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Abstract

In this paper we prove the existence and the uniqueness of the clas-
sical solution of non-autonomous inhomogeneous boundary Cauchy
problems, and that this solution is given by a variation of constants
formula. This result is applied to show the existence of solutions of a
retarded equation.
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1. Introduction

Consider the following boundary Cauchy problem

(IBCP )





d
dtu(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,
L(t)u(t) = Φ(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,
u(s) = u0.

This type of problems presents an abstract formulation of several natu-
ral equations such as retarded differential equations, retarded (difference)
equations, dynamical population equations and neutral differential equa-
tions.

In the autonomous case (A(t) = A,L(t) = L,Φ(t) = Φ), the Cauchy
problem (IBCP ) was studied by G. Greiner [2, 3]. The author has used the
perturbation of domains of infinitesimal generators to study the homoge-
neous boundary Cauchy problem (f ≡ 0). He has also showed the existence
of classical solutions of (IBCP ) via a variation of constants formula. In the
non-autonomous case, Kellermann [6] and Nguyen Lan [7] have showed the
existence of an evolution family (U(t, s))t≥s≥0 which provides the classical
solution of the homogeneous boundary Cauchy problem. The aim of this
paper is to show the well-posedness of the inhomogeneous problem (IBCP).

In Section 2, we prove the existence and the uniqueness of the classical
solution of (IBCP ). Our technique consists on transforming (IBCP ) to
an ordinary Cauchy problem (without boundary conditions) and giving an
equivalence between the two problems. Moreover, the solution of (IBCP )
is explicitly given by a variation of constants formula similar to the one
given in [3] in the autonomous case. We note that the operator matrices
method was also used in [4, 8, 9] for the investigation of inhomogeneous
Cauchy problems without boundary conditions.

Finally, Section 3 is devoted to an application to the retarded equation

(RE)

{
v(t) = K(t)vt + f(t), t ≥ s ≥ 0,
vs = ϕ.

We end this introduction by basic definitions which are needed for the
sequel.

A family of linear (unbounded) operators (A(t))0≤t≤T on a Banach
space X is called stable family if there are constants M ≥ 1, ω ∈ R such
that ]ω,∞[⊂ ρ(A(t)) for all 0 ≤ t ≤ T and

∥∥∥∥∥
k∏

i=1

R(λ,A(ti))

∥∥∥∥∥ ≤ M(λ− ω)−k
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for λ > ω and any finite sequence 0 ≤ t1 ≤ ... ≤ tk ≤ T.

A family of bounded linear operators (U(t, s))0≤s≤t on X is said to be
evolution family if

1. U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all 0 ≤ s ≤ r ≤ t,

2. the mapping
{
(t, s) ∈ R2

+ : t ≥ s
} 3 (t, s) 7−→ U(t, s) is strongly con-

tinuous.

For more details on evolution families and non-autonomous Cauchy
problems we refer, for instance, to [1, 5, 10].

2. Well-posedness of boundary Cauchy problems

Let D, X and Y be Banach spaces, D densely and continuously embedded
in X. Consider the families of operators A(t) ∈ L(D, X), L(t) ∈ L(D, Y )
and Φ(t) ∈ L(X, Y ), for 0 ≤ t ≤ T .

In this section, we use the operator matrices method to prove the exis-
tence of classical solution for the non-autonomous inhomogeneous boundary
Cauchy problem

(IBCP )





d
dtu(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,
L(t)u(t) = Φ(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,
u(s) = u0.

To that purpose, we assume that the following hypotheses hold:
(H1) t 7−→ A(t)x is continuously differentiable for all x ∈ D.

(H2) the family (A0(t))0≤t≤T , A0(t) := A(t)|kerL(t), is stable, with
(M0, ω0) constants of stability.

(H3) the operator L(t) is surjective for every t ∈ [0, T ] and t 7−→ L(t)x
is continuously differentiable for all x ∈ D.

