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Abstract

In this paper we investigated the spectrum of the operator L(\) generated
in Hilbert Space of vector-valued functions L* (R, Cs) by the system

(0.D)iy; +a; () yo = Ayy, —iys + 02 (2) ¥y, = Aya, x €ER4 1= [0, 00),
and the spectral parameter- dependent boundary condition

(a1A +01) y2 (0, A) = (a2A + b2) 51 (0,A) =0,
where A is a complex parameter, q;, 1 = 1,2 are complez-valued functions
a; #0, by 0, 1 =1,2 are complex constants. Under the condition

sup {expex|q; ()|} < o00,i=1,2,e >0,

zER
we proved that L (A) has a finite number of eigenvalues and spectral sin-
gularities with finite multiplicities. Furthermore we show that the prin-
cipal functions corresponding to eigenvalues of L ()\) belong to the space
L? (R4, {C2) and the principal functions corresponding to spectral singular-
ities belong to a Hilbert space containing L* (R4, Cz).
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1. Introduction

Let us consider the nonself-adjoint one dimensional Schrodinger operator L
generated in L? (R) by the differential expression

y) ==y +q(@)y, zeRy

and the boundary condition y (0) = 0 as Ly = ly, where ¢ is a complex-
valued function. The spectral analysis of L has been studied by Naimark
[7]. Naimark has proved that there are some poles of resolvent’s kernel
which are not the eigenvalues of the operator L. (Schwartz [8] named these
points as spectral singularities of L).Moreover Naimark has proved that
spectral singularities are on the continuous spectrum, he has also shown
that L has a finite number of eigenvalues and spectral singularities with
finite multiplicities if the condition

e g (z)|dr < oo, >0

o3

holds. Lyance has obtained the role of the spectral singularities in the
spectral expansion of the operator L in terms of principal functions[6].
The properties of the eigenvalues and vector-valued eigenfunctions of a
boundary value problem for a one-dimensional Dirac system with a spectral
parameter in the boundary conditions has been investigated by Kerimov

[4].

We now consider the operator L (\) generated in

L2 (Ry, Cy) = {f(a:) : f (@)= (), Zﬁ{rfl (@) + |f2 (@)} do < oo}
by the system

(1.1) i+ q () y2 = A,

—iyy +q2 () y1 = Ay2, € Ry
and the spectral parameter-dependent boundary condition

(1.2) (a1 +b1) y2 (0,A) — (a2A + b2) y1 (0, A) = 0,

where ¢;, 1 = 1, 2, are complex-valued functions, A is the spectral parameter,
a;, b; are complex constants, b; # 0, ¢ = 1,2; moreover |a1|? + |az|* # 0.



Spectral properties of a non selfadjoint system ... 51

The spectrum of the operator generated by the system (1.1) with the
boundary condition y2 (0) — hy; (0) = 0, (which is the special case of
(1.2) when a; = 0, b = 1) here h # 0 is a complex constant, has been
investigated in [5] and in [1].

In this paper, we discussed the spectrum of L (\) defined by (1.1) and
(1.2) and proved that L (\) has a finite number of eigenvalues and spectral
singularities with finite multiplicities under the conditions

lgi (x)] <ce™® <00, 1=1,2,e>0,¢c>0

by using analytic continuation method ([7]). Finally we observe the prop-
erties of the principal functions corresponding to eigenvalues and spectral
singularities.

In the rest of the paper, we use the following notations:

C, = {A:AeC, ImA>0},C_={\:AeC, ImA<0},

C, = {A:AeC, ImA>0},C_={A:\eC, Im\<0},
op (L (X)) denotes the eigenvalues and o5 (L (\)) denotes the spectral sin-
gularities of L (\).

2. Preliminaries

Let us suppose that
(2.1) g (@) <c(1+2)"07) i=12 zeRy, >0

holds, where ¢ > 0 is a constant.

