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Abstract

In this paper we investigated the spectrum of the operator L(λ) generated
in Hilbert Space of vector-valued functions L2 (R+,C2) by the system

iy
0
1 + q1 (x) y2 = λy1, −iy02 + q2 (x) y1 = λy2, x ∈R+ := [0,∞),(0.1)

and the spectral parameter- dependent boundary condition

(a1λ+ b1) y2 (0, λ)− (a2λ+ b2) y1 (0, λ) = 0,
where λ is a complex parameter, qi, i = 1, 2 are complex-valued functions

ai 6= 0, bi 6= 0, i = 1, 2 are complex constants. Under the condition
sup
x∈R+

{exp εx |qi (x)|} <∞, i = 1, 2, ε > 0,

we proved that L (λ) has a finite number of eigenvalues and spectral sin-
gularities with finite multiplicities. Furthermore we show that the prin-
cipal functions corresponding to eigenvalues of L (λ) belong to the space
L2 (R+, {C2) and the principal functions corresponding to spectral singular-
ities belong to a Hilbert space containing L2 (R+,C2) .
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1. Introduction

Let us consider the nonself-adjoint one dimensional Schrödinger operator L
generated in L2 (R+) by the differential expression

l(y) = −y00 + q (x) y, x ∈ R+

and the boundary condition y (0) = 0 as Ly = ly, where q is a complex-
valued function. The spectral analysis of L has been studied by Naimark
[7]. Naimark has proved that there are some poles of resolvent’s kernel
which are not the eigenvalues of the operator L. (Schwartz [8] named these
points as spectral singularities of L).Moreover Naimark has proved that
spectral singularities are on the continuous spectrum, he has also shown
that L has a finite number of eigenvalues and spectral singularities with
finite multiplicities if the condition

∞R
0
eεx |q (x)| dx <∞, ε > 0

holds. Lyance has obtained the role of the spectral singularities in the
spectral expansion of the operator L in terms of principal functions[6].

The properties of the eigenvalues and vector-valued eigenfunctions of a
boundary value problem for a one-dimensional Dirac system with a spectral
parameter in the boundary conditions has been investigated by Kerimov
[4].

We now consider the operator L (λ) generated in

L2 (R+,C2) :=

(
f (x) : f (x) =

¡f1(x)
f2(x)

¢
,
∞R
0

n
|f1 (x)|2 + |f2 (x)|2

o
dx <∞

)
by the system

iy01 + q1 (x) y2 = λy1,(1.1)

−iy02 + q2 (x) y1 = λy2, x ∈ R+
and the spectral parameter-dependent boundary condition

(a1λ+ b1) y2 (0, λ)− (a2λ+ b2) y1 (0, λ) = 0,(1.2)

where qi, i = 1, 2, are complex-valued functions, λ is the spectral parameter,

ai, bi are complex constants, bi 6= 0, i = 1, 2; moreover |a1|2 + |a2|2 6= 0.
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The spectrum of the operator generated by the system (1.1) with the
boundary condition y2 (0) − hy1 (0) = 0, (which is the special case of
(1.2) when ai = 0, b = 1) here h 6= 0 is a complex constant, has been
investigated in [5] and in [1].

In this paper, we discussed the spectrum of L (λ) defined by (1.1) and
(1.2) and proved that L (λ) has a finite number of eigenvalues and spectral
singularities with finite multiplicities under the conditions

|qi (x)| ≤ ce−εx <∞, i = 1, 2, ε > 0, c > 0

by using analytic continuation method ([7]). Finally we observe the prop-
erties of the principal functions corresponding to eigenvalues and spectral
singularities.

In the rest of the paper, we use the following notations:

C+ = {λ : λ ∈ C, Imλ > 0} , C− = {λ : λ ∈ C, Imλ < 0} ,
C+ = {λ : λ ∈ C, Imλ ≥ 0} , C− = {λ : λ ∈ C, Imλ ≤ 0} ,

σp (L (λ)) denotes the eigenvalues and σss (L (λ)) denotes the spectral sin-
gularities of L (λ) .