(H4) t 7−→ Φ(t)x is continuously differentiable for all x ∈ X.
(H5) there exist constants γ > 0 and ω ∈ R such that

||L(t)x||Y ≥ γ−1(λ− ω)||x||X for x ∈ ker(λ−A(t)), λ > ω and t ∈ [0, T ].

Note that under the above hypotheses, the Cauchy problem associated
to the family A0(·) is well-posed and its solutions are given by an evolution
family (U(t, s))0≤s≤t≤T , see [7].
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Definition 2.1. A function u : [s, T ] −→ X is called classical solution
of (IBCP ) if it is continuously differentiable, u(t) ∈ D, t ∈ [s, T ], and u
satisfies (IBCP ).

We recall the following results which will be used after.

Lemma 2.2. [6.7] For t ∈ [0, T ] and λ ∈ ρ(A0(t)), we have the following
properties.

i) D = D(A0(t))⊕ ker(λ−A(t)).
ii) L(t)|ker(λ−A(t)) is an isomorphism from ker(λ−A(t)) onto Y.

iii) t 7−→ Lλ,t := (L(t)|ker(λ−A(t)))
−1 is strongly continuously differen-

tiable.

As consequences of this lemma, we have L(t)Lλ,t = IdY
, Lλ,tL(t) and

(I −Lλ,tL(t)) are the projections from D onto ker(λ−A(t)) and D(A0(t))
respectively.

We now introduce the Banach space E := X ×C1([0, T ], Y )× Y, where
C1([0, T ], Y ) is the space of continuously differentiable functions from [0, T ]
into Y equipped with the norm ||g|| := ||g||∞+ ‖g′‖∞ for g ∈ C1([0, T ], Y ).

Let AΦ(t) be the operator matrices defined on E by

AΦ(t) :=




A (t) 0 0
0 0 0
L (t)− Φ(t) −δt 0


 ,

D(AΦ(t)) := D × C1([0, T ], Y )× {0}, t ∈ [0, T ],

where δt : C([0, T ], Y ) −→ Y is the Dirac function concentrated at the
point t.

To the family AΦ(·) we associate the homogeneous Cauchy problem

(NCP )





d
dtU(t) = AΦ(t)U(t), 0 ≤ s ≤ t ≤ T,

U(s) =




u0

f
0


 .

In the following proposition we give the equivalence between the boundary
Cauchy problem (IBCP ) and the Cauchy problem (NCP ).
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Proposition 2.3. Let

(
u0

f

)
∈ D × C1([0, T ], Y ).

(i) If the function t 7−→ U(t) :=




u1 (t)
u2 (t)

0


 is a classical solution of

(NCP ) with an initial value




u0

u2 (t)
0


 then t 7−→ u1(t) is a classical

solution of (IBCP ) with the initial value u0.
(ii) Let u be a classical solution of (IBCP ) with the initial value u0.

Then, the function

t 7−→ U(t) =




u (t)
f
0


 is a classical solution of (NCP ) with the initial

value




u0

f
0


 .

Proof. (i) Since U is a classical solution, then, from Definition 2.1, u1 is
continuously differentiable and u1(t) ∈ D, for all t ∈ [s, T ]. Moreover,

U ′ (t) =




u′1 (t)
u′2 (t)
0




= AΦ (t)U (t)

=




A (t) u1 (t)
0

L (t) u1 (t)− Φ (t) u1 (t)− δtu2 (t)




(2.1)

Therefore
u′1(t) = A(t)u1(t)m and u′2(t) = 0.(2.2)

This implies that u2(t) = u2(s) = f for all t ∈ [s, T ]. Hence, the equation
(2.1) implies

L(t)u1(t) = Φ(t)u1(t) + f(t), 0 ≤ s ≤ t ≤ T.

