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Abstract

We show that a non-elementary finitely generated torsion-free func-
tion group is uniquely determined by its commutator subgroup. In this
way, we obtain a generalization of the results obtained in [2], [3] and
[8]. This is well related to Torelli’s theorem for closed Riemann sur-
faces. For a general non-elementary torsion-free Kleinian group the
above rigidity property still unknown.
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Introduction

Let us assume that S is a closed Riemann surface of genus g ≥ 2. Associated
to S we have its homology group with integer coefficients H1(S,Z) ∼= ⊕2gZ
and its complex vector space of holomorphic 1-forms H1,0(S) ∼= Cg. Using
integration of 1-forms over cycles we may see H1(S,Z) inside H1,0(S)∗, the
dual space of H1,0(S), as a lattice. The quotient J(S) = H1,0(S)∗/H1(S,Z)
is called the Jacobian of S, which is a complex torus of dimension g ad-
mitting a principal polarization given by the intersection form. Torelli’s
theorem asserts that S is uniquely determined by its jacobian and its po-
larization. In fact, generically S is only determined by its jacobian alone.
Every known proof of Torelli’s theorem uses the polarization to determine
S.

Given any point p ∈ S, we have a conformal embedding jp : S ↪→ J(S),
defined by jp(q) = [

∫ q
p0

]. A discussion of this can be found, for instance,
in [1]. We can lift jp(S) by the universal covering π : H1,0(S)∗ → J(S) to
obtain a Riemann surface S̃, called the homology cover of S, so that S is
conformally equivalent to jp(S) = S̃/H1(S,Z).

Let F be a co-compact fuchsian group, acting on the hyperbolic plane
H, so that S = H/F . We have that S̃ = H/[F, F ], where [F, F ] is the
commutator subgroup of F , that is, the subgroup of F generated by all its
commutators. In particular, if we forget the polarization of J(S), then we
may say that Torelli’s theorem is essentially “equivalent” to the following.
Theorem 1 [8]. Let F be a torsion-free co-compact fuchsian group. Then
F is uniquely determined by its commutator subgroup [F, F ].

In [2], [3] we have generalized the above result to certain types of non-
elementary finitely generated torsion-free Kleinian groups (Schottky type
groups and B-groups). In these notes, we prove that this still holds for
finitely generated torsion-free function groups (Kleinian groups with an in-
variant connected component). The case of torsion-free reversing Fuchsian
groups of the first kind has been studied in [6] and [7].
Theorem 2. Let G be a finitely generated non-elementary torsion free
function group. Then G is uniquely determined by its commutator subgroup
[G,G] .

The arguments in the proof still essentially the same as the one done in
the previous notes, but the difference has to do with the correct the choice
of the homology and cohomology, which is not natural, in this more general
situation. This is the main reason for writing this note.
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Remarks.

(1) In higher dimensions the above property fails as can be seen from an
example given in [3].

(2) If the group has no invariant components, then we have shown in
[4] and [5] that for certain type of special Kleinian groups the above
rigidity property still valid.

Let us recall that the homology cover of a manifold M is the one defined
by the commutator subgroup of the fundamental group of M . In this way,
theorem 2 can be written in the language of 3-manifolds as follows.

Theorem 3. Let M be a hyperbolic-three manifold with a non-abelian
fundamental group π1(M). Assume that M has a (conformal) boundary
component S (induced by its hyperbolic structure) such that the natural
inclusion i : S ↪→ M induces a surjective homomorphism i∗ : π1(S) →
π1(M). Then the hyperbolic structure of M is uniquely determined, up to
isometries, by the hyperbolic structure of its homological cover.

Proof. Let G ∼= π1(M) be a uniformizing group of the manifold M (of
isometries of the hyperbolic three space) satisfying the hypothesis of the
theorem. The group G is necessarily a function group as a consequence
of the surjectivity of i∗ : π1(S) → π1(M). The result now follows from
theorem 2. 2

The above results can be seen as a step into the search of a Torelli’s
type theorem for analytically finite Riemann surfaces and stable Rieman
surfaces.

