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Universidad Federal de Paraiba - Brasil

Proyecciones
Vol. 22, No 3, pp. 161-180, December 2003.
Universidad Católica del Norte
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than a polynomial growth.
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1. Introduction

The study of solutions escaping to infinity has been an important tool in
order to understand the global picture of a dynamical system in IRn. The
compactification technique consists in writing the equations of motion as
a vector field and then applying the Poincaré compactification, which is
a method to extend analytically the vector field to a compact manifold,
in fact to a sphere. This tool or method is very important to study the
qualitative dynamic of the flow at infinity or in the unbounded part.

The main idea of this method is to identify IRn with northern and
southern hemispheres through simple projections, then the vector field X
on IRn can be extended to a vector field X̃ on Sn; this method is called the
Poincaré compactification.

In [10] dated 1881, Poincaré began the study of polynomial vector fields
on the plane IR2, by means of central projection of the paths on a sphere
S2, tangent to the plane at the origin. Thus, he provided the means for
studying the behavior of the field on a neighborhood of infinity, which is
represented by the equator, S1. In different papers González [8] and Cima
and Llibre [2] showed that any polynomial vector field on IRn can be ex-
tended analytically to the n-dimensional sphere. Using these ideas, in the
papers [5], [6], [7] the authors studied the Poincaré compactification for ho-
mogeneous vector fields, in particular for homogeneous polynomial vector
fields and by homogeneous polynomial Hamiltonian vector field. Then, in
each case they give a global expressions for the Poincaré compactification.
As an application, and using the fact that the vector field of the n-body
problem can always be written in the form of a polynomial vector field (see
[9] for example), the Poincaré compactifications for the Kepler problem on
the line and on the plane and for the collinear 3-body problem are com-
puted. The main disadvantage here for obtaining this polynomial vector
field is the use (in general) of redundant variables.

Our purpose in this paper is to understand the geometry of the Poincaré
compactification (see the second section) and to apply this technique to
prove that there exists a Poincaré compactification of vector fields defined
by rational functions and of vector field that are the quotient of some power
of polynomial. We will also give a global expressions for the Poincaré
vector field associated. These results are proved in the third section. In
the fourth section, we show that the main requirement for constructing the
Poincaré compactification of some vector field X is the fact that the rate
of growth at infinity of each component of the field X must be not bigger
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than a polynomial growth, i.e., there exist some polynomial vector field
Y = (P1, . . . , Pn) (nj is the degree of Pj) such that

lim
‖x‖→+∞

fj(x)
Pj(x)

= cj , j = 1, . . . , n(1.1)

where cj are some constants. In this case we prove that this property on
X implies that it is possible to get the Poincaré vector field P (X).

In the fifth section, we study the behavior of the induced vector field at
infinity in the 2-dimensional case and also we study some generic properties,
namely, generically the equilibrium solutions at the infinity are hyperbolic.

Finally, in the sixth section, we apply this method to study some re-
stricted three-body problems in Celestial Mechanics, but, as we apply this
result directly to rational vector fields, in general we do not introduce re-
dundant variables. The knowledge of the final configurations and velocities
(escaping solutions in the phase space) aim to give a mechanical explana-
tion to observed phenomena in Celestial Mechanics as is the case of the age
and formation of planetary systems, binary stars, comets, etc. Chazy in
[1] gave the first general classification in the 3-body problem when one or
several of the mutual distances go to infinity. In particular he proved that
there exist a great diversity of interesting motions in this particular case of
the n-body problem.

2. Poincaré’s compactification method and a geometric inter-
pretation

Let
X(x) = (f1(x), . . . , fn(x)),(2.1)

be a vector field on IRn, a noncompact manifold, where fi are functions of
C1 class in IRn. First, we identify IRn with the hyperplane

Π = {x ∈ IRn+1 / xn+1 = 0}
in IRn+1 which is tangent to the Poincaré’s sphere Sn = {y ∈ IRn+1 / ‖y‖ =
1} in IRn+1 at the north pole. Then, we take the central projection from
the sphere Sn to the hyperplane Π, that is, for each point in Π we draw the
straight line through this point and the origin in IRn+1, obtaining in this
way two antipodal points in Sn, one in the open northern hemisphere H+

and the other in the open southern hemisphere H− of Sn. More concretely,
this construction defines the following two diffeomorphism

Φ+ : IRn → H+, and Φ− : IRn → H−



164 Claudio Vidal and Pedro Gómez

given by,
Φ+(x) = 1

∆(x)(x1, . . . , xn, 1)
Φ−(x) = − 1

∆(x)(x1, . . . , xn, 1)
(2.2)

where ∆(x) = (1 + ‖x‖2)1/2.

