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1. Introduction

Let A be a central simple algebra over a field F . For each a ∈ A, let
PrdA,a(x) = xn − t1(a)xn−1 + t2(a)xn−2 + · · ·+ (−1)ntn(a) be the reduced
polynomial of a (so t1(a) is the reduced trace TrdA(a) and tn(a) is the
reduced norm NrdA(a) of a.) Put q1(x) = t1(x2) and q2(x) = t2(x). When
the characteristic of F is not equal to 2, the trace form (A, q1) and the
second trace form (A, q2) are nonsingular quadratic forms (see [L], [LM]
and [T]). If the characteristic is 2, however, then the trace form (A, q1) has
rank zero (and is therefore singular). In this situation, the second trace
form (A, q2) is nonsingular if the degree of A is even (see BF) but it is
necessarily singular if the degree is odd.

In this article, we extend the definition of the second trace form to the
case that the degree of A is odd and study the behavior with respect to
tensor products. Our definition is similar to the way in which Revoy defined
the trace form TE=F for a field extension E of F in [R].

One reason for wanting to have the notion of a second trace form for
central simple algebras of odd degree is the following. When we have two
central simple algebras, A with even degree and B with odd degree, the ten-
sor product A⊗B has even degree. Hence, we have two nonsingular second
trace forms (A, q2) and (A⊗B, q2). Now, if we extend the definition of the
second trace form to a nonsingular quadratic form over the central simple
algebras with odd degree, then is possible to obtain (A ⊗ B, q2) through
(A, q2) and TB/F , where TB/F is the second trace form for odd component
B. Decompositions of this type naturally appear when decomposing central
simple algebras in terms of a matrix algebra and a division algebra, and in
the primary decomposition of division algebras. We show (cf. Theorem 2)
that our definition of the second trace form for central simple algebras of
odd degree is compatible with such tensor product decompositions.

Let us now describe the contents of the paper in more detail. In Section
2, we define the second trace form TA/F for central simple algebras A (with
any parity) over a field F of characteristic two. We prove that it is a
nonsingular quadratic form over F . In Section 3, we calculate this form
for a crossed product. In particular, we prove that—given a Galois field
extension E = F of odd degree—the second trace form for the crossed
product algebra (E, G,Φ) is Witt equivalent to the second trace form TE=F

of Revoy. We conclude that section with a relatively simple criterion that
uses the trace form in order to recognize in many cases that a given field
extension is not Galois. Note that in general this is not easy for fields
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of characteristic two. In section 4, we study the second trace form for
tensor products of central simple algebras over F (for any parity). As an
application, we determine the Arf invariant and the Clifford invariant for
tensor products in Section 5 (see Refs. [A], [B] and [Sah] for properties of
these invariants).

2. Second trace form

In this section we will define the second trace form for central simple algebra
over a field of characteristic two. We will prove that this is a nonsingular
quadratic form. First, we give some properties and notations.

Given a central simple algebra A over F , the degree of A, degA for
short, is the integer n such that dimF A = n2 [P, p. 36]. A splitting field
for A is a field E containing F such that A⊗F E is isomorphic to the matrix
algebra Mn(E), and a splitting representation is a F -algebra isomorphism
φ : A → Mn(E). For each a ∈ A the reduced polynomial PrdA,a(x) is
defined as

PrdA,a(x) := det(xIn−φ(a)) = xn−t1(a)xn−1+t2(a)xn−2+· · ·+(−1)ntn(a).
(2.1)
This reduced polynomial PrdA,a(x) has coefficients in F (i.e. it lies in F [x])
and it is independent of E and φ (see [P, p. 295]).

For each central simple algebra A over F , (A, t2) is a quadratic space.
If in particular the characteristic of F is two, then it is easy to prove that
for each a ∈ A

t2(a) =
∑

1≤i<j≤n

(φ(a)ii φ(a)jj + φ(a)ij φ(a)ji)(2.2)

(where φ is a splitting representation) and, furthermore, that the associated
bilinear form bt2 satisfies

bt2(x, y) = t1(xy) + t1(x)t1(y) (for each x, y ∈ A).(2.3)

Since the quadratic space (E, t2) is necessarily singular when deg A is
odd, we will define a reduced second trace form TA/F in the spirit of Revoy’s
definition in [R] for quadratic forms over extension fields (see section 3).
To this end we first note that, by Eq. (2.3) and the linearity of t1, the
spaces F and A0 := Ker t1 are mutually orthogonal. The reduced trace
form TA/F is now defined as

TA/F =

{
(A; t2) if deg A is even ;
(A0; t2) if deg A is odd ;

(2.4)
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Remark 1. Let A and B be isomorphic central simple algebras over F .
Then, by Eqs. (2.2) and (2.3), it is clear that TA/F and TB/F are isometric.