The following results were given in [1] and in the first reference there
in.Under the conditions (2.1), equation (1.1) has the following vector solu-
tions

TH (z,t) eMdt
2.2) et () = (ﬁ (“)> - ( P )

e + [ Hag (z,t) eiMdt
T
for A € C, and
e T —ixt
€T (1:7)\)> - (6 + g{ Hi, (x,t)e dt>

(2.3) e (z,A) = ( . o '
f H21 (.’L‘, t) e_ZAtdt
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for A € C_; moreover the kernels H;; (z,t), i,j = 1,2, satisfy the inequal-

ities
(ZL‘ + t)
qk B

2
(2.4) |Hyj (z,t)] < ¢
where ¢ > 0 is a constant. Therefore the functions e; (z,A) and e; (z, ),

Y

k=1

1 = 1,2, are analytic with respect to A in C,, C_, and continuous on C
and C_, respectively. Moreover e™ and e~ satisfy the following asymptotic
equalities ([1])

(2.5) et (z,)\) = (eg‘m> [l+o0(1)], NeCy z—

and )

(2.6) e (z,\) = (6 0 )[1+0(1)], AeC_, z— oo
From (2.5) and (2.6) we have

(2.7) W{et,e } :xILI&W{e+ (x, ), e (2, N} =—1

for A € R, where W {y(l), y(2)} is the wronskian of the solutions of () and

y(z) which is defined as W{y(l),y@)} = y%l)yéz) — y&myél),here y(i) =
(%)
(Z}i)), i = 1,2. Therefore e*, e~ are the fundamental system of solutions

2
of the system (1.1) for A € R.
Let ¢ (x, A) be the solution of (1.1) satisfying the initial conditions

01 (0,A) =a1A+0b1, ©2(0,)) = asA+ ba.

Clearly the solution ¢ (z, \) exists uniquely and is an entire function
of \..

3. Eigenvalues and spectral singularities

Let us define

at (A) = (@A +b1) eg (0,0) — (a2X + b2)ef (0,A) =0

(3.1) a” (A) = (A +b1) ey (0,N) — (aaA +b2) e (0,\) = 0.
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Let
RY (z,t;\), ImA >0
(3-2) B (wt4) = {R (z,5:A), ImA <0

be Green’s function of L (\) which is obtained by using classical methods,
here

(3.3) RY (z,t;\) =

i et (z,\)p*(t,\), 0<t <z
at (A) e (x,A) (eT)* (t,\), v <t < oo

and

(3.4) R™ (z,t; \) =

>
—
o
~
A
8

i { e (z,\) p* (¢
a= (N le(z,\)(e7) (HA), <t <o

and (e*)* := (eQi,eli) , % = (p2,%1) . Moreover from (2.5) and (2.6) we

have
(3.5) et (z,)) € L (Ry, Cy)

for A € C; and
(3.6) e (z,)) € L? (R4, Co)

for A € C_.In this case we state the following

Lemma 3.1.

a)op (L) ={A:A€C4,at(N)=0U{r:XeC_, a~ (\) =0},
b) oss (L (N))

={A: Ae R\ {0}, at(N\) =0}Uu{X: X e R\{0}, a= (\) =0}.

Proof. a) It is clear that
A:AeCh,a™(N)=0tU{A:XeC_, a (\) =0} Co,(L(N).

Now let us suppose that A\g € o, (L ())). If Ao € C4 then (1.1) has a
nontrivial solution ¥ (z, Ag) in L? (R4, Cz) for A = \g satisfying (1.2).

Since W {y (z,X0), ¢ (z, o)} = 0 then there exists a constant ¢ # 0
such that y (z, A\g) = cp (x, o) . Therefore

w {y (QT, )\0) ,€+ (:Ea )\0)}

(3.7) =y1(0,X0) 3 (0, X0) — 2 (0, Xo) €7 (0, Xg) = ca™t (Ao).