Figure 1 : The central projections.

In this form the vector field X induces a vector field X on H+∪H− defined
by

X(y) =

{
DΦ+(x)X(x), if y = Φ+(x)
DΦ−(x)X(x), if y = Φ−(x).

(2.3)

Therefore,

X(y) = DΦ±(x)X(x)
= d

dt (Φ±(ϕ(t,x)))t=0

= d
dt

(
± 1

∆(ϕ(t,x))(ϕ(t,x), 1)
)

t=0

= ±
[

1
∆(x)X(x), 0)− X(x,0).(x,1)

∆(x)3
(x, 1)

]

= ± 1
∆(x) [(X(x), 0)− Projy(X(x, 0))]

= yn+1Projy(X(x), 0)
= yn+1(f1(x)− [y1f1(x) + . . . + ynfn(x)]y1, . . . ,

fn(x)− [y1f1(x) + . . . + ynfn(x)]yn,−[y1f1(x) + . . . + ynfn(x)]
yn+1)

(2.4)
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where Φ±(x) = y,ϕ(t,x) is the integral curve associated to the vector field
X satisfying the initial condition ϕ(0,x) = x and Projw(v) means the
orthogonal projection of the vector v on the subspace W . Note that by
(2.2) we have

x =





(
y1

yn+1
, . . . , yn

yn+1

)
, if y = Φ+(x)(

− y1

yn+1
, . . . ,− yn

yn+1

)
, if y = Φ−(x),

(2.5)

so, the function fj in (2.4) must satisfy:

fj(x) =





fj

(
y1

yn+1
, . . . , yn

yn+1

)
, if y = Φ+(x)

fj

(
− y1

yn+1
, . . . ,− yn

yn+1

)
, if y = Φ−(x).

(2.6)

Lemma 1. Under central projection every straight line in the plane Π is
mapped on great circle of the sphere Sn.

Proof: In fact, the proof is clear because the great circles on the sphere Sn

are by definition the intersection of the sphere Sn and a plane, P , through
the center O of the sphere. Then, by definition of the map Φ+ we have

Φ+(l) ⊂ P ∩ Sn

for every straight line l in the plane Π.

If we are interested in studying the flow associated to the vector field
X at the infinity, i.e., ∆(x) = +∞, this problem in the new variables y
over the sphere Sn, by means of the change of coordinates given in (2.2),
corresponds to yn+1 = 0, i.e., it is necessary to study the new vector field
X, defined in (2.3), on the equator of Sn, i.e., on Sn−1. However, in
general the vector field X is not well defined on the equator and also it
is not invariant on the equator yn+1 = 0. Therefore, depending on the
vector field X, sometimes it is necessary to modify the vector field X by
an appropriate scalar function such that the new vector field is now well
defined and invariant on the equator yn+1 = 0. This method is called
Poincaré compactification of X and it will be denoted by P (X); we will
refer to P (X) as the Poincaré vector field.
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Let l be the straight line in the plane Π through the origin, i.e, l : tv
where v ∈ IRn and ‖v‖ = 1, then

Φ+(tv) = 1√
1+t2

(tv1, . . . , tvn, 1),
Φ−(tv) = − 1√

1+t2
(tv1, . . . , tvn, 1).

(2.7)

Supposing that
Φ+(tv) → ±(v, 0) as t → ±∞,

then
Φ−(tv) → ∓(v, 0) as t → ±∞.

So, we have the following criterium of continuity.

Lemma 2. (Continuity condition)A necessary condition for the Poincaré
compactification to exist is that for every straight line l in the plane Π there
is a function λ : Sn → IR such that the following limits

lim
t→±∞λ(tv)yn+1X(Φ+(tv))

lim
t→∓∞λ(tv)yn+1X(Φ−(tv))

there exist and both agree.

