condition 5-).

$$
\begin{gather*}
G(x, s ; \mu)=r(x-s) g(x, s ; \mu)-\int_{0}^{\infty} P(x, \xi ; \mu) G(\xi, s ; \mu) d \xi \tag{15}\\
\frac{\partial G(x, s ; \mu)}{\partial s}=\frac{\partial[r(x-s) g(x, s ; \mu)]}{\partial s}-\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial G(\xi, s ; \mu)}{\partial s} d \xi \tag{16}
\end{gather*}
$$

From the Eq. 15 and 16;

$$
\begin{array}{r}
\left.\frac{\partial[r(x-s) g(x, s ; \mu)]}{\partial s}\right|_{s=0}-\left.\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial G(\xi, s ; \mu)}{\partial s} d \xi\right|_{s=0}- \\
-\left.\mathrm{h}_{1}\left[r(x-s) g(x, s ; \mu)-\int_{0}^{\infty} P(x, \xi ; \mu) G(\xi, s ; \mu) d \xi\right]\right|_{s=0}=0(17)
\end{array}
$$

is obtained. Considering that

$$
\left.\frac{\partial(r g)}{\partial s}\right|_{s=0}-\left.h_{1} r g\right|_{s=0}=0
$$

from Eq.(17);

$$
\begin{equation*}
\int_{0}^{\infty} P(x, \xi ; \mu)\left[\frac{\partial G(\xi, s ; \mu)}{\partial s}-h_{1} G(\xi, s ; \mu)\right]_{s=0} d \xi=0 \tag{18}
\end{equation*}
$$

can be written. Homogen Eq.(18) can be written as below,
$(N+I)\left[\frac{\partial G}{\partial s}-h_{1} G\right]_{s=0}=0$.
Since operator N is constriction operator for $\mu \gg 0$, then
$\left.\frac{\partial G(\xi, s ; \mu)}{\partial s}\right|_{s=0}-\left.h_{1} G(\xi, s ; \mu)\right|_{s=0}=0$
is obtained. Thus the first boundary condition of 5 -) is satisfied.
Now let us calculate the second and third derivation of $G(x, s ; \mu)$ according to s.
$\left.\frac{\partial^{j} G}{\partial s^{j}}\right|_{s=0}=\left.\frac{\partial^{j}(r g)}{\partial s^{j}}\right|_{s=0}-\left.\int_{0}^{\infty} r(x-\xi) g(x, \xi ; \mu)[Q(\xi)-Q(x)] \frac{\partial^{j} G(\xi, s ; \mu)}{\partial s^{j}} d \xi\right|_{s=0}$ ($j=2,3$)

$$
\begin{gather*}
\left.\frac{\partial^{3} G}{\partial s^{3}}\right|_{s=0}-\left.\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{3} G(\xi, s ; \mu)}{\partial s^{3}} d \xi\right|_{s=0}- \\
-h_{2}\left[\left.\frac{\partial^{2}(r g)}{\partial s^{2}}\right|_{s=0}-\left.\int_{0}^{\infty} P(x, \xi ; \mu) \frac{\partial^{2} G(\xi, s ; \mu)}{\partial s^{2}} d \xi\right|_{s=0}\right] \\
=\left.\frac{\partial^{3} G}{\partial s^{3}}\right|_{s=0}-\left.h_{2} \frac{\partial^{2} G}{\partial s^{2}}\right|_{s=0} \tag{19}
\end{gather*}
$$