Moreover we find from (3.5) that
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Wy (z,Xo) € ( Ao)}
(3.8) = lim; .0 {yl (z,X0) €5 (z,M0) — y2 (7, Xo) e ( )}
=0

So we obtain from (3.7) and (3.8) that a™ (\g) = 0.
If Ao € C_ then we prove that a= (Ag) = 0 similarly.
If Ao € R, then the general solution of (1.1) is
y(x, Xo) = cret (z, \o) + cae™ (z, \o)

for A = Ag. From (2.5) and (2.6) we have

g

y(@ h) = (g ) (L+0(1))

as x — oo. Therefore y (z, \o) ¢ L* (R4, Cs). Hence o, (L (X)) N R=, so
(a) follows.

b) Spectral singularities which are not the eigenvalues of L (), are the
poles of the resolvent’s kernel. From (3.1) — (3.4) and (a), we can say
that the spectral singularities of L (\) are the real zeros of a™ and a~. So
(b) follows.

Furthermore

W{et (z,2),e” (2, )} = e (0,\) e3 (0,4) —e3 (0,A) ey (0,0) = —
for A € R. Therefore we have
(3.9) {AM:AeR, at (W) =0}n{A:AeR, a” (\)=0}=¢

Now as we see from Lemma 3.1 that to investigate the properties of the
eigenvalues and the spectral singularities of L (), we need to investigate
the properties of the zeros of a™ and a~ in C,, C_, respectively. For
simplicity, we will consider only the zeros of a® in C. In this point of view
let us define the sets Z, = {\: X € C, a™ (\) = 0},

Z={X :2eR, at(\)=0}.

Lemma 3.2. (a) The set Z; is bounded and has at most a count-
able number of elements, and its limit points can lie only in a bounded
subinterval of the real axis.

(b) Z is a compact set.
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Proof. From (2.2) we get that a™ ()) is analytic in C and satisfies

() = ah+ byt
{(al)\ + bl) Hyo (0, t) — (CLQ)\ + bg) Hys (0, t)} e dt.

Q

(3.10)

°o—g

From (3.10) we get

at (A=A (cn + ;fo{ale (0,t) — agH12 (0,¢)} ewdt>
+0O(1)

(3.11)

for A\ € C4, |A\| — oo. From (3.11) we find that the zeros of a™ must lie in
a bounded domain. Since a™ is analytic in C, then these zeros are at most
countable numbers. From the uniqueness of analytic functions the limit
points of Z can lie only in a bounded subinterval of the real axis. So (a)
follows. (b) is obtained from the uniqueness theorem of analytic functions

3]

From Lemma 3.1 and Lemma 3.2 we have

Theorem 3.3. If the conditions (2.1) hold, then the set of eigenvalues
and spectral singularities of L (\) are bounded, countable and their limit
points can lie only in a bounded subinterval of the real axis.

Definition 3.4. The multiplicity of a zero of a™ (or =) in C, (or 6_)

is defined as the multiplicity of the corresponding eigenvalue or spectral
singularity of L ().

Let us suppose that

(3.12) lgi ()] <ce™™, ¢>0, ¢>0, i=1,2

hold. From (2.4) we obtain that
(3.13) |Hij (x,t)] < CeXp{_?s(x-l-t)}.

From (3.10) and (3.13), a* has an analytic continuation from the real axis
to the half plane Im A > 2. So the limit points of the sets Z; and Z cannot

lie in R i.e. the sets Z; and Z have no limit points. Therefore the number
of zeros of a™ in C, are finite with finite multiplicities. Similarly we can
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show that @~ has a finite number of zeros with finite multiplicities in C_.So
we have proved the following

Theorem 3.5. The operator L (A) has a finite number of eigenvalues
and spectral singularities, and each of them is of finite multiplicity if the
conditions (3.12) hold.