3. Poincaré compactification for rational vector field and quo-
tient of power of polynomial vector field

Firstly, we will consider the case where fj in (2.1) is a rational function,
which we denote by

fj(x) =
Pj(x)
Qj(x)

, j = 1, . . . , n(3.1)

where the degree of Pj is nj and the degree of Qj is mj . Letting, m =
max{nj , mj j = 1, . . . , n} we have

Theorem 1. The induced vector field X on Sn \ Sn−1, defined in (2.3),
from the vector field X given in (2.1), by means of the differentials of
Φ+ and Φ− with fj given by (3.1), can be extended to the whole of the
sphere after multiplication by ym−1

n+1 , and in such a way that the equator is
invariant.
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Proof: It is sufficient to analyze the term fj(y). Let

Pj(x) = P
(0)
j + P

(1)
j (x) + . . . + P

(nj)
j (x),

Qj(x) = Q
(0)
j + Q

(1)
j (x) + . . . + Q

(mj)
j (x)

(3.2)

where P
(s)
j and Q

(s)
j are homogeneous polynomials of degree s in the vari-

ables x. By analogy, we will only analyze the case y = Φ+(x) . Thus,

P
(s)
j (x) = P

(s)
j

(
y1

yn+1
, . . . , yn

yn+1

)
= 1

ys
n+1

P
(s)
j (y1, . . . , yn)

Q
(s)
j (x) = Q

(s)
j

(
y1

yn+1
, . . . , yn

yn+1

)
= 1

ys
n+1

Q
(s)
j (y1, . . . , yn),

(3.3)

and then,

Pj

(
y1

yn+1
, . . . , yn

yn+1

)
=

1

y
nj
n+1

[
y

nj

n+1P
(0)
j + . . . + yn+1P

(nj−1)
j (y1, . . . , yn)

+P
(nj)
j (y1, . . . , yn)

]
,

Qj

(
y1

yn+1
, . . . , yn

yn+1

)
=

1

y
mj
n+1

[
y

mj

n+1Q
(0)
j + . . . + yn+1Q

(mj−1)
j (y1, . . . , yn)

+Q
(mj)
j (y1, . . . , yn)

]
.

(3.4)
Therefore, after multiplication by the factor ym−1

n+1 in each component of the
vector field X, we obtain an extension of the vector field X on the equator
yn+1 = 0, which is invariant.

Remarks. The vector field P (X) on the equator Sn−1 is given by:

P (X)(y1, . . . , yn) = (P1(X)(y1, . . . , yn), . . . , Pn(X)(y1, . . . , yn))(3.5)

where we will consider y = Φ+(x) (the other case is analogous) and for
j = 1, . . . , n

Pj(X)(y1, . . . , yn) = ym−1
n+1

[
fj(x)− yj

n∑

s=1

ysfs(x)

]

= δj
P

(nj)

j (y1,...,yn)

Q
(mj)

j (y1,...,yn)
− yj




n∑

s=1

δs

P
(ns)
j (y1, . . . , yn)

Q
(ms)
j (y1, . . . , yn)




(3.6)

where

δs =

{
1, if ns −ms = m
0, otherwise.
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Another very important remark is the smoothness of the compactified
vector field P (X). In fact, we have immediately that this vector field will
be analytic on the set {(y1, . . . , yn) ∈ Sn−1 / Q

(ms)
j (y1, . . . , yn) 6= 0}.

In the second case, we will assume that fj , given in (2.1), is a function
such that

fj(x) =
[Pj(x)]αj

[Qj(x)]βj
, j = 1, . . . , n.(3.7)

As before, Pj and Qj are polynomials, where αj and βj are real non-zero
constant , and fj(x) is well defined.

Therefore following the same arguments as in Theorem 1, but defining

m = max{αjnj − βjmj / j = 1, . . . , n},
in this case we have.

Theorem 2. The induced vector field X on Sn \ Sn−1, defined in (2.3),
from the vector field X given in (2.1), by means of the differentials of
Φ+ and Φ− with fj given by (3.1), can be extended to the whole of the
sphere after multiplication by ym−1

n+1 , and in such a way that the equator is
invariant.

Remarks. In this case the vector field P (X) on the equator Sn−1 is given
by:

P (X)(y1, . . . , yn) = (P1(X)(y1, . . . , yn), . . . , Pn(X)(y1, . . . , yn))(3.8)

where we will consider y = Φ+(x) (the other case is analogous) and for
j = 1, . . . , n

Pj(X)(y1, . . . , yn) = ym−1
n+1

[
fj(x)− yj

n∑

s=1

ysfs(x)

]

= δj
[P

(nj)

j (y1,...,yn)]αj

[Q
(mj)

j (y1,...,yn)]βj
− yj




n∑

s=1

δs

[P (ns)
j (y1, . . . , yn)]αs

[Q(ms)
j (y1, . . . , yn)]αs




(3.9)
where

δs =

{
1, if αsns − βsms = m
0, otherwise.
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It follows immediately that the degree of differentiability of the vector
field P (X) will depend on αj , βj and the sets
{(y1, . . . , yn) ∈ Sn−1 / P

(ms)
j (y1, . . . , yn) 6= 0} and

{(y1, . . . , yn) ∈ Sn−1 / Q
(ms)
j (y1, . . . , yn) 6= 0}. So, the differentiability

must be analyzed separately in each case.

