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Abstract

There are well known inequalities for Hermitian matrices A and
B that relate the diagonal entries of A+B to the eigenvalues of A and
B. These inequalities are easily extended to more general inequalities
in the case where the matrices A and B are perturbed through con-
gruences of the form UAU∗ + V BV ∗, where U and V are arbitrary
unitary matrices, or to sums of more than two matrices. The extremal
cases where these inequalities and some generalizations become equal-
ities are examined here.
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Introduction
This work is written in the same spirit of Miranda and Thompson [7]

and Miranda [6] where the relationship between the diagonal elements of a
product of two arbitrary matrices and the singular values of each factor was
found. In this paper, every time when we mention the diagonal elements or
the eigenvalues of an Hermitian matrix, we are going to assume that they
are arranged in decreasing order. Schur [8] proved that the vector formed
by the diagonal entries of A is majorized by the vector whose entries are the
eigenvalues of A. Later on, Ky Fan [1] showed that the vector of eigenvalues
of A + B is majorized by the vector sum of the eigenvalues of A and B. If
we combine these two results we have that:

Theorem 1. Let A and B be Hermitian matrices in Mn with eigenvalues
λ1 ≥ . . . ≥ λn and µ1 ≥ . . . ≥ µn, respectively. Then, if d1 ≥ . . . ≥ dn

denote the diagonal entries of A+B, we have that the vector of the diagonal
elements of A+B is majorized by the sum of the vectors of the eigenvalues
of A and B. This means that

d1 + . . . + dk ≤ λ1 + µ1 + . . . + λk + µk, k = 1, . . . , n− 1

and
d1 + . . . + dn = λ1 + µ1 + . . . + λn + µn.

Since the eigenvalues of UAU∗ are the same as those of A, when U
is unitary, we can easily generalize this result to a more general family of
matrices.

Theorem 2. Let A and B be Hermitian matrices in Mn. Let us denote
by d1, d2, . . . , dn the diagonal entries of UAU∗ + V BV ∗ where U, V are
arbitrary unitary matrices. Then

d1 + . . . + dk ≤ λ1 + µ1 + . . . + λk + µk, k = 1, . . . , n− 1

and
d1 + . . . + dn = λ1 + µ1 + . . . + λn + µn.

If we consider matrices of the form UAV where U and V are unitary,
these are not necessarily Hermitian anymore, and their diagonal elements
might be complex numbers. There is no result that relates the diagonal to
the eigenvalues, but Thompson [9] found a set of inequalities between the
diagonal elements and the singular values of the summands. This kind of
relationship is called weak majorization.
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Theorem 3. Let A and B be Hermitian matrices in Mn. Let us denote by
d1, d2, . . . , dn the diagonal entries of UAV + WBX arranged in decreasing
order according to their absolute values, and where U, V,W,X are arbitrary
unitary matrices. Then

|d1|+ . . . + |dk| ≤ σ1(A) + σ1(B) + . . . + σk(A) + σk(B), k = 1, . . . , n.

where the sigmas denote the singular values of the matrices, also arranged
in decreasing order.

Extreme Cases
Let us give now a result that shows the equality case for the partial

sums of the diagonal entries and the eigenvalues of an Hermitian matrix.
This result is based on Lemma 2.1 which appears in Li [3] in the context
of diagonal elements and singular values of an arbitrary matrix.

Lemma 1. Let C be an n× n Hermitian matrix. If we write C as

C =

(
X Z∗

Z Y

)

with X ∈ Mk, Y ∈ Mn−k, Z ∈ Mn−k,k, and if λi(C) = λi(X) for 1 ≤
i ≤ k, then Z = 0.