2. Preliminaries

Let us suppose that

|qi (x)| ≤ c (1 + x)−(1+ε) , i = 1, 2, x ∈ R+, ε > 0(2.1)

holds, where c > 0 is a constant.
The following results were given in [1] and in the first reference there

in.Under the conditions (2.1) , equation (1.1) has the following vector solu-
tions

e+ (x, λ) =

Ã
e+1 (x, λ)

e+2 (x, λ)

!
=

Ã ∞R
x
H12 (x, t) e

iλtdt

eiλx +
∞R
x
H22 (x, t) eiλtdt

!
(2.2)

for λ ∈ C+ and

e− (x, λ) =
Ã
e−1 (x, λ)
e−2 (x, λ)

!
=

Ãe−iλx + ∞R
x
H11 (x, t) e

−iλtdt
∞R
x
H21 (x, t) e−iλtdt

!
(2.3)
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for λ ∈ C−; moreover the kernels Hij (x, t) , i, j = 1, 2, satisfy the inequal-
ities

|Hij (x, t)| ≤ c
2X

k=1

¯̄̄̄
qk

µ
x+ t

2

¶¯̄̄̄
,(2.4)

where c > 0 is a constant. Therefore the functions e+i (x, λ) and e
−
i (x, λ) ,

i = 1, 2, are analytic with respect to λ in C+, C−, and continuous on C+
and C−, respectively. Moreover e+ and e− satisfy the following asymptotic
equalities ([1])

e+ (x, λ) =

Ã
0

eiλx

!
[1 + o (1)], λ ∈ C+ x→∞(2.5)

and

e− (x, λ) =
Ã
e−iλx

0

!
[1 + o (1)], λ ∈ C−, x→∞.(2.6)

From (2.5) and (2.6) we have

W
©
e+, e−

ª
= lim

x→∞W
©
e+ (x, λ) , e− (x, λ)

ª
= −1(2.7)

for λ ∈ R, whereW
n
y(1), y(2)

o
is the wronskian of the solutions of y(1) and

y(2) which is defined as W
n
y(1), y(2)

o
= y

(1)
1 y

(2)
2 − y

(2)
1 y

(1)
2 ,here y(i) =¡y(i)1

y
(i)
2

¢
, i = 1, 2. Therefore e+, e− are the fundamental system of solutions

of the system (1.1) for λ ∈ R.
Let ϕ (x, λ) be the solution of (1.1) satisfying the initial conditions

ϕ1 (0, λ) = a1λ+ b1, ϕ2 (0, λ) = a2λ+ b2.

Clearly the solution ϕ (x, λ) exists uniquely and is an entire function
of λ..

3. Eigenvalues and spectral singularities

Let us define

a+ (λ) = (a1λ+ b1) e
+
2 (0, λ)− (a2λ+ b2) e

+
1 (0, λ) = 0

a− (λ) = (a1λ+ b1) e
−
2 (0, λ)− (a2λ+ b2) e

−
1 (0, λ) = 0.(3.1)
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Let

R (x, t;λ) =

(
R+ (x, t;λ) , Imλ ≥ 0
R− (x, t;λ) , Imλ ≤ 0(3.2)

be Green’s function of L (λ) which is obtained by using classical methods,
here

R+ (x, t;λ) =
i

a+ (λ)

(
e+ (x, λ)ϕ∗ (t, λ) , 0 ≤ t ≤ x

ϕ (x, λ) (e+)∗ (t, λ) , x < t ≤ ∞(3.3)

and

R− (x, t;λ) =
i

a− (λ)

(
e− (x, λ)ϕ∗ (t, λ) , 0 ≤ t ≤ x

ϕ (x, λ) (e−)∗ (t, λ) , x < t ≤ ∞(3.4)

and (e±)∗ :=
³
e±2 , e

±
1

´
, ϕ∗ := (ϕ2, ϕ1) . Moreover from (2.5) and (2.6) we

have

e+ (x, λ) ∈ L2 (R+,C2)(3.5)

for λ ∈ C+ and
e− (x, λ) ∈ L2 (R+,C2)(3.6)

for λ ∈ C−.In this case we state the following

Lemma 3.1.

a) σp (L (λ)) = {λ : λ ∈ C+, a+ (λ) = 0} ∪ {λ : λ ∈ C−, a− (λ) = 0} ,
b) σss (L (λ))

= {λ : λ ∈ R\ {0} , a+ (λ) = 0} ∪ {λ : λ ∈ R\ {0} , a− (λ) = 0} .