Corollary 1. Let

X = XH + XF(3.10)

where XH = (g1, . . . , gn) is a vector field defined by polynomials gj and
XF = (f1, . . . , fn) is the vector field defined in (3.7). Let kj be the degree
of gj and m = max{αjnj − βjmj , kj / j = 1, . . . , n}. Then, the induced
vector field X given in (2.3) from the vector field X given in (2.1) by
means of the differentials of Φ+ and Φ− can be extended to the whole of
the sphere after multiplication by ym−1

n+1 , and in such a way that the equator
is invariant.

4. Generalization

In the previous section we have restricted our study to the set of all rational
vector fields and vector fields whose components are the quotient of power
of polynomials as in (3.7). In all these cases the Poincaré compactification
vector field can be obtained, and we observe that in these cases the rate
of growth at infinity of each component is not bigger than a polynomial
growth. We emphasize that this property implies that it is possible to get
the compactified vector field P (X).

Let the vector field X given in (2.1) and we will assume that there is a
polynomial vector field Y = (P1, . . . , Pn) (nj is the degree of Pj) such that

lim
‖x‖→+∞

fj(x)
Pj(x)

= cj , j = 1, . . . , n(4.1)

with cj constant. Let m = max{nj / j = 1, . . . , n}. The following theorem
is a generalization of the previous results.
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Theorem 3. The induced vector field X on Sn \ Sn−1, defined in (2.3),
from the vector field X given in (2.1), by means of the differentials of Φ+

and Φ− with fj given by (4.1), can be extended to the whole of the sphere
after multiplication by ym−1

n+1 , and in such a way that the equator is left
invariant.

Proof: It is sufficient to prove that there is the limit

lim
yn+1→0

ym
n+1fj

(
y1

yn+1
, . . . ,

yn

yn+1

)
,

for every j = 1, . . . , n. Let,

Pj(x) = P
(0)
j + P

(1)
j (x) + . . . + P

(nj)
j (x),(4.2)

where P
(s)
j is an homogeneous polynomial of degree s in the variable x.

We will only analyze the case y = Φ+(x) since the other case is analogous.
Thus,

cj = lim‖x‖→+∞
fj(x)
Pj(x)

= lim‖x‖→+∞
fj(x)

P
(0)
j +P

(1)
j (x)+...+P

(nj)

j (x)

= limyn+1→0

fj

(
y1

yn+1
,..., yn

yn+1

)

y
−nj
n+1 [y

nj
n+1P

(0)
j +y

nj−1

n+1 P
(1)
j (y1,...,yn),...+P

(nj)

j (y1,...,yn)

(4.3)

and we have

lim
yn+1→0

y
nj

n+1fj

(
y1

yn+1
, . . . ,

yn

yn+1

)
= cj P

(nj)
j (y1, . . . , yn).(4.4)

Therefore, after multiplication by the factor ym−1
n+1 in each component of the

vector field X, we obtain an extension of the vector field X on the equator
yn+1 = 0, which is left invariant.

5. Behavior of the induced field at infinity for the 2-dimensional
case and generic properties

In this section, we shall investigate under which conditions there are equi-
librium points or closed orbits at infinity, and of which types they are for
the 2-dimensional case.
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Let us go now into analytical details. The sphere S2 will be considered
as a differentiable manifold, the corresponding coordinate maps are:

φi : Ui → IR2, and ψi : Vi → IR2

where Ui = {y ∈ S2 / yi > 0}, Vi = {y ∈ S2 / yi < 0} (i = 1, 2, 3) and

φi(y) = ψi(y) =
(

yj

yi
,
yk

yi

)
(5.1)

with i, j, k = 1, 2, 3; j < k. We shall denote by z = (z1, z2) the value of
φi(y) or ψi(y) for any i, so that z represents different things according to
the case under consideration. In order to find the explicit expression for
the induced compactified vector field on IR2 for the case in which y ∈ Ui

or y ∈ Vi (i = 1, 2, 3), it is convenient to express the obtained compactified
vector field (3.6) or (3.9) in terms of the variable z. Making straightforward
computations we arrive at the final expression for the field on U1