4. Principal functions

Assume that (3.12) holds. Let Af, ...,)\;r and A;,...,A\, denote the zeros

of at in C; and ¢~ in C_ with multiplicities mf, ,mj and my,...,my,

respectively. Similarly, let A1, ..., A, and Api1,...,A; denote the zeros of
at and a” on the real axis with multiplicities myq, ..., my, and mp1, ..., myq,
respectively. In this case we have

o N .
a0 {gaWle N el = {gme o) =0
forn=0,1,..m —1,i=1,2,....j, and
@2 gy e @i ={Za ) o
. 8)\” 9 9 9 )\:)\f d>\n )\:)‘f
forn=0,1,...,m; —1, I =1,2,...,k. Clearly we have
(4.3) 0 (x,Aj) = ¢ (Aj) et (ac Aj) Ci=1,2,...,7,

(4.4) 0 (:c,A;) — dy (A;) e~ (a: A;) 1=1,2,....k

when n = 0. Therefore cq ()\j) # 0, do (Af) # 0. Therefore we can state
the following lemma

Theorem 4.1. The following equalities
n

(4.5) {%w(m’)\)}x_xj - :) <Z> i ()\j) {

v

L
e (:U,/\)}A_ﬁ,

forn=0,1, ,mj —1,¢=1,2,...,7 and

10 (e} =3 ()i (00) {Zee ),

l v=0
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forn =0,1,...,m; —1, I =1,2,..., k hold, where the constants c(f, cf, O
and d;,d7y,...,d, depend on )\;r and \;", respectively.

Proof. Using mathematical induction, we prove first (4.5). For n =
0, The proof is clear by (4.3). Now we suppose that (4.5) holds for 1 <
ng < mf — 2, i.e.

@D gme @} . 3 <n0> ctos () {55 (x,)\)}A_Aj.

v=0

Now we will show that (4.5) also holds for ng + 1. If U (z, A) is a solution
of the equation (1.1), then %U (x, \) satisfies the following equation:

n—1
(4.8) {Jd%+Q(x)—A} %U(az N %U@:,A),

where
| _ 0 a1 (z) _ [Ui(@N)
Writing (4.8) for ¢ (:U, )\f) and e™(z, \), then using (4.7), we get
{T£+Q@) =N} farr (w.0F) =0,

where

8n0+1

+) _
fﬁo+1($vAi> = {EﬁFBIT¢($’A)}A_Aj

no+1
o+ 1 o
B Z ( ) n0+17v ()\j_) {8}\Ue+ (.'L', )\)})\:)\+ .

i

therefore we have

ano —+1

wW |:fn0+1 (:U,)xj) et (ZL‘,)\:F)} = {WW[QO (z,\), et (J:,)\)} =0
A=A

i

by (4.1). Hence there exists a constant cno 11 (/\< ) such that
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fro+1 (m, )\j) = C:'L_0+1 (Aj) et (m, )\j)
which proves the theorem. Similarly we can prove that (4.6) holds.

Now we introduce the principal functions corresponding to the eigen-
values as follows:

871
{aﬁ”C“M}AA+’71:“1”vmf‘1’“:L2““$

871
x)\} , n=0,1,..m; —1,1=1,2,....k
{(9)\" ( ),\z,\; !

are called the principal functions corresponding to the eigenvalues A =
A, i=1,2,...,jand A = A s 1=1,2,.. kof L(\), respectively.

Therefore we arrive at the following result for the principal functions
given above:

Theorem 4.2. The principal functions corresponding to the eigenval-
ues of L () are in L? (R4, Cs), i.e
{ a;ngp( )\)}/\:A* € L2 (R+7 C2) )
n=01,..m7 —1,i=12,..7,

(4.10) {%@(")‘)},\:Al— € L* (R+,Cy),

n=0,1,..m —1,1=1,2, ..k

(4.9)

Proof. From (3.13) and (2.2) we obtain that

_et
{3>\ 1 },\

{88)\”62 (, )‘)} Aot

for n = 0,1,..,m; —11, i = 1,2,...,5 which gives (4.9) by using (4.5).
Equation (4.10) may be derived, by using (4.6) , analogously.

—ex
< cie ,

<xne—:clm>\l + coe™ ex

Definition 4.3.

