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Abstract
We study the solvability of the problem
-Apu=g(z,u)+h nQ; u=0 ondQ,

when the nonlinearity g is assumed to lie asymptotically between 0
and the second eigenvalue Ay of —A,. We show that this problem is
nonresonant.
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1. Introduction

In this paper we consider nonresonant problems of the form

(1.1) {—Apu = g(z,u)+h in Q

U = 0 on 09,

where Q C R” is a bounded smooth domain, A, =div (|Vu[P~2Vu) denotes
the p-laplacian, h € W=7 (Q) and g : Q x R — R is a Carathéodory
function such that

(90) mp(z) = sup |g(z,s)| € LP () for each R > 0.
|s|<R

We are interested in the conditions to be imposed on g and on the primi-
tive G (G(z,s) = [5 g(z,t)dt) in order to have the nonresonance i.e. the
solvability of (1.1) for every h in W~12'(Q).

First we introduce some notations.

A1(m), A2(m) denote the first and the second eigenvalue of the weighted
nonlinear eigenvalue problem

~Apu=Im(@)|uff?u in Q u=0 on 99,

where m(.) € L>®(Q) is a weight function which is positive on subset of
positive measure. Aj(resp A\2) denotes A1(1) (resp Aa(1)).

It is known that Aj(m) > 0 is a simple eigenvalue, ¢ the normalized A;-
eigenfuction does not change sign in Q and o(—Ap, m(.))NJAi1(m), Ada(m)[ =
(), where o(—A,) is the spectrum of —A,(cf [2], [4]).

The inequality a(z) < B(z) means that a(z) < f(z) for a.e. x € Q with

a strict inequality a(x) < ((z) holding on subset of positive measure. ||.||
denotes the norm in Wy (1), ||.||, denotes the norm in LP(RQ).
E(\1) is the subspace of Wol’p(Q) spanned by ¢; and E(\)* = {h €
WLP(Q) : [ hgr = 0}.

Now we are ready to present the main results, let us consider the hy-
potheses

. 9(,s)

(Hy) k(z) =limsup ——=~ < Ag.
ls|otoo |S[P72s

(H>) lminf 2528 _

|s|—>+oo |s[P72s
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L gws)
(Hy) A s (@) _|1;|rg}kr<l>£ |s[P=2s”
(Hy) M < Ly () —limint 2E@3)

|s| =400 ’8‘17

p
(Hs) / G(z,te1(z)) dx — ‘t]l — 400 as |t| — +oo.
Q

All these limits are taken uniformly for a.e. x € 2.

Theorem 1.1. Assume (Hy), (H2), (Hs), (H4) and (Hs), then for any
given h € E(A\1)*, the problem (1.1) possesses a nontrivial solution.

Remark 1.1. we can replace (H3) by the following condition of Landes-
man-Lazer type

waxm—wnwp>mveE@nwm-

In the nonlinear case (p # 2), when the potential G satisfies lim sup
|s|—+o0

G(z,s
p|(|p,) < A2, problems of nonresonance has been studied by just a few
s
authors, a contribution in this direction is [3] where the authors studied

the case when the perturbation g stays asymptotically between A\ and As.

2. Preliminary results

From the conditions (go), (H1), (H2) and (Hs) it follows that there exists
constant a > 0 and function b(.) € L¥ (Q) such that

9z, 5)| < alsP~! + b(a), (1)

then the critical points u € T/VO1 P(Q) of the C! functional

I(u) :]1)/Q|Vu\p—/QG(x,u(az))—/Qhu

are the weak solutions of the problem (1.1).
To get a critical point of I, we will apply the following version of the
Mountain-Pass theorem which is proved in [9], with condition (C').
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Theorem 2.1. Let I € C}(X,R) satisfying condition (PS), 3 € R and
let Q be a closed connected compact subset such that 0Q N (—0Q) # 0.
Assume that

1) VK € Ay there exists v € K such that I(vg) > (8 and I(—vg) > .
2) a=supljpg < f.

3) sup [|g < +o0.
Then I has a critical value ¢ > (.

Recall that Ay = {K C X : K is compact, symmetric and v(K) > 2},
~v(K') denotes the genus of K.