zm
2

∆(z)m−1

(
f2

(
1
z2

,
z1

z2

)
− z1f1

(
1
z2

,
z1

z2

)
,−z2f1

(
1
z2

,
z1

z2

))
(5.2)

analogously on U2 we have

zm
2

∆(z)m−1

(
f1

(
z1

z2
,

1
z2

)
− z1f2

(
z1

z2
,

1
z2

)
,−z2f2

(
z1

z2
,

1
z2

))
(5.3)

and finally on U3
zm
2

∆(z)m−1
(f1(z1, z2), f2(z1, z2)),(5.4)

where fj is given by (3.1) satisfying (3.2) in the rational case and by (3.7)
again satisfying (3.2) in the power rational case. For the case in which
y ∈ Vi, i = 1, 2, 3, we obtain the same expressions (5.2) to (5.4) except
for the following fact: in V1 we have y1 < 0 and then y3 and z2 are of
different sign. Thus y3 = − z2

∆(z) and (5.2) must be multiplied by (−1)m−1

to obtain the field on V1. Also, it can be seen that (5.3) and (5.4) have to
be multiplied by (−1)m−1.

In the neighborhoods U1, U2, V1 and V2 which are the only ones contain-
ing points at infinity, our vector field is given by the expressions (5.2) and
(5.3). To simplify, we will call (z1, z2) by (µ, ν). Now, we recall that the
equator S1 is an invariant set and the second component of (5.2) or (5.3)
is zero for ν = 1

∆(z) = 0. Then, P (X) has equilibrium points in S1 and one
of them (µ, ν = 0) must satisfy the following equation

νm
[
R2

(
1
ν

,
µ

ν

)
− µR1

(
1
ν

,
µ

ν

)]
|ν=0 = 0, in U1(5.5)
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and

νm
[
R1

(
µ

ν
,
1
ν

)
− µR2

(
µ

ν
,
1
ν

)]
|ν=0 = 0, in U2(5.6)

which are well defined with the appropriate choice of m.

5.1. Equilibrium solutions for rational vector field

We will analyze the vector field given by (3.1) satisfying (3.2) for n = 2,
i.e., the vector field X given in (2.1) on IR2 is rational. Maintaining the
preliminary notations, the equation (5.5) on U1 is equivalent to

F (µ) = δ2
p
(n2)
2 (1, µ)

q
(m2)
2 (1, µ)

− δ1µ
p
(n1)
1 (1, µ)

q
(m1)
1 (1, µ)

= 0.(5.7)

To analyze the hyperbolicity of the equilibrium solutions it is necessary
to calculate the variational equations of the vector field (5.2) through the
equilibrium solution (µ∗, 0). In this case the linear part is given by

A =




dF (µ∗)
dµ ?

0 −[m + 1− (n1 −m1)]δ1
p
(n1)
1 (1,µ∗)

q
(m1)
1 (1,µ∗)


(5.8)

where

? =





q
(m2)
2 (1,µ∗)p(n2−1)

2 (1,µ∗)−q
(m2−1)
2 (1,µ∗)p(n2)

2 (1,µ∗)

[q
(m2)
2 (1,µ∗)]2

−

s
q
(m1)
1 (1,µ∗)p(n1−1)

1 (1,µ∗)−q
(m1−1)
1 (1,µ∗)p(n1)

1 (1,µ∗)

[q
(m1)
1 (1,µ∗)]2

, if δ1 = δ2 = 1

q
(m2)
2 (1,µ∗)p(n2−1)

2 (1,µ∗)−q
(m2−1)
2 (1,µ∗)p(n2)

2 (1,µ∗)

[q
(m2)
2 (1,µ∗)]2

−

s
p
(n1)
1 (1,µ∗)

q
(m1)
1 (1,µ∗)

, if δ2 = 1 andm = n1 −m1 + 1

q
(m2)
2 (1,µ∗)p(n2−1)

2 (1,µ∗)−q
(m2−1)
2 (1,µ∗)p(n2)

2 (1,µ∗)

[q
(m2)
2 (1,µ∗)]2

,

if δ2 = 1andm > n1 −m1 + 1
p
(n2)
1 (1,µ∗)

q
(m2)
2 (1,µ∗)

− s
q
(m1)
1 (1,µ∗)p(n1−1)

1 (1,µ∗)−q
(m1−1)
1 (1,µ∗)