Let us denote the quadratic form ax2 + xy + by2 as [a, b] and the hy-
perbolic plane [0, 0] as H.

Proposition 1 : For a matrix algebra A = Mn(F ) with n > 1, the
reduced trace form TA/F is Witt equivalent to

{
H if n ≡ 0; 1; 2; 7 mod 8 ;

[1, 1] if n ≡ 3; 4; 5; 6 mod 8 :
(2.5)

Proof. We write the canonical base for Mn(F ) as {Eij} and put ei := Eii.
For each triple of natural numbers 0 < k1 ≤ n and 0 < k2, k3 ≤ n+3

4 we
define:

Vk1 := span∪1≤i<j≤k1
{Eij ; Eji};

Vk2 := span∪0≤i≤k2
{e4i+1+e4i+2; e4i+2+e4i+3};

Vk3 := span∪1≤ik3

{
4i∑

t=1
et;e4i + e4i+1 + ei+2 + e4i+3

}
:

It is clear that each pair of these subspaces has trivial intersection. It
moreover follows from Eq. (2.3) that the above bases for the subspaces
Vk1 , V ′

k2
and Wk3 are in fact symplectic. Hence, using Eqs. (2.2) and

(2.3) we obtain that (Vk1 , t2) = k1(k1−1)
2 H, (V ′

k2
, t2) = (k2 + 1)[1, 1], and

(Wk3 , t2) = k3H. Furthermore by Eq. (2.3) the subspaces in question are
mutually orthogonal. Defining Sk1,k2,k3 as the direct sum of those spaces,
i.e. Sk1,k2,k3 = Vk1 ⊕ V ′

k2
⊕Wk3 , we have that

(Sk1,k2,k3 , t2) = (k2 + 1)[1, 1] +
(

k1(k1 − 1)
2

+ k3

)
H.(2.6)

Defining W0 = {θ}, where θ is the null matrix, we extend the definition
of Sk1,k2,k3 to the case k3 = 0. With this notation, we have that

A =





Sn,k−1,k−1⊕⊥
〈∑4k

i=1 ei, e4k

〉
if n = 4k,

V2⊕⊥
〈∑2

i=1 ei, e2

〉
if n = 2,

Sn,k−1,k−1⊕⊥
〈∑4k

i=1 ei, e4k+e4k+1

〉
⊥

〈∑4k+2
i=1 ei, e4k+2

〉

if

{
n = 4k + 2;
n 6= 2;
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and

A0 =

{
Sn,k−1,k−1⊕⊥

〈∑4k
i=1 ei, e4k + e4k+1

〉
if n = 4k + 1,

Sn;k;k if n = 4k + 3,

where 〈x, y〉 denotes the space generated by x and y. Using Eq. (2.6), the
fact that [0, 0] = [1, 0] (see [Sah, p. 150]), and replacing n = 2m + 1 with
m = 2k or m = 2k + 1, we obtain that TA/F can be written as




[n
4

]
[1, 1] ⊥ (

2m2 − m
2

)
H if n = 2m;

[
n+1

4

]
[1, 1] ⊥

(
2m2 +

[
3m
2

])
H if n = 2m + 1;

where [
x

y
] denotes the integer part of

x

y
. Hence, using that [1, 1] + [1, 1] =

2H, the proof is complete. 2

Proposition 2 : For each central simple algebra A over F with
A 6= F , the second trace form TA/F is a nonsingular quadratic form over
F .

Proof. Let A be a central simple algebra over F with A 6= F . Let E be
a splitting field of A with φ : A → Mn(E) the splitting representation. By
[P, p. 238],we extend φ to E-algebra isomorphism φ : A ⊗F E → Mn(E)
given by φ(a ⊗ e) = φ(a)e. Clearly φ(A0 ⊗F E) = Mn(E)0, whence the
quadratic form (A0 ⊗F E, t2) = (Mn(E)0, t2) is nonsingular for deg A odd
(by Proposition 1). As a consequence, (A0, t2) is nonsingular. Similarly, if
deg A is even then (A ⊗F E, t2) is nonsingular (again by Proposition 1).
Hence (A, t2) is nonsingular. 2

Remark 2 : Observe that we give here an alternative proof for the
even case, already established by Berhuy and Frings in [BF, p. 4,5].