Obviously we also have

{%W[@ (z,X), et (z, )\)}/\_/\i = {dd%éﬁ (/\)}A_Ai =0

forn=0,1,....m; — 1, i =1,2,...,p and
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LWl (z,N) e (,A) _ =140 (N) _ =0
A=), A=),

forn=0,1,....m —1, Il =p+1,p+2,...,q. Using the last two formulas
given above, in a similar way to Theorem 4.1 we get that

Remark 4.3. The formulas

(4.11) {88; z, } N —UZO( )C" oA {aaiveﬂw’)‘)}xzxi’

form=0,1,....m; — 1, 1 =1,2,...,p, and

(4.12) {38;1 }A N —;)( ) n—v (A1) {aa:ve_ (:U’)\)})\:Al?

forn =0,1,....my —1, I = p+ 1,p+ 2,...,q hold, where the constants
Co,C1y .-+ Cn
and dy, ds, ..., d, depend on \; and \;, respectively.

Now we introduce the principal functions corresponding to the spectral
singularities as follows:

{W (, A)} s =0l m =1 i = 1,2,

{&\n (, )\)})\7/\ , n=0,1,..m—1,1l=p+1,p+2,..,q
are called the prlncipfal functions corresponding to the spectral singularities
A=XNi=12..,pand A= XN 1l=p+1,p+2,..,qof L()\), respectively.
Therefore we arrive at the following

Lemma 4.4 The principal functions for the spectral singularities do not
belong to the space L? (R, C3), i.e: {%@ (., )\)}A_/\_ ¢ L2(R.,Cy),
_ _ ’ 2
for n = 0717"'7mi - 17 v = 172 - Dy {8)@90(' A)})\:)\l §‘é L (R+702)7
forn=0,1,...my—1,1l=p+1,p+2,...,q
The proof of the lemma is obtained from (2.2), (2.3), (4.11) and (4.12).

Now let us introduce the following Hilbert spaces [2]

H(R-HC?’m) = {f(x) : f($) = (;; Ei;>a

(2P {1 @) + 1o (@)} do < oo} ,
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m = 0,1, ... with norm

1 IR, oy = Zfo(l + 22 | f1 @) + | fo (2) 2} da

and

H(R+7 CQ? _m) = {g (.1‘) : g(.%‘) = (gl (z)>7

o
J a0 Iy @) +1g2 ()} do < oo},
0

m = 0,1, ... with norm

ol o = [ (1+2)" {lor (@) + g2 ()|*} o

Clearly H (R4, Cs,0) = L? (R4, Cy) and
H(R,, C2,m) L? (R4, Ca,) H (R, Co, —m) .

Therefore we reach to the following

Theorem 4.5.
an
(4.13) {W (.,)\)} € H(R.,Cs—(n+1)),
A=\

form=0,1,...m; — 1, :=1,2,...,p, and

(4.14) {% (.,)\)}A:A € H(R,,Cs,—(n+1))

forn=0,1,....my—1, l=p+1,p+2,....q.

Proof. From (2.2), we obtain that

(4.15) H%ef (:v,)\)}

o0
< /t" Hyo (2,1)| dt
A=\ e
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and
(4.16) '{%65 (@ )\)})\:)\i

forn=0,1,....,m; — 1, : = 1,2, ..., p. By the definition of
H(Ry,Cy,—(n+1))

and using (4.15) and (4.16) we arrive at (4.13). In a similar way, we can
show that (4.14) also holds.

Now let us choose ng so that

o
<24 /t” | (,1)] dt.

x

ng = max {mi, ..., Mp, Mp41, ..., Mg } -
Then
H (R, Ca,ng) % L*(R,,Cs,) ; H(R,,Cs,—ng).
From Theorem 4.5, we finally reach to the following

Conclusion 4.6. The principal functions for the spectral singularities
of the operator L (A) belong to the space H (R4, Ca, —ng), i.e.:

{(’?Tnngo (")\)}A:X € H(RJr’CQ?_nO)a

forn=0,1,....m; — 1, i =1,2,...,p and

{Fme (N}, € H Ry, Co )

forn=0,1,...m—1,l=p+1,p+2,..4q.
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