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AGUSTÍN MARCELO
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Abstract

This article is devoted to study some properties of prime and pri-
mary submodules. First we characterize prime submodules of free
modules and give a primality condition for certain submodules in
terms of associated prime ideals. Furthermore, by using symmetric
algebra of modules we describe Rees algebras associated to prime sub-
modules and provide a computational method to check if some primary
submodules of a free module have prime radical.
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1. INTRODUCTION

To extend the concepts of prime and primary ideal from the category of
rings to the category of modules has stimulated several authors to show
that many, but not all, of the results in the theory of rings are also valid
for modules. (See, for example, Refs. [1],[5],[7] .)

Before we state some results let us introduce some notation and termi-
nology. Throughout this note all rings are commutative with identity and
all modules are unital. Let R be a ring and let M be an R-module. A
proper submodule N of M is said to be prime (resp. primary) if for every
a ∈ R, the induced homothety ha :M/N →M/N, ha(n) = a·n, is either in-
jective or null (resp. nilpotent). In light of this definition, it turns out that
if N is a prime (resp. primary) submodule ofM then the set of homotheties
of R vanishing onM/N, i.e., (N :M) = {a ∈ R / aM ⊆ N} = Ann(M/N)
is a prime (resp. primary) ideal of R. Furthermore, if N is a primary
submodule of M, the radical of the primary ideal (N : M), denoted byp
(N :M), is a prime ideal of R formed by all nilpotent homotheties of R

on M/N, i.e.,
p
(N :M) = {a ∈ R / anM ⊆ N for some n > 0} . Thus if

N is a prime submodule of M with p = (N : M) we shall call N p-prime
submodule and if N is a primary submodule of M being p =

p
(N :M) we

will say that N is a p-primary submodule. Note that a p-primary submod-
ule N of M is p -prime if and only if (N :M) = p ∈ SpecR.

It is easily seen that a submodule N ofM is called to be p -prime (resp.
p-primary) if N 6= M and, given r ∈ R,m ∈ M , then rm ∈ N implies
m ∈ N or r ∈ p = (N : M) (resp. r ∈ p =

p
(N :M)). A special class of

prime submodules of a module over a domain is given by the ones whose
prime ideal in R is the ideal (0). According to [2, Definition 2.1], these
prime submodules are called 0−submodules and it can be proved that a
proper submodule N of a module M over a domain R is a 0−submodule if
and only if M/N is a torsion-free module, or equivalently if and only if for
every non-zero a ∈ R, n ∈M, the relation a · n ∈ N implies that n ∈ N .

For any submodule N of an R-module M the radical, radM(N), of N
is defined to be the intersection of all prime submodules of M containing
N and radM(N) =M if N is not contained in any prime submodule of M .
The radical of the moduleM is defined to be radM(0). The set of all prime
submodules of M is called the Spectrum of M and denoted by Spec(M).

The purpose of this paper is to explore some basic facts of these class
of submodules. First we turn our attention to prime submodules of free
modules of finite rank. Assume that R is a domain and let K be its quo-
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tient field. Let N be a submodule of the free R-module F = Rn. In [5]
and [1], based upon the relationship between KN and KF , several results
concerning prime submodules of free modules were obtained. By applying
an useful relationship between Spec(M) and Spec(MS) we provide a char-
acterization of prime submodules of free modules in order to show how is
their structure. In section 2 we prove a primality condition for some sub-
modules of a finitely generated module in terms of associated prime ideals
of the corresponding quotient module.

In the next sections we apply our study of prime submodules, begun in
[3], to investigate two interesting questions: on the one hand, given a prime
submodule of a finitely generated module we describe the Rees algebra of
the corresponding quotient module and, on the other, we give a simple
condition for detecting whether a primary submodule of a finitely generated
module has prime radical and it is then used to determine, by using the
computer algebra system Macaulay2, when some primary submodules of
free modules have prime radical.

2. A CHARACTERIZATION OF PRIME SUBMODULES
OF FREE MODULES

This section is devoted to describing prime submodules of free modules and
to do so we first need to introduce some notation.