1. Some Basic Tools

To prove theorem 2 we need some basic facts from Riemann surfaces theory.
First, we need the following, which is an easy consequence of proposition
E.10 in chapter V of [9].

Lemma 1. Let G be a group of Möbius transformations and K 6= {I} be
a subgroup of G.

(1) If K is a normal subgroup of G and any of them is a non-elementary
Kleinian group, then the other is also a Kleinian group sharing the
same region of discontinuity.
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(2) If K is a finite index subgroup of G and any of them is a Kleinian
group, then the other is also a Kleinian group with the same region
of discontinuity.

Let now T be an analytically finite Riemann surface, of signature (g, k)
and let T be its compactified Riemann surface of genus g. Set H(T ) to be
the complex vector space generated by the holomorphic and antiholomor-
phic 1-forms on T and the holomorphic 1-forms on T with at most simple
poles at the punctures of T . The following is well known and can be found,
for instance, in [1].

Lemma 2. The dimension of H(T ) is given by

dimCH(T ) =

{
2g, if k = 0
2g + k − 1, otherwise.

The pairing given by

(w, α) ∈ H(T )×H1(T,C) →
∫

α
w ∈ C

defines a duality between H(T ) and H1(T,C).

To write the third observation we need some facts. Let (G, ∆) be a
finitely generated torsion free non-elementary function group with com-
mutator subgroup K. Assume we have a finite index subgroup I < G
containing K. We have then a finite sequence of holomorphic coverings

r : ∆ → ∆/K;

t : ∆/K → ∆/I;

p : ∆/I → ∆/G.

We also have the respective coverings at the level of 3-dimensional man-
ifolds (with boundaries):

R : ∆̂ → ∆̂/K;

T : ∆̂/K → ∆̂/I;

P : ∆̂/I → ∆̂/G,

where ∆̂ = ∆ ∪H3.
We may now look at the induced homomorphism at the level of first

homology with complex coefficients: H1(P ) : H1(∆̂/I,C) → H1(∆̂/G,C).
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Since the index of I in G is finite, the covering P : ∆̂/I → ∆̂/G has finite
degree and, in particular, H1(P ) is surjective homomorphism. Moreover,
we know that the kernel of these homomorphism is generated by those loops
in ∆̂/I which lift to loops on ∆̂/K.

We have the natural inclusions

i∆ : ∆ ↪→ ∆̂;

iK : ∆/K ↪→ ∆̂/K;

iI : ∆/I ↪→ ∆̂/I;

iG : ∆/G ↪→ ∆̂/G.

The induced homomorphisms at the level of homology with complex
coefficients are surjective. Let us denote the respective kernels by N∆ =
H1(∆,C), NK = kerH1(iK) < H1(∆/K,C), NI = kerH1(iI) < H1(∆/I,C)
and NG = kerH1(iG) < H1(∆/G,C).

We have that NG is given by the homology classes of those loops in ∆/G
which lift to loops on ∆/K, and that H1(r)(N∆) < NK , H1(t)(NK) < NI ,
H1(p)(NI) < NG.

Let us consider the induced surjective homomorphism on the quotient

H1(p) : H1(∆/I,C)/NI → H1(∆/G,C)/NG,

which is the same as

H1(P ) : H1(∆̂/I,C) → H1(∆̂/G,C),

whose kernel is generated by those loops on ∆/I that lift to loops on ∆/K.
If we denote by N⊥

I (respectively, N⊥
G ) the subspace of H(∆/I) (respec-

tively, H(∆/G)) orthogonal to NI (respectively, NG), then the map

p∗ : N⊥
G → N⊥

I ,

defined by pull-back forms, is dual to the above surjective homomorphism
and, in particular, it is injective. The image P ∗(N⊥

G ) corresponds to those
forms in N⊥

I which are invariant under the action of pull-back of each
transformation in the abelian group G/I. The following is just consequence
of all the above observations.
Lemma 3. We have that

dimCN⊥
G = dimCH1(∆̂/G,C) = dimCH(∆/G)− lG,

where lG denotes the maximal number of homologically independent simple
loops in ∆/G which lift to loops on ∆/K.
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2. Proof of Theorem 2

Let us consider two non-elementary finitely generated torsion free function
groups (G1, ∆1) and (G2,∆2) such that [G1, G1] = [G2, G2] = K. We want
to prove that G1 = G2. Set I = G1 ∩G2 and J = 〈G1, G2〉.