3. Crossed product algebra

In this section we will compute the second trace form for a crossed product.
Given a field extension E = F , we denote by TE=F the second trace

form due to Revoy [R], that is

TE/F =

{
(E; T2) if [E : F] is even;
(Ker T1;T2) if [E : F] is odd;

(3.1)
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where for a ∈ E, T1(a) and T2(a) denote the coefficients of x[E:F ]−1 and
x[E:F ]−2, respectively, in the characteristic polynomial of a (so T1(a) is the
trace trE/F (a) of a). Note that there are two different definitions for the
second trace forms in the literature. The second trace form, due to Bergé
and Martinet [BM], increases the dimension of the space by 1 using the étale
F -algebra. In [M] we proved that the two definitions are Witt equivalent.

Proposition 3 : Let E/F be a Galois field extension, with Gal(E/F ) =
G. Let A = (E,G,Φ) =

∑
σ∈G uσE be the crossed product, where Φ is nor-

malized and for each σ, τ ∈ G and c ∈ E

u−1
σ cuσ = σ(c) and Φ(σ, τ) = u−1

στ uσuτ ∈ E.(3.2)

Then

i) (E, t2) = (E, T2), where T2 as above and t2 as in (2.1) ;

ii) t1(
∑

σ∈G uσcσ) = trE/F (cid), where cid is the coefficient that corre-
spond to id (the identity) ;

iii) if σ 6= id, then for each c ∈ E, uσc ∈ A0 ;

iv) if στ 6= id, then for each c, d ∈ E, bt2(uσc, uτd) = 0 ;

v) the subspaces E and 〈uσc | c ∈ E, σ 6= id〉 are mutually orthogonal ;

vi) if ρ2 6= id, then for each c ∈ E, t2(uρc) = 0.

Proof. For i) see [P, p. 297]. There is a good splitting representation
φ of A = (E, G,Φ) in [P, p. 298], given by

φ


∑

ρ∈G

uρcρ


 = [dστ ] where dστ = Φ(στ−1, τ) cτ

στ−1 ,(3.3)

where for τ ∈ G and c ∈ E, the notation cτ corresponds to τ(c). Using
that t1 is the trace of the matrix [dστ ], we have

t1


∑

ρ∈G

uρcρ


 =

∑
σ=τ

dστ =
∑

σ∈G

cσ
id = trE/F (cid).(3.4)
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Hence ii) and iii) are true. Furthermore, using Eq. (2.3) together with Eq.
(3.2) we obtain iv) (and v) as a particular case). Now, by Eqs. (3.3) and
(2.2), we have

t2


∑

ρ∈G

uρcρ


 =

∑

σ 6=τ

(cσ
idc

τ
id + u−1

σ uστ−1uτc
τ
στ−1u−1

τ uτσ−1uσcσ
τσ−1).(3.5)

Using the fact that if ρ2 6= id and ρ = στ−1 for some σ and τ in G,
then ρ 6= τσ−1, we obtain in Eq. (3.5) that for c ∈ E, t2(uρc) = 0. 2

The following theorem characterizes the second trace form TA/F for a
crossed product (E,Gal(E/F ), Φ) in terms of the second trace form TE/F

of Revoy.

Theorem 1 : Let E/F be a Galois extension with G = Gal(E/F ).
Let A be the crossed product (E,G,Φ) =

∑
σ∈G uσE. Then TA/F is Witt

equivalent to
{

TE/F ⊥ (B; t2) if [E : F] is even ;
TE/F if [E : F] is odd ;

where B is the subespace

B :=
〈
uρe | e ∈ E, ρ ∈ G, ρ2 = id, ρ 6= id

〉

Proof . We can suppose that Φ is normalized [P, p. 252]. Let us write G
as

G = {ρ1 = id, ρ2, · · · , ρs, σ1, σ2, · · ·σt, σ
−1
1 , σ−1

2 , · · ·σ−1
t },

where s+2t = [E : F ] and for i ≤ j ≤ s, ρ2
j = id, and for 1 ≤ i ≤ t, σ2

i 6= id.
Let B′ := 〈uσie | e ∈ E, 1 ≤ i ≤ t〉. It is clear that the sum E + B′ is
direct (when [E : F ] is even, E + B′ + B is direct). Furthermore, by
Proposition 3, E, B′ and B are mutually orthogonal, and B′ is a totally
isotropic subspace (with dimension t[E : F ]). Hence, by combining the fact
that dimF B = (s− 1)[E : F ] and that [E : F ] = s + 2t, we see that :