The assertion (ii) is obvious. 2

The above proposition allows us to get the aim of this section by showing
the well-posedness of the Cauchy problem (NCP ). To do this, we use the
subsequent result due to Tanaka [11, Theorem 1.3].
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Theorem 2.4. Let (A(t))0≤t≤T be a stable family of linear operators on a
Banach space X such that

i) the domain D := (D(A(t)), ||.||D) is a Banach space independent of
t,

ii) the mapping t 7−→ A(t)x is continuously differentiable in X for every
x ∈ D.

Then, there is an evolution family (U(t, s))0≤s≤t≤T on D. Moreover, we
have the following properties:

1. U(t, s)D(s) ⊂ D(t) for all 0 ≤ s ≤ t ≤ T , where D(r) is defined by

D(r) :=
{
x ∈ D : A(r)x ∈ D

}
, 0 ≤ r ≤ T,

2. the mapping t 7−→ U(t, s)x is continuously differentiable in X on
[s, T ] and

d

dt
U(t, s)x = A(t)U(t, s)xm for all x ∈ D(s)m and t ∈ [s, T ].

We start by stating the following lemma.

Lemma 2.5. The family of operators (AΦ(t))0≤t≤T is stable.

Proof. For t ∈ [0, T ], we write AΦ(t) as

AΦ(t) = A(t) +




0 0 0
0 0 0

−Φ (t) −δt 0


 ,

where,

A(t) =




A (t) 0 0
0 0 0

L (t) 0 0


 , D(A(t)) = D(AΦ(t)).

Since AΦ(t) is a perturbation of A(t) by a linear bounded operator on
E, hence, in view of the perturbation result [10, Thm. 5.2.3], it is sufficient
to show the stability of (A(t))0≤t≤T .
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Let λ > ω0, t ∈ [0, T ] and




x
f
y


 ∈ E. We have

(λ−A(t))




R
(
λ,A0 (t)

)
0 −Lλ,t

0 1
λ 0

0 0 0







x
f
y




=




(λ−A (t))R
(
λ,A0 (t)

)
x− (λ−A (t))Lλ,ty

f
−L (t) R

(
λ,A0 (t)

)
x + L (t) Lλ,ty


 .

Since R(λ,A0(t))x ∈ D(A0(t)) = ker(L(t)), Lλ,ty ∈ ker(λ − A(t)) and
L(t)Lλ,t = IdY

, we obtain

(λ−A(t))




R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0


 = IdE .(2.3)

On the other hand, for




x
f
0


 ∈ D(A(t)), we have




R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0


 (λ−A(t))




x
f
0




=




R
(
λ,A0 (t)

)
(λ−A (t))x + Lλ,tL (t) x

f
0


 .

(2.4)

From Lemma 2.2, let x1 ∈ D(A0(t)) and x2 ∈ ker(λ − A(t)) such that
x = x1 + x2. Then,

R
(
λ,A0 (t)

)
(λ−A (t))x + Lλ,tL (t) x

= R
(
λ,A0 (t)

)
(λ, A (t)) (x1 + x2) + Lλ,tL (t) (x1 + x2)

= R
(
λ,A0 (t)

)
(λ−A (t))x1 + Lλ,tL (t) x2

= x1 + x2

= x.
Therefore,




R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0


 (λ−A(t))




x
f
0


 =




x
f
0


 .(2.5)
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From (2.3) and (2.5), we obtain that the resolvent of A(t) is given by

R(λ,A(t)) =




R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0


 .

By a direct computation we can obtain

k∏

i=1

R(λ,A(ti)) =




∏k
i=1 R(λ,A(ti)) 0

∏k
i=1 R(λ,A(ti))Lλ,t1

0 1
λk 0

0 0 0




for a finite sequence 0 ≤ t1 ≤ ... ≤ tk ≤ T .
From the hypothesis (H5), we conclude that ||Lλ,t|| ≤ γ(λ− ω)−1 for

all t ∈ [0, T ] and λ > ω. Define ω1 = max(0, ω0, ω). Therefore, by using

(H2), we obtain for




x
f
0


 ∈ E

∥∥∥∥∥∥∥
∏k

i=1 R(λ,A(ti))




x
f
y




∥∥∥∥∥∥∥
=

∥∥∥∏k
i=1 R(λ,A0(ti))x−

∏k
i=1 R(λ, A0(ti))Lλ,t1y

∥∥∥ + 1
λk ‖f‖

≤ M (λ− ω1)
−k ‖x‖+ M (λ− ω1)

