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Abstract

Let X, Y be locally convex spaces and L(X,Y ) the space of con-
tinuous linear operators from X into Y . We consider 2 types of mul-
tiplier convergent theorems for a series

∑
Tk in L(X, Y ). First, if λ

is a scalar sequence space, we say that the series
∑

Tk is λ multiplier
convergent for a locally convex topology τ on L(X,Y ) if the series∑

tkTk is τ convergent for every t = {tk} ∈ λ. We establish condi-
tions on λ which guarantee that a λ multiplier convergent series in
the weak or strong operator topology is λ multiplier convergent in the
topology of uniform convergence on the bounded subsets of X. Sec-
ond, we consider vector valued multipliers. If E is a sequence space of
X valued sequences, the series

∑
Tk is E multiplier convergent in a

locally convex topology η on Y if the series
∑

Tkxk is η convergent
for every x = {xk} ∈ E. We consider a gliding hump property on E
which guarantees that a series

∑
Tk which is E multiplier convergent

for the weak topology of Y is E multiplier convergent for the strong
topology of Y .
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1. INTRODUCTION

The original Orlicz-Pettis Theorem which asserts that a series
∑

xk in a
normed space X which is subseries convergent in the weak topology of X
is actually subseries convergent in the norm topology of X can be inter-
preted as a theorem about multiplier convergent series. Let λ be a scalar
sequence space which contains the space of all sequences which are even-
tually 0 and let (E, τ) be a Hausdorff topological vector space. The series∑

xk in E is λ multiplier convergent with respect to τ if the series
∑

tkxk

is τ convergent for every t = {tk} ∈ λ; the elements of λ are called multi-
pliers. Multiplier convergent series where the multipliers come from some
of the classical sequence spaces, such as lp, have been considered by various
authors ([B],[FP]); in particular, c0 multiplier convergent series have been
used to characterize Banach spaces which contain no copy of c0 ([D]). Thus,
a series

∑
xk is subseries convergent if and only if

∑
xk is m0 multiplier

convergent, where m0 is the sequence space of all scalar sequences which
have finite range. Several Orlicz-Pettis Theorems have been established for
multiplier convergent series where the multipliers are from various classical
sequence spaces ([LCC], [SS],[WL]). In this note we consider Orlicz-Pettis
Theorems for multiplier convergent series of linear operators where the mul-
tipliers are both scalar and vector valued. In general, as Example 2.1 below
shows, a series of operators which is m0 multiplier convergent in the weak
operator topology is not m0 multiplier convergent in the topology of uni-
form convergence on bounded subsets; however, if the space of multipliers
satisfies certain conditions an Orlicz-Pettis result of this type does hold.
One of our results contains a gliding hump assumption on the multiplier
space which is of independent interest and also yields an Orlicz-Pettis result
for series in the strong topology of a general locally convex space.

We begin by fixing the notation and terminology which we use. Let
X, Y be real Hausdorff locally convex spaces and let L(X, Y ) be the space
of continuous linear operators from X into Y . If x ∈ X, y′ ∈ Y ′, let x⊗ y′

be the linear functional on L(X, Y ) defined by 〈x⊗ y′, T 〉 = 〈y′, Tx〉 and
let X⊗Y ′ be the linear subspace spanned by {x⊗y′ : x ∈ X, y′ ∈ Y ′}. The
weak operator topology on L(X, Y ) is the weak topology from the duality
between L(X, Y ) and X ⊗ Y ′ ([DS]VI.1). The strong operator topology
on L(X,Y ) is the topology of pointwise convergence on X ([DS]VI.1). Let
Lb(X, Y ) be L(X, Y ) with the topology of uniform convergence on the
bounded subsets of X; the topology of Lb(X,Y ) is generated by the semi-
norms pA(T ) = sup{p(Tx) : x ∈ A}, where p is a continuous semi-norm on
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Y and A is a bounded subset of X ([DS],VI.1).

2. SCALAR MULTIPLIERS

In this section we establish Orlicz-Pettis type theorems for multiplier con-
vergent series of operators with respect to the weak operator topology and
the topology of Lb(X, Y ). As the following example illustrates, an operator
valued series which is subseries or m0 multiplier convergent in the strong
(weak) operator topology needn’t be m0 multiplier convergent in Lb(X, Y ).