- if [E : F ] is even, then TAF = TE/F ⊥ (B, t2) ⊥ t[E : F ]H (see
[B, p. 17]),

- if [E : F ] is odd, then s = 1, whence TA/F = TE/F ⊥ t[E : F ]H. 2
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Corollary 1 : Let E/F be a Galois extensions with degree n = 2m+1.
Let A be the crossed product (E,Gal(E/F ), Φ). Then

[TA/F =

{
mH if n ≡ 1; 7 mod 8
[1, 1] + (m− 1)H if n ≡ 3; 5 mod 8

Proof. The algebra B = EndF (E) ∼= Mn(F ) is the crossed product
(E, G, I) [P, p. 252]. Hence, by Theorem 1, TA/F = TE/F = TB/F . Us-
ing Eq. (2.5), we obtain the result. 2

In general it is not easy to decide whether a given field extension is
Galois. The following by-product of our work on the trace form permits an
elegant partial solution to this problem.

Corollary 2 : Let E/F be a field extension with odd degree n. If TE/F

is not Witt equivalent to H when n ≡ 1, 7 mod 8, or not equivalent to [1, 1]
when n ≡ 3, 5 mod 8, then the extension E/F is not Galois.

Proof. Immediate, by Corollary 1. 2

Example 1 : Let F = F2(a) and E = F (b), where a2 + a + 1 = 0 and
b3+b+a = 0. It is easy to prove that TE/F = [1, a]. Note that [1, 1] 6= [1, a],
because 1 ∈ ℘(F ) = {x2 + x|x ∈ F} and a /∈ ℘(F ). Hence, E/F is not
Galois by corollary 2.

4. Second trace form of a tensor product.

Let C.S(F ) be the set of central simple algebras over F . For each A ∈
C.S(F ) and any a ∈ A, we remember that the reduced trace of a is
TrdA(a) := t1(a).

Proposition 4 : Let A and B be central simple algebras over F . Then

i) 1A ⊗F B0 and A0 ⊗F 1B are mutually orthogonal (as quadratic sub-
spaces of (A⊗F B, t2)),
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ii) for each a, a′ ∈ A and b, b′ ∈ B we have that

TrdA⊗F B(a⊗ b) = TrdA(a)TrdB (b)(4.1)

t2(a⊗ b) = (TrdA(a))2 t2 (b) + (TrdB) (b)2 t2 (a)(4.2)

bt2(a⊗ b, a′ ⊗ b′) = TrdA(aa′)bt2(b, b
′) + TrdB(b)TrdB(b′)bt2(a, a′)

= TrdB (bb′) bc2 (a; a′) + TrdA (a) TrdA (a′) bc2 (b; b′) ;
(4.3)

iii) if {a, a′} ∩A0 6= φ and {b, b′} ∩B0 6= φ, then

bt2(a⊗ b, a′ ⊗ b′) = bt2(a, a′)bt2(b, b
′).(4.4)

Proof. Let A, B ∈ C.S(F ), and let E and L be splitting fields for A and B,
respectively, with splitting representations φ : A → Mm(E) and ϕ : B →
Mn(L). Clearly EL is a splitting field for A⊗F B (EL is the minimal field
that contains E and L). A corresponding splitting representation is given
by Φ : A ⊗F B → Mmn(EL) of the form Φ(a ⊗ b)ij = φ(a)kl ϕ(b)st, where
i = (k−1)n+s and j = (l−1)n+t, with 1 ≤ k, l ≤ m+1 and 0 ≤ t ≤ n−1.
Hence, by using the definition of the reduced trace and Eqs. (2.2), (2.3),
we obtain the equations that appear in ii). Furthermore, by Eq. (4.3) and
the fact that F and Ker t1 are mutually orthogonal, we obtain i). In order
to obtain iii), we use that TrdA(a)TrdA(a′) = 0 = TrdB(b)TrdB(b′). 2

The following theorem provides the second trace form of a tensor prod-
uct in terms of the second trace forms of its constituents.