Proof. Since C and X are Hermitian matrices, for 1 ≤ i ≤ k we have
that λi(C∗C) = σ2

i (C), where σi denotes the singular values of a matrix,
and λi(X∗X) = σ2

i (C).
Consequently, λi(C) = λi(X) for 1 ≤ i ≤ k implies that σ2

i (C) = σ2
i (X),

and

k∑

j=1

λj(C∗C) =
k∑

j=1

σ2
j (C) =

k∑

j=1

λ2
j (C) =

k∑

j=1

σ2
j (X) =

k∑

j=1

λ2
j (X) = tr(X∗X)

and

k∑

j=1

λj(C∗C) =
k∑

i,j=1

|cij |2 ≤
∑

1≤i≤n,1≤j≤k

|cij |2 ≤
k∑

j=1

λj(C∗C)
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The last inequality holds since the sum of the first diagonal entries of C∗C
is not greater than the sum of its k largest eigenvalues (this is Schur’s
inequality). So,

k∑

i,j=1

|cij |2 =
∑

1≤i≤n,1≤j≤k

|cij |2

Similarly,

k∑

i,j=1

|cij |2 =
∑

1≤i≤k,1≤j≤n

|cij |2

Consequently, cij = 0 for 1 ≤ j ≤ k < i ≤ n, 1 ≤ i ≤ k < j ≤ n, and
Z = 0.
Let us note that it was also proved here that Y = (cij) where k < i, j ≤ n.
2

Theorem 4. Let A and B be Hermitian matrices. Let 1 ≤ k ≤ n. Then

k∑

i=1

di(A + B) =
k∑

i=1

λi(A + B)

if and only if
A + B = (A + B)1 ⊕ (A + B)2 where (A + B)1 has eigenvalues λ1(A +
B), · · · , λk(A + B).

Proof. For 1 ≤ k ≤ n let (A+B)(k) be the principal submatrix of A+B
with the diagonal entries d1(A + B), · · · , dk(A + B). Then

k∑

i=1

di(A + B) =
k∑

i=1

λi((A + B)(k))

We use now the interlacing inequalities for eigenvalues (See 4.3.15 in
[2]) λi((A + B)(k)) ≤ λi(A + B), 1 ≤ i ≤ k, to have

k∑

i=1

di(A + B) =
k∑

i=1

λi((A + B)(k)) ≤
k∑

i=1

λi(A + B) =
k∑

i=1

di(A + B)

So, λi((A + B)(k)) = λi(A + B) ∀i, 1 ≤ i ≤ k,



Diagonals and Eigenvalues of Sums of Hermitian Matrices 131

and hence by the lemma A+B can be written as A+B = (A+B)1⊕(A+B)2
where (A + B)1 has eigenvalues λ1(A + B), · · · , λk(A + B)..
The converse is clear. 2

Next, we have an interesting result that produces a simultaneous con-
gruence for A and B.

Theorem 5. Let A and B be Hermitian matrices. Let 1 ≤ k ≤ n. Then

k∑

i=1

λi(A + B) =
k∑

i=1

λi(A) +
k∑

i=1

λi(B)

if and only if there exists unitary U ∈ U(n) such that UAU∗ = A1⊕A2,
UBU∗ = B1 ⊕ B2 where A1 has eigenvalues λ1(A), · · · , λk(A) and B has
eigenvalues λ1(B), · · · , λk(B).

Proof. Let us assume first that A + B is a diagonal matrix. Then
A + B = diag(λ1(A + B), · · · , λn(A + B)) and

k∑

i=1

(aii + bii) =
k∑

i=1

λi(A + B) =
k∑

i=1

λi(A) +
k∑

i=1

λi(B)

So,
k∑

i=1

aii =
k∑

i=1

λi(A), and
k∑

i=1

bii =
k∑

i=1

λi(B)

and
A = A1 ⊕A2, B = B1 ⊕B2

where A1 and B1 have eigenvalues λ1(A), · · · , λk(A), λ1(B), · · · , λk(B) re-
spectively.
If A+B is not diagonal, by the Spectral Theorem for Hermitian matrices we
can find U ∈ U(n) so that U(A+B)U∗ = diag(λ1(A+B), · · · , λn(A+B)).
So,

A+B = U∗diag(λ1(A+B), · · · , λn(A+B))U = U∗[(A1⊕A2)+(B1⊕B2)]U

Consequently,
A = U∗(A1 ⊕A2)U, B = U∗(B1 ⊕B2)U, that is,
UAU∗ = A1 ⊕A2, and UBU∗ = B1 ⊕B2.