Proof. a) It is clear that

{λ : λ ∈ C+, a+ (λ) = 0} ∪ {λ : λ ∈ C−, a− (λ) = 0} ⊂ σp (L (λ)) .

Now let us suppose that λ0 ∈ σp (L (λ)). If λ0 ∈ C+ then (1.1) has a
nontrivial solution y (x, λ0) in L2 (R+,C2) for λ = λ0 satisfying (1.2) .

Since W {y (x, λ0) , ϕ (x, λ0)} = 0 then there exists a constant c 6= 0
such that y (x, λ0) = cϕ (x, λ0) . Therefore

W {y (x, λ0) , e+ (x, λ0)}
= y1 (0, λ0) e

+
2 (0, λ0)− y2 (0, λ0) e

+
1 (0, λ0) = ca+ (λ0) .

(3.7)

Moreover we find from (3.5) that
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W {y (x, λ0) , e+ (x, λ0)}
= limx→∞

n
y1 (x, λ0) e

+
2 (x, λ0)− y2 (x, λ0) e

+
1 (x, λ0)

o
= 0

(3.8)

So we obtain from (3.7) and (3.8) that a+ (λ0) = 0.

If λ0 ∈ C− then we prove that a− (λ0) = 0 similarly.
If λ0 ∈ R, then the general solution of (1.1) is
y(x, λ0) = c1e

+ (x, λ0) + c2e
− (x, λ0)

for λ = λ0. From (2.5) and (2.6) we have

y(x, λ0) =
¡c2e−iλ0x
c1eiλ0x

¢
(1 + o (1))

as x → ∞. Therefore y (x, λ0) /∈ L2 (R+,C2) . Hence σp (L (λ)) ∩R=, so
(a) follows.

b) Spectral singularities which are not the eigenvalues of L (λ) , are the
poles of the resolvent’s kernel. From (3.1) − (3.4) and (a) , we can say
that the spectral singularities of L (λ) are the real zeros of a+ and a−. So
(b) follows.

Furthermore

W{e+ (x, λ) , e− (x, λ)} = e+1 (0, λ) e
−
2 (0, λ)− e+2 (0, λ) e

−
1 (0, λ) = −1

for λ ∈ R. Therefore we have©
λ : λ ∈ R, a+ (λ) = 0ª ∩ ©λ : λ ∈ R, a− (λ) = 0ª = φ(3.9)

Now as we see from Lemma 3.1 that to investigate the properties of the
eigenvalues and the spectral singularities of L (λ) , we need to investigate
the properties of the zeros of a+ and a− in C+, C−, respectively. For
simplicity, we will consider only the zeros of a+ in C+. In this point of view
let us define the sets Z+ = {λ : λ ∈ C+, a+ (λ) = 0},
Z = {λ : λ ∈ R, a+ (λ) = 0} .

Lemma 3.2. (a) The set Z+ is bounded and has at most a count-
able number of elements, and its limit points can lie only in a bounded
subinterval of the real axis.

(b) Z is a compact set.
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Proof. From (2.2) we get that a+ (λ) is analytic in C+ and satisfies

a+ (λ) = a1λ+ b1+∞R
0
{(a1λ+ b1)H22 (0, t)− (a2λ+ b2)H12 (0, t)} eiλtdt.(3.10)

From (3.10) we get

a+ (λ) = λ

Ã
a1 +

∞R
0
{a1H22 (0, t)− a2H12 (0, t)} eiλtdt

!
+O (1)

(3.11)

for λ ∈ C+, |λ|→∞. From (3.11) we find that the zeros of a+ must lie in
a bounded domain. Since a+ is analytic in C+ then these zeros are at most
countable numbers. From the uniqueness of analytic functions the limit
points of Z+ can lie only in a bounded subinterval of the real axis. So (a)
follows. (b) is obtained from the uniqueness theorem of analytic functions
[3]

From Lemma 3.1 and Lemma 3.2 we have

Theorem 3.3. If the conditions (2.1) hold, then the set of eigenvalues
and spectral singularities of L (λ) are bounded, countable and their limit
points can lie only in a bounded subinterval of the real axis.

Definition 3.4. The multiplicity of a zero of a+ (or a−) in C+
³
or C−

´
is defined as the multiplicity of the corresponding eigenvalue or spectral

singularity of L (λ) .