Theorem 2 : Let A1, A2 ∈ C.S(F ), with deg Ai = ni for i = 1, 2.
TA1⊗A2/F can be represented as




TA1/F + TA2/F + (n2
1−1)(n2

2−1)
2 H if n1; n2 are odd ;

[1; 1] +
(

n2
1n2

2
2 − 1

)
H if n1; n2 ≡ 2 mod 4 ;

n2
1n2

2
2 H if n1 ≡ 0 mod 4 and nj is even ;

TAi/F +
n2

1(n2
j−1)
2 H if

{
ni ≡ 0 mod 4 and nj is off ; or
ni ≡ 2 mod 4 and nj ≡ 1 mod 4

[1; 1] + TAi/F +
(

n2
1(n2

j−1)
2 − 1

)
H if ni ≡ 2 mod 4 and nj ≡ 3 mod 4 ;

Proof. For j = 1, 2, let

{e(j)
i , f

(j)
i }i∈I(j) , be a symplectic basis of (Aj)0 if nj is odd, and

{1Aj , f (j)} ∪ {e(j)
i , f

(j)
i }i∈I(j) be a symplectic basis of Aj if nj is even.
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Put

W =
⊥⊕

i∈I(1), j∈I(2)

(〈
e
(1)
i ⊗ e

(2)
j , f

(1)
i ⊗ f

(2)
j

〉
⊥

〈
e
(1)
i ⊗ f

(2)
j , f

(1)
i ⊗ e

(2)
j

〉)
.(4.5)

In view of (4.2), (W, t2) is hyperbolic.
Using Eqs. (4.1), (4.3) and (4.4) we obtain decompositions of (A1⊕A2)0

and (A1 ⊕A2), respectively in the following cases:
- A1 and A2 have odd degree :

(A1 ⊗A2)0 =⊕⊥
i∈I(1)

〈
e
(1)
i ⊗ 1A2 , f

(1)
i ⊗ 1A2

〉
⊥ ⊕⊥

j∈I(2)

〈
1A1 ⊗ e

(2)
j , 1A1 ⊗ f

(2)
j

〉
⊥ W.

- A1 and A2 have even degree

A1 ⊗A2 =
〈
1A1 ⊗ f (2), f (1) ⊗ 1A2

〉
⊥ W ⊥ V ′,

where〈
1A1 ⊗ 1A2 , 1A1 ⊗ e

(2)
j , 1A1 ⊗ f

(2)
j , e

(1)
i ⊗ 1A2 , f

(1)
i ⊗ 1A2

〉
{i∈I(1), j∈I(2)} is a

totally isotropic subspace of V ′ with dimension dimF A1 +dimF A2−
3 = 1

2 dimF V ′. Hence (V ′, t2) = (dimF A1 + dimF A2 − 3)H.

- A1 and A2 have diferent parity :

Suppose that the degree of A1 is even. Then A1 ⊗A2 can be written
as

〈
1A1 ⊗ 1A2 , f

(1) ⊗ 1A2

〉
⊥

⊥⊕

{i∈I(1)}

〈
e
(1)
i ⊗ 1A2 , f

(1)
i ⊗ 1A2

〉
⊥ W ⊥ V ′′,

where
〈
1A1 ⊗ e

(2)
j , 1A1 ⊗ f

(2)
j

〉
j∈J(2)

is a totally isotropic subspace of

V ′′ with dimension (dimF A2 − 1) = 1
2 dimF V ′′. Hence, (V ′′, t2) =

(dimF A2 − 1)H.

Finally, we obtain the claim using Eq. (4.2) and the fact that for each
A ∈ C.S(F ), t2(1A) is given by

t2(1A) =

{
0 if deg A ≡ 0; 1 mod 4 ;
1 if deg A ≡ 2; 3 mod 4 ;

2



Generalization of second trace form of central simple algebras 113

Corollary 3 : Let A be a central simple algebra with even degree. If
the second trace form TA/F is not Witt equivalence to [1, 1] or to H, then
A = Mk(D) with k odd and D a division algebra.

Proof. Since for each A ∈ C.S(F ), A ' Mk(D) ' Mk(F ) ⊗ D for some
division algebra D, by Theorem 2 we obtain that TA/F is Witt equivalent
to TD/F , [1, 1] + TD/F , H or [1, 1], depending on k and deg D. Now, if k is
even then TA/F is Witt equivalent to H or to [1, 1]. 2

Corollary 4: Let A be a central simple algebra over F .

[TA⊕A/F is Witt equivalent to

{
[1, 1] if deg A ≡ 2 mod 4
H otherwise

5. Invariants

In this section we will determine the Arf invariant and the Clifford invariant
for the tensor product of algebras as an application of Theorem 2.