Example 1. Define Tk : l1 → l1 by Tkt =
〈
ek, t

〉
= tke

k, where ek is the
sequence with 1 in the kth coordinate and 0 in the other coordinates.. Since
for every subsequence {nk} the series

∑∞
k=1 Tnk

t =
∑∞

k=1 tnk
enk converges

in l1 for every t ∈ L1, the series
∑

Tk is m0 multiplier convergent in the
strong operator topology. But, ‖Tk‖ = 1 so

∑
Tk is not m0 multiplier

convergent in the operator norm.
However, as the following two theorems show, if the space of multipliers

λ satisfies some additional conditions, an operator valued series which is λ
multiplier convergent in the weak(strong) operator topology can indeed be
λ multiplier convergent in Lb(X,Y ).

The sequence space λ is an AK space if λ has a Hausdorff locally convex
topology such that the coordinate maps t = {tk} → tk from λ to R are
continuous and each t has a series expansion t =

∑∞
k=1 tke

k which converges
in the topology of λ ([BL]).

Theorem 2. If λ is a barrelled AK space and
∑

Tk is λ multiplier con-
vergent in the weak operator topology of L(X, Y ), then

∑
Tk is λ multiplier

convergent in Lb(X, Y ).

Proof: From Corollary 2.4 of [SS] it follows that
∑

Tk is λ multiplier
convergent in the strong topology β(L(X,Y ), X ⊗ Y ′). Thus, it suffices to
show that if a sequence(net) {Sk} in L(X,Y ) converges in β(L(X, Y ), X ⊗
Y ′), then {Sk} converges in Lb(X, Y ); that is, the strong topology
β(L(X, Y ), X ⊗ Y ′) is stronger than the topology of Lb(X,Y ).

Let A ⊂ X be bounded,B ⊂ Y ′ be equicontinuous and let C = {x⊗ y′ :
x ∈ A, y′ ∈ B}. It is easily checked that C is σ(X ⊗ Y ′, L(X,Y )) bounded
so sup{|〈x⊗ y′, Sk〉| : x ∈ A, y′ ∈ B} → 0 which implies that Skx → 0
uniformly for x ∈ A or Sk → 0 in Lb(X, Y ).
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We next consider an analogue of Theorem 2 for other spaces of multi-
pliers which are described by purely algebraic conditions in contrast to the
AK and barrelledness assumptions of Theorem 2.

Let E be a vector space of X valued sequences which contains the
space of all X valued sequences which are eventually 0. If t = {tj} is
a scalar sequence and x = {xj} is either a scalar or X valued sequence,
tx = {tjxj} will be the coordinatewise product of t and x. A sequence
of interval {Ij} in N is increasing if max Ij < min Ij+1 for all j; if I is
an interval, then CI will be the characteristic function of I. The space
E has the infinite gliding hump property (∞-GHP) if whenever x ∈ E
and {Ik} is an increasing sequence of intervals, there exist a subsequence
{nk} and ank

> 0, ank
→ ∞ such that every subsequence of {nk} has a

further subsequence {pk} such that
∑∞

k=1 apk
CIpk

x ∈ E (coordinate sum).
[The term ∞-GHP is used to suggest that the ”humps” CIx are multiplied
by a sequence which tends to ∞; there are other gliding hump properties
where the ”humps” are multiplied by elements of classical sequence spaces
([Sw3])].

We now give several examples of spaces with the ∞-GHP. The space E
is normal (solid in the scalar case) if l∞E = E ([KG]2.1); E is c0−invariant
if x ∈ E implies that there exist t ∈ c0, y ∈ E such that x = ty ([G]; the
term c0 − factorable might be more descriptive).

Example 3. If E is normal and is c0-invariant, then E has ∞-GHP.
Let x ∈ E with x = ty where t ∈ c0, y ∈ E and let {Ik} be an increasing
sequence of intervals. Pick an increasing sequence {nk} such that sup{|tj | :
j ∈ Ink

} = bnk
> 0 (if this choice is impossible there is nothing to do).

Note that bnk
→ 0 so ank

= 1/bnk
→ ∞. Define vj = tjank

if j ∈ Ink

and vj = 0 otherwise; then v ∈ l∞ so vy ∈ E since E is normal. We have∑∞
j=1(vy)je

j =
∑∞

k=1 ank
CInk

x ∈ E . Since the same argument can be
applied to any subsequence of {nk}, E has ∞-GHP.

We now give some examples of spaces which satisfy the conditions of
Example 3.