[q
(m1)
1 (1,µ∗)]2

,

if m = n2 −m2 + 1and δ1 = 1

−s
q
(m1)
1 (1,µ∗)p(n1−1)

1 (1,µ∗)−q
(m1−1)
1 (1,µ∗)p(n1)

1 (1,µ∗)

[q
(m1)
1 (1,µ∗)]2

,

if m > n2 −m2 + 1and δ1 = 1.
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The equation (5.6) on U2 is equivalent to

G(µ) = δ1
p
(n1)
1 (µ, 1)

q
(m1)
1 (µ, 1)

− δ2µ
p
(n2)
2 (µ, 1)

q
(m2)
2 (µ, 1)

= 0.(5.9)

The linearized system associated to the vector field (5.9) through the
equilibrium solution (µ∗, 0) becomes

B =




dG(µ∗)
dµ ??

0 − [m + 1− (n2 −m2)] δ2
p
(n2)
2 (µ∗,1)

q
(m2)
2 (µ∗,1)

= 0


(5.10)

where

?? =





q
(m1)
1 (µ∗,1)p

(n1−1)
1 (µ∗,1)−q

(m1−1)
1 (µ∗,1)p

(n1)
1 (µ∗,1)

[q
(m1)
1 (µ∗,1)]2

−

s
q
(m2)
2 (µ∗,1)p

(n2−1)
2 (µ∗,1)−q

(m2−1)
2 (µ∗,1)p

(n2)
2 (µ∗,1)

[q
(m2)
2 (µ∗,1)]2

, if δ1 = δ2 = 1

q
(m1)
1 (µ∗,1)p

(n1−1)
1 (µ∗,1)−q

(m1−1)
1 (µ∗,1)p

(n1)
1 (µ∗,1)

[q
(m1)
1 (µ∗,1)]2

−

s
p
(n2)
2 (µ,1)

q
(m2
2 (µ∗,1)

, if δ1 = 1 andm = n2 −m2 + 1

q
(m1)
1 (µ∗,1)p

(n1−1)
1 (µ∗,1)−q

(m1−1)
1 (µ∗,1)p

(n1)
1 (µ∗,1)

[q
(m1)
1 (µ∗,1)]2

,

if δ1 = 1 andm > n2 −m2 + 1
p
(n1)
2 (µ∗,1)

q
(m2)
1 (µ∗,1)

− s
q
(m2)
2 (µ∗,1)p

(n2−1)
2 (µ∗,1)−q

(m2−1)
2 (µ∗,1)

[q
(m2)
2 (µ∗,1)]2

,

if m = n1 −m1 + 1 and δ2 = 1

−s
q
(m2)
2 (µ∗,1)p

(n2−1)
2 (µ∗,1)−q

(m2−1)
2 (µ∗,1)p

(n2)
2 (µ∗,1)

[q
(m2)
2 (µ∗,1)]2

,

if m > n1 −m1 + 1 and δ2 = 1.

Proposition 1. Let X be a rational vector field, then all the equilibrium
solutions of P (X) in S1 are hyperbolic, except in the following cases:

• (i)F (µ) or G(µ) have multiple real zeros,

• (ii) δ1 = 0 or δ2 = 0,

• (iii)F (µ) or G(µ) have simple real zeros, δ1 = δ2 = 1 but
p
(n1)
1 (1,µ∗)

q
(m1)
1 (1,µ∗)

=

0 or
p

n2
2 (µ∗,1)

q
(m2)
2 (µ∗,1)

= 0 for some real µ∗ where (µ∗, 0) is one of the equi-

librium solutions.
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Remarks. 1) If (µ∗, 0) is an equilibrium on U1 and the condition p
(n1)
1 (1,µ∗)

q
(m1)
1 (1,µ∗)

=

0 is satisfied then, by equation (5.7), we have that p
(n2)
2 (1,µ∗)

q
(m2)
2 (1,µ∗)

= 0. Analo-

gously, if (µ∗, 0) is an equilibrium on U2 and the condition p
(n2)
2 (µ∗,1)

q
(m2)
2 (µ∗,1)

= 0

is satisfied then, by equation (5.9), we have that p
(n1)
1 (µ∗,1)

q
(m1)
1 (µ∗,1)

= 0.

2) If neither F (µ) nor G(µ) have real zeros, and P (X) is smooth on
S1 then the equator is a closed orbit. If P (X) has a finite number of
singularities then the integral curves of P (X) is a finite union of arc of
curves on S1.