Remark 2.1. The condition (C) is clearly implied by the Palais-Smale
condition (PS).

Let (un) C WyP(Q2) be an unbounded sequence such that

I'(up) — 0 and I(u,) is bounded (2)
defining v,, = Yn_ and gn(x) = M Passing to a subsequence still
[ un| [[n [P

denoted by (vy,) (resp (gn)), we may assume that
vy — v weakly in Wy P ().
vp(z) = v(z) ae. x €
lon(2)] < 2(x)  =2(.) € LP(Q).

gn — g weakly in LPI(Q).
Lemma 2.1. Assume (H;), (H2) and (Hs), then we have

1) ||v|| = 1 and —Apv = m(.)|v[P~2v where 0 < m(.) < Xa.

2) v(x) >0 p.p. €.
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Proof. By (1), we have

I,(Un) = _Apun - g(l‘, Un) —h,

then () N
Unp,
—A =7 B — 3
A T e T @)
hence
nErJIrloo < —Apvy, vy —v >=0. (4)

Since —A,, is of type ST, from (4) we conclude
vp, — v strongly in Wol’p(Q),

so that
v = 1. (5)

Passing to the limit in (3), we obtain
—Apv =7, (6)

hence (5) and (6) give

Let us define

Combining the hypotheses (H;), (Hz2) and (H3), we show that
0 <m(x) < Ag, (8)
and
g=0 if v(z)=0. 9)

(The results (8) and (9) are standard cf [6] e.g.)
Using (6), we have
—Apv = m(z) v’ 2. (10)

To complete the proof of Lemma 2.1, we need to show that v > 0 p.p. x € Q.
From (7), (8) and (10) we deduce that

m(.) € L¥(Q), 0 < mf(.) (11)
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and
1 eoa(—=Ap,m(.)). (12)
In view of (8) and the strict monotonicity of Aa (cf [4]) we get
A2(m(.)) > A2(A2(1)),

that is
A2(m(.)) > 1. (13)

Combining (11), (12), (13) and the fact that
o(—Ap,m(.)) N]JAL(m), Aa(m)[ = 0, we conclude

1=X(m) and v € E(A(m))\{0}, (14)
hence v does not change sign in 2. Assume that v < 0, then we have
up(z) = ||lup|lvy, = —00 pp.x € Q, (15)

from (7) and (8), we deduce

g<0 (16)
On the other hand
g z u’rl g(.ﬁl’: ’U,n( ))| |p 2
- T o n ’Un
[[un[P~ 1 Q [unlP2un

Using (H2) and (15), Fatou’s Lemma gives
(@, un(z))

lim inf M > [ liminf g
e N T e

/gzo
Q

which contradicts (16) and show that v > 0 p.p. x € €2, then the proof of
Lemma 2.1 is complete.

"%

‘n n-

therefore

Lemma 2.2. Assume (H;), (H2) and (Hs), then

m(.) = A1 p.p. © € Q.
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Proof. Let Ay = {z € Q: m(z) < A1}, combining (H;) and (H3) we
get

W > (1 sign(un)) (A1 — &)|vn P20,
+ (1= sign(un))(A2 + &)|vnlP~2v, + 0(n).
Then

Jognxa, = (14 sign(vn))(A1 — &)|valP" 2o x4,
+ (1= sign(un))(A2 + €)|vn[P"2vn x4, + 0(n), .

passing to the limit we conclude
[ az0u=e) [ 1op.
Ao AO

/ (m(z) — A)|oP20 > 0.

Ao

hence

Since v > 0, then necessarily mes(Ag) = 0, so it follows that
m(x) > A1 p.p.x €. (17)

If m(.) > Ay, then by the strict monotonicity of A;, we have

Al(m) <1
which contradicts (14), hence m(.) = A\ p.p x € Q.

Lemma 2.3. Assume (H;), (H2), (H3) and (Hy), then the functional I
satisfies the Palais-Smale condition (PS), that is whenever (uy) C Wy (Q)
is a sequence such that I (u,) is bounded and I' (uy,) — 0 then (uy,) possesses
a convergent subsequence.

Proof. Remark that, using (1) any bounded sequence (u,) such that
I'(up) — 0 and I(u,) is bounded possesses a convergent subsequence, so
we will show that (u,) is bounded.