From the expression of $g(x, s ; \mu)$, considering that

$$
\left.\frac{\partial^{3}(r g)}{\partial s^{3}}\right|_{s=0}-\left.h_{2} \frac{\partial^{2}(r g)}{\partial s^{2}}\right|_{s=0}=0
$$

from the Eq. 19

$$
\begin{aligned}
& -\left.\int_{0}^{\infty} P(x, \xi ; \mu)\left[\frac{\partial^{3} G(\xi, s ; \mu)}{\partial s^{3}}-h_{2} \frac{\partial^{2} G(\xi, s ; \mu)}{\partial s^{2}}\right]\right|_{s=0} d \xi \\
& =\frac{\partial^{3} G(\xi, s ; \mu)}{\partial s^{3}}-h_{2} \frac{\partial^{2} G(\xi, s ; \mu)}{\partial s^{2}}
\end{aligned}
$$

is found. This homogen equation can be expressed by

$$
\left.(N+I)\left[\frac{\partial^{3} G}{\partial s^{3}}-h_{2} \frac{\partial^{2} G}{\partial s^{2}}\right]\right|_{s=0}=0
$$

Since N is constriction operator for $\mu \gg 0$ in $X_{3}^{(1)}$

$$
\frac{\partial^{3} G(x, s ; \mu)}{\partial s^{3}}-\left.h_{2} \frac{\partial^{2} G(x, s ; \mu)}{\partial s^{2}}\right|_{s=0}=0
$$

is obtained. Thus the second condition of 5-) is also fulfilled.
Consequently, it is shown that operator function $G(x, s ; \mu)$ satisfies all properties of Green's function.

If integral operator

$$
A f=\int_{0}^{\infty} G(x, s ; \mu) f(s) d s, \quad \mu>0
$$

is formed in H_{1} by using Green's function obtained, it is seen that A is a Hilbert-Schmidt (H-S) type operator from the property proved
$\int_{0}^{\infty} \int_{0}^{\infty}\|G(x, s ; \mu)\|_{2}^{2} d x d s<\infty$.
If $Q(x)=Q^{*}(x), h_{1}=h_{2}$, are real numbers then $G^{*}(x, s ; \mu)=G(s, x ; \mu)$ can be proved.

Appendix:

Example. Let $\Omega \subset 211 d^{m}(m \geq 1)$ be any finite region with uniformly smooth boundary and $R^{+}=[0, \infty)$.

Let us consider the boundary value problem of
$\frac{\partial^{4} u}{\partial x^{4}}+q(x)\left(-\triangle_{y}\right)^{s} u=\lambda u$
$\left.\frac{\partial u(x, y)}{\partial x}\right|_{x=0}+h_{1} u(0, y)=0$
$\left.\frac{\partial^{3} u(x, y)}{\partial x^{3}}\right|_{x=0}+h_{2} u(0, y)=0$
$\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial \gamma}\right|_{\partial \Omega}=\ldots=\left.\frac{\partial^{s-1}}{\partial \gamma^{s-1}}\right|_{\partial \Omega}=0$
in space $L_{2}\left(R^{+} \times \Omega\right)$. Here $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$,
$-\triangle_{y}=-\frac{\partial^{2}}{\partial y_{1}^{2}}-\frac{\partial^{2}}{\partial y_{2}^{2}}-\ldots-\frac{\partial^{2}}{\partial y_{m}^{2}}$,
s is any integer $>\frac{2 m}{7}, \partial \Omega$ is the boundary of Ω region, γ is the normal of $\partial \Omega$ and $q(x)$ is a complex valued function with values in $C \backslash S_{\varepsilon}$ satisfying the conditions
$c_{1}\left(1+x^{\alpha}\right) \leq|q(x)| \leq c_{2}\left(1+x^{\alpha}\right)$
where $\alpha>\frac{4}{7}, c_{1}, c_{2}$ are positive constants and h_{1}, h_{2} are arbitrary complex constants.

Let us define self-adjoint A operator (like in [14]) in space $H=L_{2}(\Omega)$ by $\left(-\triangle_{y}\right)^{s}$ with boundary conditions (d).