Let us suppose that

|qi (x)| ≤ ce−εx, c > 0, ε > 0, i = 1, 2(3.12)

hold. From (2.4) we obtain that

|Hij (x, t)| ≤ c exp

½−ε
2
(x+ t)

¾
.(3.13)

From (3.10) and (3.13) , a+ has an analytic continuation from the real axis

to the half plane Imλ > −ε
2
. So the limit points of the sets Z+ and Z cannot

lie in R i.e. the sets Z+ and Z have no limit points. Therefore the number
of zeros of a+ in C+ are finite with finite multiplicities. Similarly we can
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show that a− has a finite number of zeros with finite multiplicities inC−.So
we have proved the following

Theorem 3.5. The operator L (λ) has a finite number of eigenvalues
and spectral singularities, and each of them is of finite multiplicity if the
conditions (3.12) hold.

4. Principal functions

Assume that (3.12) holds. Let λ+1 , ..., λ
+
j and λ−1 , ..., λ

−
k denote the zeros

of a+ in C+ and a− in C− with multiplicities m+
1 , ...,m

+
j and m−1 , ...,m

−
k ,

respectively. Similarly, let λ1, ..., λp and λp+1, ..., λq denote the zeros of
a+ and a− on the real axis with multiplicities m1, ...,mp and mp+1, ...,mq,
respectively. In this case we have½

∂n

∂λn
W [ϕ (x, λ) , e+ (x, λ)]

¾
λ=λ+i

=

½
dn

dλn
a+ (λ)

¾
λ=λ+i

= 0(4.1)

for n = 0, 1, ...,m+
i − 1, i = 1, 2, ..., j, and½

∂n

∂λn
W [ϕ (x, λ) , e− (x, λ)]

¾
λ=λ−l

=

½
dn

dλn
a− (λ)

¾
λ=λ−l

= 0(4.2)

for n = 0, 1, ...,m−l − 1, l = 1, 2, ..., k. Clearly we have

ϕ
³
x, λ+i

´
= c0

³
λ+i

´
e+
³
x, λ+i

´
, i = 1, 2, ..., j,(4.3)

ϕ
³
x, λ−l

´
= d0

³
λ−l
´
e−
³
x, λ−l

´
, l = 1, 2, ..., k,(4.4)

when n = 0. Therefore c0
³
λ+i

´
6= 0, d0

³
λ−l
´
6= 0. Therefore we can state

the following lemma

Theorem 4.1. The following equalities½
∂n

∂λn
ϕ (x, λ)

¾
λ=λ+i

=
nX

v=0

Ã
n

v

!
c+n−v

³
λ+i

´½ ∂v

∂λv
e+ (x, λ)

¾
λ=λ+i

,(4.5)

for n = 0, 1, ...,m+
i − 1, i = 1, 2, ..., j and½

∂n

∂λn
ϕ (x, λ)

¾
λ=λ−l

=
nX

v=0

Ã
n

v

!
d−n−v

³
λ−l
´½ ∂v

∂λv
e− (x, λ)

¾
λ=λ−l

(4.6)
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for n = 0, 1, ...,m−l −1, l = 1, 2, ..., k hold, where the constants c+0 , c+1 , ..., c+n
and d−0 , d

−
1 , ..., d

−
n depend on λ+i and λ

−
l , respectively.

Proof. Using mathematical induction, we prove first (4.5). For n =
0, The proof is clear by (4.3). Now we suppose that (4.5) holds for 1 ≤
n0 ≤ m+

i − 2, i.e.½
∂n0

∂λn0
ϕ (x, λ)

¾
λ=λ+i

=
n0X
v=0

Ã
n0
v

!
c+n0−v

³
λ+i

´½ ∂v

∂λv
e+ (x, λ)

¾
λ=λ+i

.(4.7)

Now we will show that (4.5) also holds for n0 + 1. If U (x, λ) is a solution
of the equation (1.1), then ∂n

∂λnU (x, λ) satisfies the following equation:½
J
d

dx
+Q (x)− λ

¾
∂n

∂λn
U (x, λ) = n

∂n−1

∂λn−1
U (x, λ) ,(4.8)

where

J=

"
i 0
0 −i

#
, Q (x) =

"
0 q1 (x)

q2 (x) 0

#
, U (x, λ) =

£U1(x,λ)
U2(x,λ)

¤
.