Given an R-module M and a multiplicative set S, let us consider the
canonical map f :M −→MS . If N is a submodule ofM then the submod-
ule f−1(NS) is denoted by S (N) and called the saturation ofN with respect
to S. Clearly N ⊂ S (N) and S (N) = {m ∈M : sm ∈ N for some s ∈ S}.
Note that if N is a submodule ofM such that (N :M) = p ∈ Spec(R) then
the saturation Sp(N) of N with respect to p, i.e., S = R \ p , is a p-prime
submodule of M.

Theorem 1. Let R be a ring, let F be a free R—module of finite
rank and let M be a submodule of F . Then M is p-prime if and only if
M = S(N + pF ), where N is the inverse image of a direct summand of Fp
by the canonical map F → Fp.

Proof. Clearly S(N + pF ) is a p-prime submodule of F (See [6, Lemma
1.7]). Conversely, assume that M is a p-prime submodule of F. Thus we
have pF ⊆M. Let us consider the following composition of morphisms:

F
f−→ Fp

g−→ Fp
pFp
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where as above f stands for the canonical map. Choose a basis {n1, ..., ns}
of g(Mp) and a set of elements m1, ...,ms ∈Mp ⊆ Fp such that g(mi) = ni
for 1 ≤ i ≤ s. Then it is esay to check that Mp = (m1, ...,ms) + pFp.
Because pFp ⊆Mp we have an exact sequence

0 −→ pFp −→Mp −→Mp/pFp −→ 0.

Now by applying Nakayama’s lemma it follows that (m1, ...,ms) must be
a direct summnad of Fp. If we set N = f−1((m1, ...,ms)), it is clear that
M ⊆ N + F ⊆ S(N + pF ) ∈ Spec(F ). Finally, by applying [1, Corollary
3] there exists a bijective correspondence between the p-prime submodules
of F and those Fp. Since Mp = Np + pFp = S(N + pF )p, it is obtained,
undoubtedly, that M = S(N + pF ) and the theorem is proved. 2

3. A PRIMALITY CONDITION FOR SOME SUBMOD-
ULES IN TERMS OF ASSOCIATED PRIME IDEALS

Let R be a Noetherian ring and M a finitely generated R-module. Let
Ass(M) be the set of associated prime ideals of M , that is

Ass(M) = {p ∈ Spec(R) / p = Ann(m), m ∈M \{0}}
As it is well-known a submoduleQ ⊂M is called p-primary ifAss(M/Q)

consists of the p ideal only (See[4, Theorem 6.6]). The aim of this section
is to obtain an analogue result for some prime submodules.

Theorem 2. Let R be a Noetherian ring, P a prime ideal of R and let
M be a finitely generated R-module. Assume that N is a submodule of M
such that PM ⊂ N . Then N is a p-prime submodule of M if and only if
Ass(M/N) = p

Proof. Since every prime submodule is also primary the sufficient con-
dition is clear. Assume that Ass(M/N) consists of a unique ideal p. Let
b ∈ R an element which induces a non injective homothety on M/N . This
implies that there exists an element m ∈ M such that bm = 0. Let now
q be a minimal prime ideal among all prime ideals containing Ann(m).
Since Supp(m) = {p ∈ Spec(R) / mp 6= 0} coincides with the closed sub-
set V (Ann(m)) = {p ∈ Spec(R) / p ⊃ Ann(m)} it follows that q is also a
minimal prime ideal of the set Supp(m). From [4, Theorem 6.5] q is an as-
sociated prime ideal to (m). By definition there exists an element m0 ∈ (m)
such that (m0) ' R/q. This implies that q is an associated prime ideal of
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M/N, so that q = p. Hence b ∈ p and since pM ⊂ N it follows that b in-
duces a vanishing homothety on M/N. Therefore, N is a prime submodule
of M.

4. REES ALGEBRAS ASSOCIATED TO PRIME SUBMOD-
ULES

Throughout this section we deal with the definition of the Rees algebra of
a module suggested by W. Vasconcelos in [8, Pag. 3]. As it is well-known,
for an ideal I of a commutative ring R there is a canonical epimorphism

φ : S(I) −→ <(I) = R[It]

between the symmetric algebra of I and its Rees algebra. If, further, the
ring R is a domain, then the Kernel of φ is just the R-torsion submodule of
S(I). This suggests the definition of the Rees algebra <(M) of an R-module
M as S(M)/T , where T is the prime ideal of the R-torsion elements of
S(M).