−k−1 γ (λ− ω1)
−1 ‖y‖+ (λ− ω1)

−k ‖f‖

≤ M ′ (λ− ω1)
−k

∥∥∥∥∥∥∥




x
f
y




∥∥∥∥∥∥∥
,

where M
′
:= max(M, Mγ). This achieves the proof of the lemma. 2

Let (U(t, s))t≥s≥0 be the evolution family generated by A0(·) and
f(t, u(t)) := Φ(t)u(t) + f(t), 0 ≤ t ≤ T . We are now ready to state our
main result.

Theorem 2.6. Let f be continuously differentiable function on [0, T ] onto
Y . Assume that (H1) − (H5) are satisfied. Then, for every initial value
u0 ∈ D, such that L(s)u0 = Φ(s)u0 + f(s), the boundary Cauchy problem
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(IBCP ) has a unique classical solution u. Moreover, u is given by the
variation of constants formula

u(t) = U(t, s)(I − Lλ,sL(s))u0 + Lλ,tf(t, u(t))

+
∫ t

s
U(t, r)[λLλ,rf(r, u(r))− (Lλ,rf(r, u(r)))

′
] dr

(2.6)

for t ≥ s.

Proof. By Lemma 2.5 and the assumptions (H1), (H3) and (H4), the
family (AΦ(t))0≤t≤T satisfies all conditions of Theorem 2.4, then there
exists an evolution family (UΦ(t, s))s≤t≤T such that, for all initial value


u0

f
0


 ∈ D(AΦ(s)), the function




u (t)
v (t)
0


 := UΦ(t, s)




u0

f
0


 is the

classical solution of (NCP ). Therefore, from (i) of Proposition 2.3, u is a
classical solution of (IBCP ). The uniqueness of u comes from the unique-
ness of the solution of (NCP) and Proposition 2.3.

Let now u be a classical solution of (IBCP ). At first, assume that
Φ(t) = 0. Then, the functions

u2(t) := Lλ,tL(t)u(t)
= Lλ,tf(t), 0 ≤ t ≤ T,

and u1(t) := (I − Lλ,tL(t))u(t), 0 ≤ t ≤ T, are differentiable and

u′1(t) = u′(t)− u′2(t)

= A(t)(u1(t) + u2(t))− (Lλ,tf(t))
′

= A0(t)u1(t) + λLλ,tf(t)− (Lλ,tf(t))′.

If we define f̃(t) := λLλ,tf(t)− (Lλ,tf(t))
′
, we have

u1(t) = U(t, s)u1(s) +
∫ t

s
U(t, r)f̃(r) dr, 0 ≤ s ≤ t ≤ T.

By replacing u1(s) by (I − Lλ,sL(s))u0, we obtain

u1(t) = U(t, s)(I − Lλ,sL(s))u0 +
∫ t

s
U(t, r)f̃(r) dr.
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It follows that

u(t) = U(t, s)(I − Lλ,sL(s))u0 + Lλ,tf(t)
+

∫ t
s U(t, r)

[
λLλ,rf(r)− (Lλ,rf(r))

′]
dr.

(2.7)

In the case Φ 6= 0, since f(·, u(·)) is continuously differentiable, similar
arguments are used to obtain the formula (2.7) for f(·) := f(·, u(·)), and
consequently (2.6) is showed. 2

3. Retarded equation

Let E be a Banach space and K(t) ∈ L(C([−r, 0], E), E), 0 ≤ t ≤ T . We
consider the retarded equation

(RE)

{
v(t) = K(t)vt + f(t), 0 ≤ s ≤ t ≤ T,
vs = ϕ,

where vt(τ) := v(t + τ), for τ ∈ [−r, 0], and f : [0, T ] −→ E.
Assume that:
(A) t 7−→ K(t)ϕ is continuously differentiable for all ϕ ∈ C([−r, 0], E)

and sup0≤t≤T ‖K(t)‖ < 1.