Since K is non-elementary and normal in both G1 and G2, we have
from lemma1 that the region of discontinuity of the three of them is the
same. Let us denote such a region by Ω. Similarly, since J is a subgroup
of the normalizer of K, we have necessarily that J is a Kleinian group with
Ω as region of discontinuity.

Ahlfors’ finiteness theorem asserts that Ω/G1 and Ω/G2 are each one
a finite union of finite area Riemann surfaces. It follows that the (possible
branched) covering Ω/Gi → Ω/J has finite degree, that is, both G1 and G2

have finite index in J and, in particular, we have that I has finite index
in G1, G2 and J . It also follows from lemma 1 that I has Ω as region of
discontinuity.

Claim. There is a common invariant component ∆ for G1 and G2.

Proof. If ∆1 = ∆2, then we consider ∆ = ∆1. Assume that ∆1 6= ∆2.
In this case, I keeps invariant both components ∆1 and ∆2. Since I has
finite index in Gi, we have that I is finitely generated. It follows from [10]
that I is then a quasifuchsian group and, as a consequence, Ω = ∆1 ∪∆2.
As a consequence of this, we have that ∆1 and ∆2 are invariant under both
G1 and G2. In particular, we may take ∆ = ∆1. 2

Let us consider the following notation: ∆/I = R, ∆/G1 = S1, ∆/G2 =
S2, ∆/J = X. We denote by t : ∆ → ∆/K, r : ∆/K → R and pi : R → Si,
i = 1, 2, the natural holomorphic coverings induced by the groups K, I/K
and Gi/I, respectively. Let us consider the following commutative diagram:
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∆
t

?
∆/K

r
?

R

@
@@R

¡
¡¡ª

S1

@
@@R

S2

¡
¡¡ª

X

q1 q2

p1 p2

We have that the induced surjective homomorphisms

H1(p1) : H1(R,C)/NI → H1(S1, C)/NG1

and
H1(p2) : H1(R,C)/NI → H1(S2, C)/NG2

have the same kernel: the subspace generated by the classes of those loops
on R which lift to loops on ∆/K. It follows that the forms in N⊥

I invariant
under G1/I are the same ones invariant under G2/I. In particular, these
are the same which are invariants under the group generated by G1/I and
G2/I. It follows that the dimensions of these three spaces are the same.

By lemma 3, the dimension of the forms invariant under Gj/I (respec-
tively, the group generated by G1/I and G2/I) is equal to dimH(Sj) − lj
(respectively, dimH(X)− l), where lj (respectively, l) denotes the maximal
number of homologically independent simple loops on Sj that lift to loops
on ∆/K (respectively, simple loops in X for which a power lift to loops on
∆/K).

In particular, we have the equalities

(∗) dimCH(Sj)− lj = dimCH(X)− l.

Let us denote by gj (respectively, g) the genus of Sj (respectively, X)
and by kj (respectively, k) the number of punctures of Sj (respectively, X).
We have necessarily that

(1) g ≤ gi
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(2) k ≤ ki

(3) g − l ≤ gi − li

Inequalities (1) and (2) are clear. To obtain inequality (3) , one consider
a maximal set Σ of pairwise disjoint homologically independent simple loops
on X all of them lifting to loops on ∆/K.

Let Σ̃i the lifting of Σ to Si. We have that Σ̃i is a collection of pairwise
disjoint simple loops that lift to loops on ∆. We proceed to cut both X
and Si along those loops. Now glue discs along the new boundaries. We
still having a (maybe branched) covering. The genus of the new surface
obtained in this way from X is g − l. The sum of the genera from the new
surfaces obtained from Si is at most gi− li. Now inequality (3) follows from
area comparison.

The inequalities (1), (2) and (3) together the equality (∗) gives the
equalities

g = gi, k = ki and l = li.

We obtain in this way that the index of Gj in J is one and, as a conse-
quence, G1 = G2 and we have proved theorem 2.
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