Given a prime submodule of a finitely generated module, the aim of
this section is to describe the Rees algebra of the corresponding quotient
module but to do so we need some results obtained in [3, Section 2]. Let
M be a finitely generated R−module. Then to each p−prime submodule
N of M , we associate a prime ideal of the symmetric algebra of M , called
the expansion EN of N and defined to be the set of all elements b ∈ S(M)
for which there exists an a ∈ R , a /∈ p such that a · b ∈ (p,N) · S(M).

Let N be a p-prime submodule of a finitely generated R−module M.
The following theorem describes the Rees algebra of the quotient module
M/N over R/p.

Theorem 3. LettingR denoteR = R/p, then<R(M/N) ' SR(M)/EN .
Proof. As it is well-known, the exact sequence

0 −→ N −→M −→M/N −→ 0

yields to another one

0 −→ N · SR(M) −→ SR(M) −→ SR(M/N) −→ 0.

Hence, taking into account the natural map

SR(M/N) −→ SR(M/N),
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it follows the exact sequence

0 −→ (p,N) · SR(M) −→ SR(M)
π−→ SR(M/N) −→ 0

Now it turns out that the R− torsion elements of SR(M/N) are just
the image of the expansion EN of N by the map π, which will be denoted
by EN . Indeed, if m is a R− torsion element of SR(M/N), there exists an
a ∈ R such that a· m = 0. But this implies that a ·m ∈ (p,N) · SR(M), so
that m ∈ EN .

Conversely, if m ∈ EN we choose an inverse image m ∈ EN by π. Then
by definition there exists an a ∈ R − p such that a ·m ∈ (p,N) · SR (M).
Therefore, a ·m = 0 en SR (M/N), that is, m is an R-torsion element of
SR (M/N).

Finally, since (p,N) · SR(M) ⊆ EN , it follows that
<R(M/N) ' SR(M)/ENand the theorem is proved.

5. A CONDITION FORDETECTINGWHENAPRIMARY
SUBMODULE HAS PRIME RADICAL

Contrary to what happens in rings, the radical of a primary submodule is
not, in general, a prime submodule (See [7, Example 1.12]). So the aim
of this section is to give a condition which allows us to determine whether
primary submodules of a module have prime radical.

Proposition 1. Let R be a Noetherian ring, letM be an R-module and let
Q be a p-primary submodule ofM. Then radM(Q) is a p -prime submodule
of M if and only if Sp(radM(Q)) = radM(Q)

Proof. One direction is obvious. Assume now that Sp(radM(Q)) =
radM(Q). Since (radM(Q))p = radMp(Qp) it follows that (radM(Q))p ∈
Spec(M) (See [7, Lemma1.4]). Hence by applying [1, Corollary 3] and
taking into account that (Sp(radM(Q)))p = (radM(Q))p it must be
Sp(radM(Q)) ∈ Spec(M). 2

The importance of this condition is given by the fact that since we know
to compute some radicals of submodules of free modules (See [3, Section
3, 3.2]) we also are able to determine if Sp(radM(Q)) = radM(Q) by using
the computer algebraic system Macaulay2. Therefore we can decide if some
radicals of submodules of free modules have prime radical. To illustrate this
we present the following example:
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Example 1. Let R = (Z/101Z) [x, y] and let F = R⊕R a free R−module
with basis {e1, e2}. Let Q be the submodule of F defined by
Q =


xe1 + y2e2, xe2, x

2e1
®
. It can easily be checked that

Q =
©
(u, v) ∈ F : y2u− xv ∈ p2

ª
where p = Rx. By applying [7, Propo-

sition 1.2] it follows that Q is a p-primary submodule of F . According
[3, Section 3.2], to compute radF (Q) we shall replace {e1, e2} by {z, t}
and consider the ideal J =


xz + y2t, xt, x2z

®
. By using computer algebra

system we obtain that√
J =


yt, xz, yzt, xyz, y2t+ xz, xt, x2z

®
. Thus taking into account√

J (1) we have that radF (Q) =

ye2, xe1, xye1, y

2e2, xe1, xe2, x
2e1
®
. On

the other hand, by using Macaulay2 we obtain that (radF (Q) :M y) =
he1, xe2i 6= radF (Q), so that Q has not prime radical.
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