Writing (4.8) for ϕ
³
x, λ+i

´
and e+(x, λ+i ), then using (4.7), we getn

J d
dx +Q (x)− λ+i

o
fn0+1

³
x, λ+i

´
= 0,

where

fn0+1
³
x, λ+i

´
=

(
∂n0+1

∂λn0+1
ϕ (x, λ)

)
λ=λ+i

−
n0+1X
v=1

Ã
n0 + 1

v

!
c+n0+1−v

³
λ+i

´½ ∂v

∂λv
e+ (x, λ)

¾
λ=λ+i

.

therefore we have

W
h
fn0+1

³
x, λ+i

´
, e+

³
x, λ+i

´i
=

(
∂n0+1

∂λn0+1
W [ϕ (x, λ) , e+ (x, λ)

)
λ=λ+i

= 0

by (4.1). Hence there exists a constant c+n0+1

³
λ+i

´
such that
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fn0+1
³
x, λ+i

´
= c+n0+1

³
λ+i

´
e+
³
x, λ+i

´
which proves the theorem. Similarly we can prove that (4.6) holds.

Now we introduce the principal functions corresponding to the eigen-
values as follows:½

∂n

∂λn
ϕ (x, λ)

¾
λ=λ+i

, n = 0, 1, ...,m+
i − 1, i = 1, 2, ..., j,½

∂n

∂λn
ϕ (x, λ)

¾
λ=λ−l

, n = 0, 1, ...,m−l − 1, l = 1, 2, ..., k

are called the principal functions corresponding to the eigenvalues λ =
λ+i , i = 1, 2, ..., j and λ = λ−l , l = 1, 2, ..., k of L (λ) , respectively.

Therefore we arrive at the following result for the principal functions
given above:

Theorem 4.2. The principal functions corresponding to the eigenval-
ues of L (λ) are in L2 (R+,C2) , i.e.:n

∂n

∂λnϕ (., λ)
o
λ=λ+i

∈ L2 (R+,C2) ,

n = 0, 1, ...,m+
i − 1, i = 1, 2, ..., j,

(4.9)

n
∂n

∂λnϕ (., λ)
o
λ=λ−l

∈ L2 (R+,C2) ,

n = 0, 1, ...,m−l − 1, l = 1, 2, ..., k.
(4.10)

Proof. From (3.13) and (2.2) we obtain that¯̄̄̄n
∂n

∂λn e
+
1 (x, λ)

o
λ=λ+i

¯̄̄̄
≤ c1e

−εx,¯̄̄̄n
∂n

∂λn e
+
2 (x, λ)

o
λ=λ+i

¯̄̄̄
≤ xne−x Imλ+i + c2e

−εx

for n = 0, 1, ...,m+
i − 1, i = 1, 2, ..., j which gives (4.9) by using (4.5).

Equation (4.10) may be derived, by using (4.6) , analogously.

Definition 4.3.

Obviously we also have½
∂n

∂λn
W [ϕ (x, λ) , e+ (x, λ)

¾
λ=λi

=

½
dn

dλn
a+ (λ)

¾
λ=λi

= 0

for n = 0, 1, ...,mi − 1, i = 1, 2, ..., p and
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n
∂n

∂λnW [ϕ (x, λ) , e− (x, λ)
o
λ=λl

=
n

dn

dλna
− (λ)

o
λ=λl

= 0

for n = 0, 1, ...,ml − 1, l = p + 1, p + 2, ..., q. Using the last two formulas
given above, in a similar way to Theorem 4.1 we get that

Remark 4.3. The formulas½
∂n

∂λn
ϕ (x, λ)

¾
λ=λi

=
nX

v=0

Ã
n

v

!
cn−v (λi)

½
∂v

∂λv
e+ (x, λ)

¾
λ=λi

,(4.11)

for n = 0, 1, ...,mi − 1, i = 1, 2, ..., p, and½
∂n

∂λn
ϕ (x, λ)

¾
λ=λl

=
nX

v=0

Ã
n

v

!
dn−v (λl)

½
∂v

∂λv
e− (x, λ)

¾
λ=λl

,(4.12)

for n = 0, 1, ...,ml − 1, l = p + 1, p + 2, ..., q hold, where the constants
c0, c1, ..., cn
and d0, d1, ..., dn depend on λi and λl, respectively.