For a ∈ F ∗ and b ∈ F the quaternion algebra (a, b] ∈ C.S(F ) is defined
as the algebra with basis {1, e, f, ef} satisfying e2 = a, f2 + f = b and
ef + fe = e. Now, given a non degenerated quadratic form (V, q) over F ,
we can rewrite q as q = 〈a1〉[1, b1] ⊥ · · · ⊥ 〈an〉[1, bn], with ai ∈ F ∗ and
bi ∈ F . The Arf invariant is given by Arf(q) := b1+b2+ · · ·+bn mod ℘(F ),
where ℘(F ) := {x2 + x|x ∈ F}, considered as additive subgroup of F . The
Clifford invariant C(V, q) is the class of the tensor products of quaternion
algebras (a1, b1] ⊗ · · · ⊗ (an, bn] in the Brauer group Br(F ). Note that if
a 6= 0 then

C([a, b]) = C(〈a〉[1, ab]) = (a, ab] = ((a, b))F ,

where ((a, b))F [KMRT, p. 25] is the algebra generated by r and s satisfying

r2 = a, s2 = b, rs + sr = 1.

We need the following result of Berhuy and Frings [BF].

Theorem 3 : (Berhuy-Frings [BF ]).
Let F be a field of characteristic two, n ≥ 2 an even integer and A ∈

C.S(F ) an algebra of degree n over F . Then we have Arf(TA/F ) = [
n

4
]
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and C(A, TA/F ) = [A]
n
2 , where [

n

4
] denotes the integer part of

n

4
and [A]

denotes the class of A in the Brauer group Br(F ).
The following theorem gives the Arf invariant and the Clifford invariant

of the second trace form of a tensor product in terms of the corresponding
invariants of its constituents.

Theorem 4 : Let A1, A2∈ C.S(F), with deg Ai= ni. Then

[Arf(TA1⊗A2/F ) =
Arf(TA1=F ) + Arf(TA2/F ) if n1n2 is odd,
n1n2

4 otherwise ;

and

C
(
TA1⊗A2/F

)
=





C
(
TA1/F

)
· C

(
TA1/F

)
if n1; n2 are odd ;

((1; 1))F if n1; n2 ≡ 2 mod 4 ;
1 if ni ≡ 0 mod 4 and nj is even ;

[Ai]
ni
2 if





ni ≡ 0 mod 4 and nj is odd ;
or
ni ≡ 2 mod 4 and nj ≡ 1
mod 4 ;

((1; 1))F · [Ai]
ni
2 if ni ≡ 2 mod 4 and nj ≡ 3 mod 4 ;

where {i; j} = {1; 2}.

Proof. When A1 or A2 have even degree, we have that A1⊗A2 also has
even degree. Hence, by Theorem 3, Arf(TA1⊗A2=F ) = [

n1n2

2
]. But, if A1

and A2 have odd degree, then by Theorem 2, TA1⊗A2/F = TA1/F + TA2/F .
Hence, in this case Arf(TA1⊗A2/F ) = Arf(TA1/F ) + Arf(TA2/F ). In order
to obtain the Clifford invariants, we need Theorem 2, the fact that C(H) =
1 = [F ], and that C(TA/F ) = [A]n/2 if A has even degree (cf. Theorem 3).
2

Remark 3: It follows from a comment given by Berhuy and Frings
[BF, p. 4], that if A∈ C : S (F ) with odd degree n, then the second trace
from TA/F is Witt equivalent to TMn(F ) (the second trace form for the
matrix algebra of dimension n over F). As a consequence, the statements
in Theorem 2 and Theorem 3 can be made more explicit in the case that the
algebras A1 ; A2 ∈ C : S (F ) both have odd degrees n1 and n2 , respectively.



Generalization of second trace form of central simple algebras 115

Indeed, we get upon invoking Proposition 1 that in this case

TA1⊗A2/F =





n2
1n2

2−1
2 H if n1n2 ≡ 1; 7 mod 8 ;

[1, 1] + n2
1n2

2−3
2 H if n1n2 ≡ 3; 5 mod 8 :

The corresponding invariants of TA1⊗A2/F thus become of the form

[(Arf(TA1⊗A2/F ); C(TA1⊗A2/F )) =

{
(0, 1) if n1n2 ≡ 1; 7 mod 8 ;
([1; 1] ; ((1; 1))F ) if n1n2 ≡ 3; 5 mod 8 :
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