Proyecciones Vol. 22, Nº 3, pp. 237-242, December 2003. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172003000300005

CLASSES OF FORMS WITT EQUIVALENT TO A SECOND TRACE FORM OVER FIELDS OF CHARACTERISTIC TWO*

ANA CECILIA DE LA MAZA Universidad de Talca, Chile

Abstract

Let F be a field of characteristic two. We determine all non-hyperbolic quadratic forms over F that are Witt equivalent to a second trace form.

Mathematics Subject Classification: Primary 11 E 04; Secondary 11 E 81

Key Words: Trace form, characteristic two

^{*}This work was supported by Fondecyt grants $N^o1010205$, and by Programa formas extremas y representación de formas cuadráticas, Universidad de Talca

1. Introduction

Let E/F be a finite separable field extension. We define the trace form for this extension by $q(x) = tr_{E/F}(x^2)$. When the characteristic of F is not equal to 2, the trace form (E,q) is non-degenerate. However, if the characteristic is 2 then (E,q) is degenerate and splits as $[1] \perp V$, with V totally isotropic. It is therefore natural to introduce a modified "second trace form". To this end one considers for each $a \in E$ its characteristic polynomial

$$(1.1) p(x,a) = x^n - T_1(a)x^{n-1} + T_2(a)x^{n-2} + \dots + (-1)^n T_n(a)$$

(whence $T_1(a) = tr_{E/F}(a)$ and $T_n(a)$ is the norm of a). It is clear that (E, T_2) is a quadratic form. When the degree n of the extension is odd this form is necessarily singular. To arrive at a non-degenerate form, two methods have been proposed in the literature. One method, due to Bergé and Martinet [BM], increases the dimension of the space by 1 using the étale F-algebra. The other method, due to Revoy [R], reduces the dimension of the space by 1. In this note we will adopt the second method and call such forms 2-trace forms.

We consider the following problem: Which elements $[q] \neq 0$ of the Witt-group $W_q(F)$ are represented by 2-trace forms? Our theorem 3 fully answers this question. Moreover, we will partially answer the same question for [q] = 0 (see Prop. 1 and Prop. 2). For fields of characteristic not equal to 2 this problem seems quite more complicated: for partial results concerning generic fields one may consult [CP] and [EHP]; a complete solution for Hilbertian fields is given in [Sch], [KS] and [Wat].

2. The second trace form

As we remarked in the introduction, there are two ways to define a second trace form. In this section we will prove that in fact the corresponding forms are Witt equivalent.

Let E/F be a finite separable field extension. The second trace form $T_{E/F}$ of the extension E/F was defined by Revoy [R] as (E, T_2) if the degree [E:F] is even, and as (E_0, T_2) if the degree is odd, where T_1 , T_2 are given by (1.1) and $E_0 = Ker T_1$. It is important to remark that the bilinear form b_q associated to $T_{E/F}$ satisfies the following relations:

$$(2.1) \quad b_a(x,y) = T_2(x+y) - T_2(x) - T_2(y) = T_1(xy) - T_1(x)T_1(y),$$

(2.2)
$$T_1(x^2) = (T_1(x))^2$$
 and $b_q(x^2, y^2) = b_q(x, y)^2$

On the other hand, Bergé and Martinet defined in [BM] the second trace form as Revoy if the degree [E:F] is even and as $(E \times F, T_2)$ if not.

Theorem 1. The Revoy form and the Bergé-Martinet form are Witt equivalent.

Proof. If [E:F] is odd, then the form $(E \times F, T_2)$ of Bergé and Martinet [BM, p. 14] splits as follows $(F(1,0) + F(0,1)) \perp E_0 \times \{0\}$. Since F(1,0) + F(0,1) is an hyperbolic plane, the claim follows immediately.

3. 2-algebraic forms

In this section we determine all non-hyperbolic quadratic forms over F that are Witt equivalent to some second trace form. Furthermore we give fields where hyperbolic forms are Witt equivalent to a second trace form.

Theorem 2. Let E/F be a finite separable field extension, with [E:F] = 2n + 1 or [E:F] = 2n. Then $T_{E/F} = (n-1)\mathbf{H} \perp [1,a]$, for some $a \in F$.

Proof. The assertion is deduced from Theorem 1 above and Theorem 3.5 in [BM, p. 13-14]. In order to illustrate the ideas, we will give the proof in case [E:F]=2n+1.

Since (E_0, T_2) is nonsingular, there exists a symplectic basis $\{e_i, f_i\}_{1 \leq i \leq n}$ of E_0 . Hence for each $1 \leq i \leq n$ there exists $x_i, y_i \in Fe_i + Ff_i$ such that $T_2(x_i) \neq 0$ and $b_q(x_i, y_i) = 1$ (note that [0, 0] = [1, 0] [Sa1, p. 150]).

Put $e'_i := T_2(x_i)^{-1} x_i^2$ and $f'_i := T_2(x_i) y_i^2$. We have by (2.2) that e'_i , $f'_i \in E_0$ and $b_q(e'_i, f'_i) = 1$. Since $T_2(e'_i) = 1$, we obtain a symplectic basis such that the quadratic form decomposes as follows

$$T_{E/F} = [1, a_1] + [1, a_2] + \dots + [1, a_n],$$

where $a_i = T_2(f_i')$. Using the relation $[1, b] + [1, c] \cong [1, b + c] + \mathbf{H}$ over F, we obtain $T_{E/F} \cong (n-1)\mathbf{H} + [1, a]$ with $a \equiv a_1 + a_2 + \cdots + a_n \wp(F)$, where $\wp(F) := \{x^2 + x \mid x \in F\}$.

A form T over F is called 2-algebraic if it is Witt equivalent to some second trace form.