Example 4. Let X be a normed space and let c0(X) be the space of
all null sequences in X. Then c0(X) is normal and c0-invariant and so has
∞-GHP..

Example 5. Let 0 < p < ∞ and let X be a normed space. Let lp(X)
be the space of all pth power summable sequences in X. Let x ∈ lp(X) and
pick an increasing sequence {nk} such that

∑nk+1

j=nk+1 ‖xj‖p < 1/2k(p+1) .
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Set Ik = [nk + 1, nk+1], t =
∑∞

k=1 2−kCIk
, y =

∑∞
k=1 2kCIk

x so x = ty with
t ∈ c0 and y ∈ lp. Hence, lp(X) is c0-invariant and is obviously normal.

Likewise, it is easily checked that the spaces d = {t : supk |tk|1/k < ∞}
and δ = {t : lim |tk|1/k = 0} (see [KG] p.48 and 68) are normal and
c0−invariant and, hence, have ∞−GHP .

There exist non-normal sequence spaces with ∞-GHP.
Example 6. Let cs be the space of convergent series ([KG]). Let t ∈ cs

and {Ik} be an increasing sequence of intervals. Choose a subsequence
{nk} such that

∣∣∣∑j∈Ink
∩I tj

∣∣∣ < 1/k2k for any interval I. Consider s =∑∞
k=1 kCInk

t. If I is any interval contained in the interval [min Ink
,∞),

then
∣∣∣∣∣∣
∑

j∈I

sj

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∞∑

i=k

∑

j∈Ini∩I

itj

∣∣∣∣∣∣
≤

∞∑

i=k

1/2i = 2−k+1

so the partial sums of the series generated by s are Cauchy and s ∈ cs.
Since the same argument applies to any subsequence of {nk}, cs has ∞-
GHP.

Note that the argument above shows that any Banach AK space has
∞-GHP;e.g., bv0 ([KG]).

The spaces l∞, m0, bs and bv do not have ∞-GHP.
We next consider a result analogous to Theorem 2 except that we use

the strong operator topology.

Theorem 7. Let λ have ∞-GHP. If
∑

Tj is λ multiplier convergent
in the strong operator topology, then

∑
Tj is λ multiplier convergent in

Lb(X,Y ).

Proof: If the conclusion fails, there exist ε > 0, t ∈ λ,A ⊂ X bounded,
a continuous semi-norm p on Y and subsequences {mk}, {nk} such that
m1 < n1 < m2 < ... and pA(

∑nk
l=mk

tlTl) > ε. For every k there exists
xk ∈ A such that

(1) p(
∑nk

l=mk
tlTlxk) > ε.

Set Ik = [mk, nk]. Since λ has ∞-GHP, there exist {pk}, apk
> 0, apk

→
∞ such that every subsequence of {pk} has a further subsequence {qk} such
that s =

∑∞
k=1 aqk

CIqk
t ∈ λ. Let M = [mij ] = [

∑nj

l=mj
(tlapj )Tl(xi/api)].
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We use the Antosik-Mikusinski Matrix Theorem ([Sw2 ]2.2.2) to show
that the diagonal of M converges to 0; this will contradict (1). First,
the columns of M converge to 0 since xi/api → 0 and each Tl is con-
tinuous. Next, given a subsequence there is a further subsequence {qk}
such that s =

∑∞
k=1 aqk

CIqk
t ∈ λ. The series

∑∞
l=1 slTl converges in the

strong operator topology to an operator T ∈ L(X,Y ). Hence,
∑∞

j=1 miqj =∑∞
j=1

∑
l∈Iqj

slTl(xi/api) = T (xi/api) → 0. It follows that M is a K matrix.
By the Antosik-Mikusinski Matrix Theorem the diagonal of M converges
to 0 which contradicts (1).

Remark 8. If the multiplier space λ in Theorem 7 is normal, we
may replace the assumption that

∑
Tj is λ multiplier convergent in the

strong operator topology with the assumption that the series is λ multiplier
convergent in the weak operator topology. For if λ is normal and

∑
tjTj

is convergent in the weak operator topology for every t ∈ λ, then the
series is subseries convergent in the weak operator topology and, therefore,
convergent in the strong operator topology by the classical Orlicz-Pettis
Theorem.

The proof of Theorem 7 also establishes the following version of the
Orlicz-Pettis Theorem for multiplier convergent series which should be com-
pared to the version given in Corollary 2.4 of [SS] where it is assumed that
lamda is a barrelled AK-space.