Suppose by contradiction that ||u,|| — +occ. Then, as we observed in

“”H) still denoted by

the previous Lemmas, a subsequence of (vy,) (v, = ||
Un

(vp,) is such that
vp — v strongly in Wy (Q),
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lv]| = )\1/ [P =1and v >0 p.p. z €. (18)
Q
In view of (Hs) and (Hs), we obtain

G(, un(x)) 2 55(1 + sign(un)) (L (z) — €)[unlP+
%(1 — sign(uy))(—¢)|un|” + B:(z).(19)

Since I(uy) is bounded below, we have

1 _/QG(a?,un(a:)) B

p P

hvy, M
> M € R). 20
Tl 2 g (M€ 0
Combining (19) and (20) and passing to the limit we get

1= [ L@l 20,
Q

hence, by (18) we deduce

|1 = Lol = o, (21)

as v > 0 pp. € Qand Li(x) > A1, (21) can not occur, then I satisfies
the condition (PS). The proof is now complete.

3. Proof of theorem 1.1
Let A = {u e WyP(Q) : Aa(k(z)) Jo k(@)|u? < [q |Vu|p}, where k(x) =
lim sup 9(z,5) . Recall that lim sup PGz, 5) < k(x).

|s]—+o0 5|p725 |s|—=+o0 ‘8|p
It is easy to see that A is nonempty and symmetric set. For u € A we have

I(u) = pllullP = Jo (k@) +e) [ul” = [ullplPllp = [1Bellx
> ullull” = lfullpllAlly = (1 Bell1,
since Ao(k(z)) > Aa(Ro(1)) = 1, = <1 e vareffzz(m> o
then
lim I(u) = +o0,
||| =400, ucA
hence

Iy = p forsome (€R. (22)
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Let K C Wol’p(Q) compact, symmetric and y(K) > 2, we will show that

KnNA#0.

(23)

Indeed, if 0 € K, then (23) is proved by setting v = 0. if 0 ¢ K, we
consider K = {H”, u € K}. It is easy to see that y(K) > 2, hence by

the variational characterization of Aa(k(x)):

: | k@up,
= Ssu mln u
No(k(z)) ek, uek

we have

. 1
irgg/ﬂk(m)\uw < Nk@)

Since K is compact, there exists 79 € K such that

- 1
AM@MISMw@»

(recall that o9 = ”Z—SH, v € K),
then

Aa(k(@) [ k@)ool < [ [Tuol”
hence

vg € ANK.
On the other hand, by the hypothesis (Hs), we can easily see that

lim I(typ1) = —oc.
[t|—~4o0

From this, there exists R; > 0 such that
I(tpr) < B for |t| > Ry

where 7 is a normalized, A\j-eigenfunction.
Letting @ = {te1: [t| < Ri1}.
We have
sup [ 1@ < +00

and from (26), we conclude

sup I|3Q < p.

(27)

(28)

In view of Lemma 2.3, (22), (24), (27) and (28) we may apply Theorem

2.1, to conclude the existence of a critical point ug € VVO1 P(Q) of 1.
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4. Exemple

Let g be a continuous function given by

BsP~1 if s>0
—B|s|Pt if 0>s>-1+1
g(s) =< —Ben(n— L) Ys+n) if s€[-n,—n+ L] (neN¥)
Be™(n + e%)pfl(s +n) if se[-n— e%, —n]
—B|s[Pt if sel-(n+1)+ 5, —n— =]
where A\ < 8 < Ag.
AN /)\g /
|/
yyts
/\1 // // ]
It is not difficult to see that
. g\z,s
o) i £528= < 2
liminf 9% _ g (30)
|s|]—+o0 ‘S‘I)_QS
... gz, s)
A <1 f . 31
! _|51|I£1>5rnoo |s[P—2s (31)
M <liminf 2EE8) (32)

[s|—to0 |5
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Gz, tor(z)) dz — " > ﬁ|t|p—1|t|p—z2ﬂ<n+1>p_11
pral T = o

en
n>1

1 B
> (80
> pH N

p—1
where I =37, -1 20 (n + e") o eR.
So the hypotheses of Theorem 1.1 are satisfied.

1]
2]

[3]
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