3) If δ1 = δ2 = 1 then n1 − m1 = m = n2 = m2 and supposing that
F (µ) and G(µ) do not have real zeros, then n1 + m2 = n2 + m1 is odd. To
prove it, we write F (µ) and G(µ) as:

F (µ) =
Qn(1, µ)− µPn(1, µ)

q
(m1)
1 (1, µ)q(m2)

2 (1, µ)

and

G(µ) =
Pn(µ, 1)− µQn(µ, 1)

q
(m1)
1 (µ, 1)q(m2)

2 (µ, 1)

where
Qn(x, y) = p

(n2)
2 (x, y)q(m1)

1 (x, y)

and
Pn(x, y) = p

(n1)
1 (x, y)q(m2)

2 (x, y).

Supposing that n is even, then

xQn(x, y)− yPn(x, y)

is odd and will have a zero either for x = 0 or for some finite value of
y/x. In both cases we would have a singularity at infinity, contrary to the
assumption.

Proposition 2. One hyperbolic equilibrium solution (µ∗, 0) in U1 (resp.
in U2) of (3.1) at the infinity can be a:
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• saddle point if dF (µ∗)
dµ

p
(n1)
1 (1,µ∗)

q
(m1)
1 (1,µ∗)

< 0 (resp. dG(µ∗)
dµ

p
n2
2 (µ∗,1)

q
(m2)
2 (µ∗,1)

< 0);

• stable node if dF (µ∗)
dµ < 0 and

p
(n1)
1 (1,µ∗)

q
(m1)
1 (1,µ∗)

< 0 (resp. dG(µ∗)
dµ < 0 and

p
n2
2 (µ∗,1)

q
(m2)
2 (µ∗,1)

< 0);

• unstable node if dF (µ∗)
dµ > 0 and

p
(n1)
1 (1,µ∗)

q
(m1)
1 (1,µ∗)

> 0 (resp. dG(µ∗)
dµ > 0 and

p
n2
2 (µ∗,1)

q
(m2)
2 (µ∗,1)

> 0).

5.2. Equilibrium solutions for quotient of powers of polynomial
vector fields

Now, we will analyze the vector field given by (3.7) satisfying (3.2) for
n = 2, i.e., the vector field X in (2.1) on IR2 is given by the quotient of
power of polynomial vector fields. Maintaining the preliminary notations,
the equation (5.5) in U1 became equivalent to

H(µ) = δ2
[p(n2)

2 (1, µ)]α2

[q(m2)
2 (1, µ)]β2

− δ1µ
[p(n1)

1 (1, µ)]α1

[q(m1)
1 (1, µ)]β1

= 0.(5.11)

To analyze the hyperbolicity of the equilibrium solutions it is necessary
to calculate the variational equations of the vector field (5.2) through the
equilibrium solution (µ∗, 0). Therefore, the linear part is given by

C =




dH(µ∗)
dµ ⊗

0 − [m + 1− (α1n1 − β1m1)] δ1

[
p
(n1)
1 (1,µ∗)

]α1

[
q
(m1)
1 (1,µ∗)

]β1


(5.12)

where ⊗ is calculated in a similar way as in the rational case.

The equation (5.6) on U2 is equivalent to

K(µ) = δ1
[p(n1)

1 (µ, 1)]α1

[q(m1)
1 (µ, 1)]β1

− δ2µ
[p(n2)

2 (µ, 1)]α2

[q(m2)
2 (µ, 1)]β2

= 0.(5.13)

Thus, the linear part associated to the vector field (5.3) through the equi-
librium solution (µ∗, 0) is
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D =




dK(µ∗)
dµ ⊗⊗

0 − [m + 1− (α2n2 − β2m2)] δ2

[
p
(n2)
2 (µ∗,1)

]α2

[
q
(m2)
2 (µ∗,1)

]β2


(5.14)

where ⊗⊗ is calculated in a similar way than in the rational case.

Proposition 3. Let X be a quotient of powers of polynomial vector fields,
then all the equilibrium solutions of P (X) in S1 are hyperbolic, except in
the following cases:

• (i)H(µ) or K(µ) have multiple real zeros,

• (ii) δ1 = 0 or δ2 = 0,

• (iii)H(µ) or K(µ) have simple real zeros, δ1 = δ2 = 1 but

[p
(n1)
1 (1,µ∗)]α1

[q
(m1)
1 (1,µ∗)]β1

= 0 or
[p

(n2)
2 (µ∗,1)]α2

[q
(m2)
2 (µ∗,1)]β2

= 0 for some real µ∗, where (µ∗, 0)

is one of the equilibrium solutions.