The converse is immediate. 2

If we consider the two previous results, we can establish the relationship
between the diagonal elements of A + B and the eigenvalues of A and B.
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Theorem 6.
k∑

i=1

di(A + B) =
k∑

i=1

λi(A) +
k∑

i=1

λi(B)

if and only if there exists U ∈ U(n) such that

A + B = (A + B)1 ⊕ (A + B)2 = U∗(A1 + B1)U ⊕ U∗(A2 + B2)U

where (A+B)1 has eigenvalues λ1(A+B), · · · , λk(A+B), A1 has eigenvalues
λ1(A), · · · , λk(A), and B1 has eigenvalues λ1(B), · · · , λk(B).

Let us notice that if we write U as U = (U1|U2) where U1 is the sub-
matrix of U which consists of its first k columns, then we can write the
relationship among the three k × k diagonal blocks of A,B and A + B:

U∗
1 (A1 + B1)U1 = (A + B)1

Comments
These comments show how to try to generalize some of the results given

here, and also, some different points of view are considered.

Remark 1. It is interesting to notice that the same proof of the previous
theorem works in the case when we have more than two matrices. We
prefered to give here the two matrices case instead of the general case to
see better the beauty of the results. In this context, Theorem 6 takes the
form:

Theorem 7. Let A1, · · · , Am be Hermitian matrices with eigenvalues

Theorem 8. λ1(Aj), · · · , λn(Aj), where 1 ≤ j ≤ m, and where the eigen-
values are arranged in decreasing order. Furthermore, if di(A1 + · · ·+ Am)
are the diagonal entries, also arranged in decreasing order; and if 1 ≤ k ≤ n,
then

k∑

i=1

di(A1 + · · ·+ Am) =
k∑

i=1

λi(A1) + · · ·+
k∑

i=1

λi(Am)

if and only if there exists U ∈ U(n) such that

A1 + · · ·+ Am = (A1 + · · ·+ Am)1 ⊕ (A1 + · · ·+ Am)2, UAjU
∗ = (Aj)1

and (A1+· · ·+Am)1 has eigenvalues λ1(A1+· · ·+Am), · · · , λk(A1+· · ·+Am)
and (Aj)1 has eigenvalues λ1(Aj), · · · , λk(Aj).
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Remark 2. If we replace the matrix B by −B in the inequality

k∑

i=1

λi(A + B) ≤
k∑

i=1

λi(A) +
k∑

1

λi(B),

and we use the facts that the eigenvalues of −B are the negatives of the
eigenvalues of B, and that λi(−B) = −λn−i+1(B), we can write the above
inequality as

k∑

i=1

λi(A) +
k∑

i=1

λn−i+1(B) ≤
k∑

i=1

λi(A + B)

which is a lower bound for the partial sums of the eigenvalues of A + B.
By using the same proof of Theorem 6 we obtain equality here if and
only if there exists unitary U such that UAU∗ = A1 ⊕ A2 and UBU∗ =
B1⊕B2, where A1 has eigenvalues λ1(A), · · · , λk(A) and B1 has eigenvalues
λn−k+1(B), · · · , λn(B).

Remark 3. There are papers where the additive case for arbitrary instead
of Hermitian matrices is considered. To see some extremal results for the
diagonal elements and the singular values of the matrices involved, where
certain group actions are used, see [4].

Remark 4. In the case of product of matrices, Miranda [5] proved an
extremal result for the trace of the product of two arbitrary matrices in
terms of the singular values of the factors which produced also a simulta-
neous singular decomposition in the same spirit of Theorem 6. It is known
that

k∑

i=1

|di(UAU∗V BV ∗)| ≤
k∑

i=1

λi(A)λi(B),

but this result cannot be extended to more than two matrices. For instance,
consider A,B Hermitians arbitrary, C = −In, and U = V = W = In. Then

k∑

i=1

di(ABC) = −
k∑

i=1

di(AB) ≥ −
k∑

i=1

λi(A)λi(B) =
k∑

i=1

λi(A)λi(B)λi(C)
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