Now we introduce the principal functions corresponding to the spectral
singularities as follows:n

∂n

∂λnϕ (x, λ)
o
λ=λi

, n = 0, 1, ...,mi − 1, i = 1, 2, ..., p,n
∂n

∂λnϕ (x, λ)
o
λ=λl

, n = 0, 1, ...,ml − 1, l = p+ 1, p+ 2, ..., q

are called the principal functions corresponding to the spectral singularities
λ = λi i = 1, 2, ..., p and λ = λl l = p+ 1, p+ 2, ..., q of L (λ) , respectively.
Therefore we arrive at the following

Lemma 4.4 The principal functions for the spectral singularities do not

belong to the space L2 (R+,C2) , i.e:
n

∂n

∂λnϕ (., λ)
o
λ=λi

/∈ L2 (R+,C2) ,

for n = 0, 1, ...,mi − 1, i = 1, 2, ..., p,
n

∂n

∂λnϕ (., λ)
o
λ=λl

/∈ L2 (R+,C2) ,

for n = 0, 1, ...,ml − 1, l = p+ 1, p+ 2, ..., q.

The proof of the lemma is obtained from (2.2), (2.3), (4.11) and (4.12).

Now let us introduce the following Hilbert spaces [2]

H (R+,C2,m) : =

(
f (x) : f (x) =

Ã
f1 (x)

f2 (x)

!
,

∞Z
0

(1 + x)2m
n
|f1 (x)|2 + |f2 (x)|2

o
dx <∞

 ,
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m = 0, 1, ... with norm

kfk2H(R+,C2,m)
=
∞R
0
(1 + x)2m

n
|f1 (x)|2 + |f2 (x)|2

o
dx

and

H (R+,C2,−m) : =

(
g (x) : g (x) =

Ã
g1 (x)

g2 (x)

!
,

∞Z
0

(1 + x)−2m
n
|g1 (x)|2 + |g2 (x)|2

o
dx <∞

 ,

m = 0, 1, ... with norm

kgk2H(R+,C2,−m) =
∞R
0
(1 + x)−2m

n
|g1 (x)|2 + |g2 (x)|2

o
dx.

Clearly H (R+,C2, 0) = L2 (R+,C2) and

H(R+,C2,m)L
2 (R+,C2, )H (R+,C2,−m) .

Therefore we reach to the following

Theorem 4.5.½
∂n

∂λn
ϕ (., λ)

¾
λ=λi

∈ H (R+,C2,− (n+ 1)) ,(4.13)

for n = 0, 1, ...,mi − 1, i = 1, 2, ..., p, and½
∂n

∂λn
ϕ (., λ)

¾
λ=λl

∈ H (R+,C2,− (n+ 1))(4.14)

for n = 0, 1, ...,ml − 1, l = p+ 1, p+ 2, ..., q.

Proof. From (2.2), we obtain that¯̄̄̄
¯
½

∂n

∂λn
e+1 (x, λ)

¾
λ=λi

¯̄̄̄
¯ ≤

∞Z
x

tn |H12 (x, t)| dt(4.15)
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and ¯̄̄̄
¯
½

∂n

∂λn
e+2 (x, λ)

¾
λ=λi

¯̄̄̄
¯ ≤ xn +

∞Z
x

tn |H22 (x, t)| dt.(4.16)

for n = 0, 1, ...,mi − 1, i = 1, 2, ..., p. By the definition of
H (R+,C2,− (n+ 1))
and using (4.15) and (4.16) we arrive at (4.13). In a similar way, we can
show that (4.14) also holds.

Now let us choose n0 so that

n0 = max {m1, ...,mp,mp+1, ...,mq} .

Then

H (R+,C2, n0) ⊂6= L2 (R+,C2, ) ⊂6= H (R+,C2,−n0) .

From Theorem 4.5, we finally reach to the following

Conclusion 4.6. The principal functions for the spectral singularities
of the operator L (λ) belong to the space H (R+,C2,−n0), i.e.:n

∂n

∂λnϕ (., λ)
o
λ=λi

∈ H (R+,C2,−n0) ,

for n = 0, 1, ...,mi − 1, i = 1, 2, ..., p andn
∂n

∂λnϕ (., λ)
o
λ=λl

∈ H (R+,C2,−n0)

for n = 0, 1, ...,ml − 1, l = p+ 1, p+ 2, ..., q.
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