The character of the stability is described in the following proposition.

Proposition 4. One hyperbolic equilibrium solution (µ∗, 0) in U1 (resp.
in U2) of (3.7) at the infinity can be a:

• saddle point if dH(µ∗)
dµ

[p
(n1)
1 (1,µ∗)]α1

[q
(m1)
1 (1,µ∗)]β1

< 0 (resp. dK(µ∗)
dµ

[p
n2
2 (µ∗,1)]α2

[q
(m2)
2 (µ∗,1)]β2

<

0);

• stable node if dH(µ∗)
dµ < 0 and

[p
(n1)
1 (1,µ∗)]α1

[q
(m1)
1 (1,µ∗)]β1

< 0 (resp. dK(µ∗)
dµ < 0 and

[p
n2
2 (µ∗,1)]α2

[q
(m2)
2 (µ∗,1)]β2

< 0);

• unstable node if dH(µ∗)
dµ > 0 and

[p
(n1)
1 (1,µ∗)]α1

[q
(m1)
1 (1,µ∗)]β1

> 0 (resp. dK(µ∗)
dµ > 0

and
[p

n2
2 (µ∗,1)]α2

[q
(m2)
2 (µ∗,1)]β2

> 0).
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6. Application to Celestial Mechanic

In [3] and [4] we can find very nice applications of the Poincaré compactifi-
cation vector field. In fact, they studied the bounded part using the Wang’s
coordinates (see [11]) but, for studying the unbounded part they used the
Poincare’s compactification. In both papers the authors used the Poincaré
compactification but they did not justify all the arguments involved in its
applications.

Studying the qualitative dynamic of the flow in both the bounded and
unbounded part it is possible to understand the global flow in these prob-
lems. In [3] the authors studied the parabolic non collision restricted three
body problem, where the mass points, of equal masses m1 = m2 > 0, moving
under Newton’s law of attraction, in a non-collision parabolic orbit, while
their center of mass is at rest and it is consider the third mass point, of
mass m3 = 0, moving on the straight line L perpendicular to the plane
of motion of the first two mass points and passing through their center of
mass. If (x/2, y/2, 0) denotes the position of the mass point m1 and (0, 0, z)
the position of m3, then the equations of motion for x, y, z are

ẍ = − 2x
(x2+y2)3/2

ÿ = − 2y
(x2+y2)3/2

z̈ = − 16z
(x2+y2+4z2)3/2 .

(6.1)

In [4] the author studied the parabolic collision restricted three body problem
which is a similar problem but in this case it is possible to have collision.
Let x denotes the distance between the two primaries m1 and m2. Thus,
(x/2, 0) denotes the position of m1 and consequently (−x/2, 0) that of m2.
If we denote by (0, y) the position of m3, then the equations of motion for
x and y are

ẍ = − 2
x2

ÿ = − 16y
(x2+4y2)3/2 .

(6.2)

Using Wang’s coordinates both problems have the following vector field

X = X(x1, x2) =

(
−x1

4
+ x2,

x2

8
− 2x1

(4 + x2
1)3/2

)
.(6.3)

This vector field is like the vector field defined in (3.10), with

XH =
(
−x1

4
+ x2,

x2

8

)
, and XF =

(
0,− 2x1

(4 + x2
1)3/2

)
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being k1 = k2 = 1, n1 = n2 = 0, m1 = 0, m2 = 2, α1 = 0 and β1 = 3/2.
Therefore, in this case, applying Corollary 1, we have that m = 1. In order
to represent the flow of P (X) on S1 we use its projection on the closure of
the north hemisphere with respect to the y3-axis on the plane (y1, y2), that
is, its projection on the disc {y ∈ IR3 / y2

1 + y2
2 ≤ 1 and y3 = 0}, called the

Poincaré disc. The interior of the Poincaré disc represents the flow in the
finite part of system (6.1) or (6.2) and the boundary S1 of the Poincaré
disc, represents the infinity part of system (6.1) or (6.2). The following
picture describe the global flow at finite and infinite part of system (6.1)
or (6.2) on the Poincaré disc when 0 < t < +∞.

Figure 2 : The global flow when 0 < t < +∞.

We have three equilibrium solutions in the finite part: one stable focus
and two saddle points; and four equilibrium solutions in the infinite part:
two stable nodes and two unstable nodes.
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Cidade Universitária, João Pessoa-PB
Brazil
e-mail : venegas@mat.ufpb.br