Theorem 9.(Orlicz-Pettis) If λ has ∞-GHP and if
∑

j xj is λ multi-
plier convergent in the weak topology σ(X, X ′), then

∑
j xj is λ multiplier

convergent in the strong topology β(X, X ′).

The spaces d = {t : supk |tk|1/k < ∞} and δ = {t : lim |tk|1/k = 0}
([KG]) give examples of spaces to which Theorems 7 and 9 apply but to
which Theorem 2 and its scalar counterpart, Corollary 2.4 of [SS], do not
apply. (The natural metric on d does not give a vector topology ([KG]p.
68).)

The scalar versions of Theorems 2 and 7 are both of interest. That is,
the case when the space Y is the scalar field.

Corollary 10. Assume that λ has ∞− GHP or that λ is a barrelled
AK space.
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If
∑

j x′j is λ multiplier convergent in the weak* topology σ(X ′, X) of
X ′, then

∑
j x′j is λ multiplier convergent in the strong topology β(X ′, X).

Corollary 10 should be compared to the Diestel-Faires Theorem concern-
ing subseries convergence in the weak* topology of the dual of a Banach
space. In the Diestel-Faires result the emphasis is on conditions on the
space while in Corollary 10 the conditions are on the space of multipliers.

3. VECTOR MULTIPLIERS

We now consider vector valued multipliers for operator valued series. Let
{Tk} ⊂ L(X, Y ) and let E be a vector space of X valued sequences con-
taining the space of all sequences which are eventually 0. If τ is a locally
convex Hausdorff topology on Y, we say that the series

∑
Tk is E multi-

plier convergent with respect to τ if the series
∑

Tkxk is τ convergent for
every x = {xk} ∈ E. We establish Orlicz-Pettis Theorems for multiplier
convergent series analogous to Theorems 2 and 7 for the weak and strong
topologies of Y .

As in section 2 the following example shows that if the space of multi-
pliers does not satisfy some condition an Orlicz-Pettis Theorem does not
in general hold for the weak and strong topologies of Y .

Example 1. Let l∞(X) be the space of all bounded X valued se-
quences. Assume that l∞ has the weak topology σ(l∞, l1) Define Pk :
l∞ → l∞ by Pkx = xke

k. Let E = l∞(l∞). If x = {xk} ∈ E, then∑
Pkx

k =
∑

xk
ke

k is σ(l∞, l1) convergent, but if x = {ek} ∈ E, then∑
Pke

k =
∑

ek is not β(l∞, l1) = ‖‖∞ convergent.

We begin with the analogue of Theorem 2.7 since it is straightforward
to state and prove.

Theorem 2. Let E have ∞-GHP and {Tk} ⊂ L(X,Y ).
If

∑
Tk is E multiplier convergent with respect to the weak topology

σ(Y, Y ′), then
∑

Tk is E multiplier convergent with respect to the strong
topology β(Y, Y ′).

Proof: If the conclusion fails, there exist x ∈ E, {y′k} σ(Y ′, Y ) bounded,
ε > 0 and subsequences {mk}, {nk} with m1 < n1 < m2 < ... and
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∣∣∣∑nk
l=mk

〈y′k, Tlxl〉
∣∣∣ > ε for all k. Set Ik = [mk, nk]. Since E has ∞-GHP,

there exist {pk}, apk
> 0, apk

→∞ such that every subsequence of {pk} has
a further subsequence {qk} such that

∑
aqk

CIqk
x ∈ E. Define an infinite

matrix M = [mij ] = [
∑

l∈Ipj

〈
y′pi

/api , Tl(apjxl)
〉
]. We show that M is a

K matrix so the diagonal of M converges to 0 by the Antosik-Mikusinski
Matrix Theorem ([Sw2]2.2.2) and this will contradict the inequality above.
First, the columns of M converge to 0 since {y′i} is σ(Y ′, Y ) bounded and
api → ∞. Next, given a subsequence there is a further subsequence {qj}
such that y =

∑
aqk

CIqk
x ∈ E. Let

∑∞
l=1 Tlyl =

∑∞
j=1

∑
l∈Iqj

Tl(aqjxl) = z

be the σ(Y, Y ′) sum of this series. Then∑∞
j=1 miqj =

〈
y′qi

/aqi , z
〉
→ 0 so M is a K matrix and the result follows.