Definition 3.1. A function v : [s − r, T ] −→ E is said to be solution of
(RE), if it is continuous and v satisfies (RE).

In this section we are interested in the study of the retarded equation
(RE) by applying the abstract result obtained in the previous section. To
be more specific, we write (RE) as the boundary Cauchy problem

(IBCP )′





d
dtu(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,
L(t)u(t) = Φ(t)u(t) + f(t),
u(s) = ϕ,

where, for each 0 ≤ t ≤ T , A(t) is defined on the Banach space X :=
C([−r, 0], E) by

{
A(t)u = u′

D := D(A(t)) = C1([−r, 0], E),

L(t) : D −→ Y = E : L(t)ϕ = ϕ(0) and Φ(t) : X −→ E : Φ(t)ϕ = K(t)ϕ.
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It is known that the operator A0 defined by
{

A0ϕ = ϕ′

D(A0) =
{
ϕ ∈ C1([−r, 0], E) ; ϕ(0) = 0

}

generates a strongly continuous semigroup (T (t))t≥0 on X given by

(T (t)ϕ)(τ) =

{
ϕ(t + τ), −r ≤ t + τ ≤ 0
ϕ(0), t + τ ≥ 0

(3.1)

We first show that (IBCP )′ has a classical solution. To do this, in
view of Theorem 2.6, we have to verify the hypotheses (H1) − (H5) for
this problem. The hypotheses (H1), (H3) are obvious and (H4) can be
obtained from assumption (A).

For (H2), let ϕ ∈ D(A0(t)) =
{
ϕ ∈ C1([−r, 0], E) ; ϕ(0) = 0

}
and f ∈

C([−r, 0], E) such that (λ−A0(t))ϕ = f . Then,

ϕ(τ) = eλτϕ(0) +
∫ 0

τ
eλ(τ−σ)f(σ) dσ, τ ∈ [−r, 0].

Since ϕ(0) = 0, we get

(R(λ,A0(t))f)(τ) =
∫ 0

τ
eλ(τ−σ)f(σ) dσ.

Hence, for λ > 0, ∥∥∥R(λ,A0(t))
∥∥∥ ≤ 1

λ
.

This proves the stability of (A0(t))t∈[0,T ].
On the other hand, if ϕ ∈ ker(λ − A(t)), then ϕ(τ) = eλτϕ(0) for

τ ∈ [−r, 0], and

L (t)ϕ = ‖ϕ (0)‖
0

∥∥∥e−λτϕ (τ)
∥∥∥ .

Since limλ→+∞
e−λ·

λ
= +∞, in CE , we take c > 0 such that

e−λ·

λ
≥ c.

Therefore,
‖L(t)ϕ‖ ≥ cλ||ϕ||, t ∈ [0, T ],

and so (H5) also holds. 2

We obtain the following proposition.
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Proposition 3.2. Let f ∈ C1([0, T ], E). Then, for every ϕ ∈ C1([−r, 0], E)
such that ϕ(0) = K(s)ϕ + f(s), the boundary Cauchy problem (IBCP )′

has a classical solution u satisfying the variation of constants formula

u(t) = T (t− s)(ϕ− eλ·ϕ(0)) + eλ·f(t, u(t))
+

∫ t
s T (t− σ)eλ·

[
λf(σ, u(σ))− (f(σ, u(σ)))′

]
dσ,

(3.2)

where f(t, u(t)) := K(t)u(t) + f(t), 0 ≤ t ≤ T .
Moreover, u satisfies the translation property

u(t)(τ) :=

{
u (t + τ) (0) , s ≤ t + τ ≤ T
ϕ (t + τ − s) , −r + s ≤ t + τ

(3.3)

Proof. First, one can see that for λ > 0 and x ∈ E, Lλ,t = eλ·x. On the
other hand, the evolution family generated by A0(·) is given by U(t, s) =
T (t− s), t ≥ s.