Corollary 1. A non hyperbolic quadratic form (V,q) over F is 2-algebraic if and only if $(V,q) = r\mathbf{H} \perp (V_a,q_a)$, with V_a an anisotropic plane representing 1.

Proof: \Rightarrow) Is clear by Theorem 2.

 \Leftarrow) Let $(V,q) = r\mathbf{H} \perp (V_a,q_a)$, with (V_a,q_a) 2-dimensional anisotropic representing 1. Then we can rewrite $(V_a,q_a) = [1,b]$, where $b \notin \wp(F)$. Let $E = F(\alpha)$ with $\alpha \in \overline{F}$ and $\alpha^2 + \alpha + b = 0$. We have that $(E,T_{E/F}) = [1,b]$.

Example 1. Let $F = \mathbf{F}_2(a)$ and E = F(b), where $a^2 + a + 1 = 0$ and $b^3 + b + a = 0$. Then $T_{E/F} = [1, a] \neq [1, 1]$.

In fact, using (2.1), we see that $\{b^2, (1+a)b\}$ is a symplectic basis for $E_0 = Ker\ T_1$. Since $p(x, (1+a)b) = x^3 + ax + a$, $1 \in \wp(F)$ and $a \notin \wp(F)$, we obtain the form $(E_0, T_2) = [1, a] \neq [1, 1]$.

Corollary 2. If a non hyperbolic quadratic form (V, q) over F is 2-algebraic then there exists a quadratic extension field E of F such that the extension $(V \otimes_F E, q_E)$ is hyperbolic.

Proof: See the proof of Theorem3 and note that $[1, b] = \mathbf{H}$ over $E = F(\alpha)$, with $\alpha^2 + \alpha + b = 0$ (see [Sa1, p. 150]).

Theorem 3. Let $F = \mathbf{F}_2$ or $F = \mathbf{F}_2(t)$ with t transcendental over \mathbf{F}_2 . Then the hyperbolic quadratics form over F are 2-algebraic.

Proof. We only need to find an extension E of F such that $T_{E/F}$ is hyperbolic. We first remark that $p(x) := x^4 + x^3 + 1$ is irreducible over \mathbf{F}_2 and also over $\mathbf{F}_2(t)$. Let α be a root of p and $E = F(\alpha)$. We decompose the trace form $T_{E/F}$ with respect to the basis $\{\alpha, 1 + \alpha^3\} \cup \{\alpha^2, \alpha + \alpha^2 + \alpha^3\}$. Noting that this basis has the elements conjugate to α , it is easy to recognise that each vector basis is isotropic, and furthermore by (2.1) we see that it is a symplectic basis. Hence, the space is hyperbolic.

Theorem 4. Let F be a field. If there exists $a \in F^*$ and n odd such that the polynomial $x^n - a$ is irreducible over F[x], then the hyperbolic quadratics space over F are 2-algebraic.

Proof. Let $E = F(\alpha)$, where $\alpha \in \overline{F}$ and $\alpha^n = a$. For $1 \le k \le n-1$, the linear transformation $f_{\alpha^k} : x \mapsto x\alpha^k$ is given by the matrix $c_{ij}(k)$, where

$$c_{ij}(k) = \begin{cases} 1 & \text{if } j = i - k \\ a & \text{if } j = n + i - k \\ 0 & \text{otherwise} \end{cases}$$

Then for $1 \le k \le n-1$, $\alpha^k \in E_0$, because $c_{ii}(k) = 0$ for each i. Noting that $T_1(a) = a$ we obtain the decomposition

$$E_0 = \langle \alpha, \alpha^{n-1} \rangle \perp \langle \alpha^2, \alpha^{n-2} \rangle \perp \cdots \perp \langle \alpha^{\frac{n-1}{2}}, \alpha^{\frac{n+1}{2}} \rangle,$$

where $\langle x, y \rangle$ is the space generate by x and y. Hence, using that $n \neq 2k$, we deduce that $T_2(\alpha^k) = 0$ for $1 \leq k \leq n - 1$, so $(E_0, T_2) = (\frac{n-1}{2})\mathbf{H}$.

References

- [BM] Bergé, A.M., Martinet, J.: Formes quadratiques et extensions en caractéristique 2, Sém. Théorie des Nombres de Bordeaux, exposé 35, (1982)-(1983).
- [CP] Conner, P., Perlis, R.: A survey of trace forms of algebraic number fields, World Scientific, Singapur, (1984).
- [EHP] Estes, R., Hurrelbrink, J., Perlis, R.: Total positivity and algebraic Witt classes, Comment. Math. Helvetici 60, pp. 284-290, (1985).
- [KS] Krüspkeemper, M., Scharlau, W.: On trace forms of Hilbertian fields, Comment. Math. Helvetici 63, pp. 296-304, (1988).
- [R] Revoy, P.: Remarques sur la forme trace, Linear and multilinear algebra 10, pp. 223-233, (1981).

- [Sa1] Sah, C.H.: Symmetric bilinear forms and quadratic forms, Journal of algebra 20, pp. 144-169, (1972).
- [Se] Serre, J.P.: Linvariant de Witt de la forme $tr(x^2)$, Comment. Math. Helvetici 59, pp. 657-676, (1984).
- [Sch] Scharlau, W.: On trace forms of algebraic number fields, Math. Zeit. 127, pp. 125-127, (1987).
- [Wat] Waterhouse, W.: Scaled trace forms over number fields, Arch. Math. 47, pp. 229-231, (1986).

Received: January, 2003.

Ana Cecilia de la Maza

Instituto de Matemática y Física Universidad de Talca Casilla 747 Talca

e-mail: anace@inst-mat.utalca.cl