Therefore the problem (a)-(d) in the space $H_{1}=L_{2}\left(R^{+} \times \Omega\right)=L_{2}\left(R^{+}, H\right)$ can be writed as a boundary value problem with operator coefficient as follows:
$\frac{\partial^{4} u}{\partial x^{4}}+Q(x) u-\lambda u=0$
$u^{\prime}(0)-h_{1} u(0)=0$
$u^{\prime \prime \prime}(0)-h_{2} u^{\prime}(0)=0$
where $u(x)=u(x,),. Q(x)=q(x) A$.
Resolvent set of operator function $Q(x)$ defined like this consists of region S_{ε} and it can be shown that conditions 1-) - 6-) are satisfied (See
also [9], [5]). Applying the founded results in the theoretical part, Green function of the problem (a)-(d) can be examined.

7. REFERENCES

[1] ALBAYRAK, I. and BAYRAMOGLU, M., Investigation Green Function of of Differential Equation with fourth order and operator coefficient in half axis, Journal of Yıldız Technical University, 1999/2, 61-72, (1999)
[2] ASLANOV, G.I., On Differential Equation with infinity operator coefficient in Hilbert Space, DAN ROSSII, 1994,V.337, No:1, (1994)
[3] "Applied Functional Analysis ", BALAKRISHNAN, A.V., SpringerVerlag, New York, Heidelberg, Berlin, (1976)
[4] BAYRAMOGLU, M., Asymptotic Behaviour of the Eigenvalues of Ordinary Differential Equation with Operator Coefficient, "Functional Analysis and Aplications" Sbornik, Bakü: Bilim, 144-166, (1971)
[5] BAYRAMOGLU, M. and BAYKAL, O., Asymptotic Behaviour of the Weighted Trace of Schrodinger Equation with Operator Coefficient given in n-dimensional space, Proyecciones, vol.18, No:1, pp.91-106, July (1999)
[6] BOYMATOV, K.CH., Asymptotic Behaviour of the spectrum of theOperator Differential Equation, Usp. Mat.Nauk, V.5, 28, 207-208, (1973)
[7] "Perturbation Theory For Linear Operators ", KATO, T., Berlin-Heidelberg-New York, Springer-Verlag, (1980)
[8] KLEIMAN, E.G., On The Green's Function For The Sturm-Liouville Equation With a Normal Operatör Coefficient, Vestnik, Mosk. Univ., No:5, 47-53, (1977)
[9] KOSTYUCHENKO, A.G. and LEVITAN, B.M., Asymtotic Behaviour of The Eigenvalue of The Sturm-Liouville Operatör Problem, Funct. Analysis Appl.1, 75-83, (1967)
[10] "Asymptotic Behaviour of the Eigenvalues ", KOSTYUCHENKO, A.G. and SARGSYAN, I.S., Moskow, Nauka., (1979)
[11] LEVITAN, B.M., Investigation of The Green's Function of The SturmLiouville Problem with Operator Coefficient, Mat. Sb. 76(118), No:2, 239-270, (1968)
[12] "Asymptotic Behaviour of The Spectrum of The Sturm-Liouville Operator ", OTELBAYEV, M., Alma Ata: Science., (1990)
[13] OTELBAYEV, M., Classification of The Solutions of Differential Equations, IZV.AN KAZ.SSR, No:5, 45-48, (1977)
[14] "Methods of Modern Mathematical Physics IV: Analysis of operators ", REED, M. and SIMON, B., Academic Press, New York, San Francisco, London, (1978)
[15] SAITO, Y., Spektral Theory For Second-Order Differential Operators With Long-Range Operatör-Valued Coefficients, I. Japan. J.Math, 1. No:2, 311-349, (1975)
[16] "Boundary Value Problems and Green Function ", STAKGOLD, I., New York, (1998)
[17] "Functional Analysis", YOSIDA, K., (1980), Berlin-Gottingen- Heidelberg: Springer Verlag.

Received: October 2001.

Kevser Ozden Koklu

Mathematical Enginering Department
Yıldız Technical University
P. O. Box

Davutpasa Campus, Istanbul, Turkey
email:ozkoklu@yildiz.edu.tr
and

M. Bayramoglu

Mathematical Enginering Department
Yıldız Technical University
P. O. Box

Davutpasa Campus, Istanbul, Turkey
email: mbayram@yildiz.edu.tr