We next establish the analogue of Theorem 2.2. If u ∈ X, ek ⊗ u is the
sequence with u in the kth coordinate and 0 in the other coordinates. If τ
is a Hausdorff locally convex topology on E, (E, τ), or E if τ is understood,
is an AK space if x = τ− limn

∑n
k=1 ek⊗xk =

∑∞
k=1 ek⊗xk for every x ∈ E

([BL]).

Let
∑

Tk be E multiplier convergent with respect to σ(Y, Y ′). Define
a linear map T̂ : E → Y by setting T̂ x = σ(Y, Y ′) − limn

∑n
k=1 Tkxk =∑∞

k=1 Tkxk. Note that T̂ (ek ⊗ u) = Tku for u ∈ X, k ∈ N. Recall that
the (scalar) β-dual of E is defined to be Eβ = {{y′i} :

∑∞
i=1 〈y′i, xi〉 con-

verges ∀x ∈ E}([BL]). If y′ = {y′i} ∈ Eβ and x = {xi} ∈ E, we set y′ · x =∑∞
i=1 〈y′i, xi〉 and note that E and Eβ are in duality with respect this bilinear

pairing. If y′ ∈ Y ′, x ∈ E, then
〈
y′, T̂ x

〉
= 〈y′, ∑ Tkxk〉 =

∑ 〈y′, Tkxk〉 =
∑ 〈T ′ky′, xk〉 so {T ′ky′} ∈ Eβ and

〈
y′, T̂ x

〉
= {T ′ky′} · x. Hence, T̂ is

σ(E, Eβ)− σ(Y, Y ′) continuous and, therefore, β(E, Eβ) − β(Y, Y ′) con-
tinuous ([W]11.2.3,[Sw1]26.15) so we have

Theorem 3. If (E, β(E, Eβ)) is an AK space and
∑

Tk is E multiplier
convergent with respect to σ(Y, Y ′), then

∑
Tk is E multiplier convergent

with respect to β(Y, Y ′).

Proof: If x ∈ E, T̂ x = T̂ (
∑

ek ⊗ xk) = β(Y, Y ′) − limn
∑n

k=1 T̂ (ek ⊗
xk) = β(Y, Y ′)− limn

∑n
k=1 Tkxk by the strong continuity of T̂ established

above.
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If E is a barrelled AK space, then the argument in Lemma 3.9 of [KG]
shows that E′ = Eβ and since E is barreled, the original topology of E
is just β(E,Eβ) so Theorem 3 is applicable. If X is a Banach space, the
spaces c0(X) of null sequences with the sup-norm and lp(X) of absolutely p-
summable sequences with the lp-norm give examples of barrelled (B-spaces),
AK spaces to which Theorem 3 applies.

References

[B] G. Bennett, Some inclusion theorems for sequence spaces, Pacific J.
Math., 46, pp. 17-30, (1973).

[BL] J. Boos and T. Leiger, Some distinguished subspaces of domains of
operator valued matrices, Results Math.,16(1989),199-211.

[D] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag,
N. Y., (1984).

[DF] J. Diestel and B. Faires, Vector Measures, Trans. Amer. Math. Soc.,
198, pp. 253-271, (1974).

[DS] N. Dunford and J. Schwartz, Linear Operators I, Interscience, N.
Y., (1958).

[FP] M. Florencio and P. Paul, A note on λmultiplier convergent series,
Casopis Pro Pest. Mat., pp. 113, pp. 421-428, (1988).

[G] D. J. H. Garling, The β- and γ-duality of sequence spaces, Proc.
Cambridge Phil. Soc., 63, pp. 963-981, (1967).

[KG] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel
Dekker, N. Y., (1981).

[LCC] Li Ronglu, Cui Changri and Min Hyung Cho, An invariant with
respect to all admissible (X,X’)-polar topologies, Chinese Ann.
Math.,3, pp. 289-294, (1998).



144 Charles Swartz

[SS] C. Stuart and C. Swartz,Orlicz-Pettis Theorems for Multiplier Con-
vergent Series, Journal for Analysis and Appl.,17, pp. 805-811,
(1998).

[Sw1] C. Swartz, An Introduction to Functional Analysis,Marcel Dekker,
N. Y., (1992).

[Sw2] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci.Publ.,
Singapore, (1996).

[Sw3] C. Swartz, A multiplier gliding hump property for sequence spaces,
Proyecciones Revista de Matemática, 20, pp. 19-31, (2001).
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