Since the hypotheses (H1) − (H5) are fulfilled, then the existence of
a classical solution for (IBCP )′ and the formula (3.2) are a direct con-
sequences of Theorem 2.6. It remains to show the translation property
(3.3).

Let τ ∈ [−r, 0] such that t + τ ≥ s. By using (3.1) and integration by
parts, we obtain

u(t)(τ) = (T (t− s)ϕ)(τ)− (T (t− s)eλ·ϕ(0))(τ) + eλτf(t, u(t))

+
∫ t+τ

s
T (t− σ)eλ·

[
λf(σ, u(σ))− (f(σ, u(σ)))′

]
(τ) dσ

+
∫ t

t+τ
T (t− σ)eλ·

[
λf(σ, u(σ))− (f(σ, u(σ)))′

]
(τ) dσ

= eλτf(t, u(t)) +
∫ t+τ

s
λf(σ, u(σ))− (f(σ, u(σ)))′ dσ

+
∫ t

t+τ
eλ(t+τ−σ)λf(σ, u(σ)) dσ −

∫ t

t+τ
eλ(t+τ−σ)(f(σ, u(σ)))′ dσ

= f(s, u(s)) +
∫ t+τ

s
λf(σ, u(σ)) dσ.

If −r + s ≤ t + τ ≤ s, we have

u(t)(τ) = (T (t− s)ϕ)(τ)− (T (t− s)eλ·ϕ(0))(τ) + eλτf(t, u(t))
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+
∫ t

s
T (t− σ)eλ·

[
λf(σ, u(σ))− (f(σ, u(σ)))′

]
(τ) dσ

= ϕ(t + τ − s)− eλ(t+τ−s)ϕ(0) + eλτf(t, u(t))

+
∫ t

s
eλ(t+τ−s)

[
λf(σ, u(σ))− (f(σ, u(σ)))′

]
dσ

= ϕ(t + τ − s)− eλ(t+τ−s)ϕ(0) + eλτf(t, u(t))

+
∫ t

s
λeλ(t+τ−s)f(σ, u(σ)) dσ −

∫ t

s
eλ(t+τ−s)(f(σ, u(σ)))′ dσ

= ϕ(t + τ − s)− eλ(t+τ−s)ϕ(0) + eλ(t+τ−s)f(s, u(s)).

As, by hypothesis, ϕ(0) = f(s, u(s)), we conclude

u (t) (τ) =

{
ϕ (0) +

∫ t+τ
s λf (σ, u (σ)) do, t + τ ≥ s

ϕ (t + τ − s) −r + s ≤ t + τ ≤ s.

The translation property (3.3) is obtained. 2

We end this section by the following equivalence result between (RE)
and (IBCP )′.

Theorem 3.3. (i) Let u be the classical solution of (IBCP )′. Then, the
function v defined by

v(t) :=

{
u(t)(0), s ≤ t ≤ T,
ϕ(t− s), −r + s ≤ t ≤ s,

is a solution of (RE).
(ii) If v is a solution of (RE), then t 7−→ u(t) := vt satisfies (IBCP )′.

Proof. (i) Let u be the classical solution of (IBCP )′. Then the function v
is continuous. On the other hand, (3.3) implies that vt = u(t), s ≤ t ≤ T .
Therefore, we have

v(t) = u(t)(0)
= L(t)u(t)(·)
= K(t)u(t)(·) + f(t)
= K(t)vt(·) + f(t), t ≥ s.

Consequently, v satisfies (RE).
The assumption sup0≤t≤T ‖K(t)‖ < 1 assure the uniqueness of the so-

lution of (RE). Hence, (ii) follows easily by (i) and this uniqueness. 2
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