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Abstract

In this note we obtain several characterizations of Asplund spaces
by means of ideals of Pietsch integral and nuclear polynomials, ex-
tending previous results of R. Alencar and R. Cilia-J. Gutiérrez.
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Introduction

A Banach space E is an Asplund space if every separable subspace of E
has a separable dual. Let PPI(nE;F ) (resp. PN (nE;F )) denote the space
of Pietsch integral (resp. nuclear) n-homogeneous polynomials from E to
F (see definitions below). For linear operators (n = 1) we write PI(E;F )
and N(E;F ). The inclusion PN(nE;F ) ⊆ PPI(nE;F ) holds true for every
E, F and n. The following results are due to R. Alencar:

Theorem 1. [1, Theorem 1.3] A Banach space E is an Asplund space if
and only if PI(E;F ) = N(E;F ) for every Banach space F .

Theorem 2. [2, Proposition 1] Let E be a Banach space and n ∈ N. If
E is an Asplund space, then PPI(nE;F ) = PN(nE;F ) for every Banach
space F .

Improvements of Theorem 2 were proved by C. Boyd-R. Ryan [4] and
D. Carando-V. Dimant [5]. Recently, R. Cilia-J. Gutiérrez [6, Theorem 6]
proved the converse of Theorem 2. This note has a twofold purpose: to
give a simpler non-tensorial proof of this result of [6] and to extend this
characterization of Asplund spaces to other ideals of polynomials which are
related to Pietsch integral and nuclear operators.

Preliminaries

Throughout this note E,E1, . . . , En and F are real or complex Banach
spaces, BE denotes the closed unit ball of E and N denotes the set of nat-
ural numbers. The Banach spaces of continuous n-linear mappings from
E1×· · ·×En into F and of continuous n-homogeneous polynomials from E
into F with the sup norm will be denoted by L(E1, . . . , En;F ) (L(nE;F )
if E1 = · · · = En = E) and P(nE;F ), respectively. If A ∈ L(nE;F ) and P
is the polynomial generated by A we write P = Â. Conversely, we write P̌
for the (unique) symmetric n-linear mapping associated to the polynomial
P . For the general theory of multilinear mappings and homogeneous poly-
nomials the reader is referred to S. Dineen [8].

A polynomial P ∈ P(nE;F ) is nuclear, resp. Pietsch integral, if it can
be written as

P (x) =
∞X
i=1

ϕi(x)
nyi for every x ∈ E,
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where (ϕi) ⊂ E0 and (yi) ⊂ F are such that
P∞

i=1 kϕiknkyik <∞,

resp. P (x) =

Z
BE0

ϕ(x)ndµ(ϕ), for every x ∈ E,

where µ is an F -valued regular countably additive Borel measure of bounded
variation on BE0 with the weak-star topology. The notation for the spaces
of such polynomials was established in the introduction. Mutatis mutandis,
one defines Pietsch integral and nuclear n-linear mappings.

According to [3], an n-linear mapping A ∈ L(E1, . . . , En;F ) is said to
be semi-integral if there exist C ≥ 0 and a regular probability measure ν on
the Borel sets of BE1

0 × · · · ×BEn
0 endowed with the weak-star topologies

σ(Ej
0, Ej), j = 1, . . . , n, such that

kA(x1, . . . , xn)k ≤ C (
Z
BE1

0×···×BEn0
|ϕ1(x1) · · ·ϕn(xn)|dν(ϕ1, . . . , ϕn)),

for every xj ∈ Ej , j = 1, . . . , n.

Now we describe two methods, introduced by A. Pietsch [9], for the
generation of ideals of polynomials from a given operator ideal. For i =

1, . . . , n, let Ψ
(n)
i : L(E1, . . . , En;F ) → L(Ei;L(E1, [i]. . ., En;F ) represent

the canonical isometric isomorphism defined by Ψ
(n)
i (A)(xi)(x1,

[i]. . ., xn) :=

A(x1, . . . , xn), where the notation
[i]. . . means that the i-th coordinate is not

involved. Let I be an arbitrary operator ideal.

• The factorization method: a polynomial P ∈ P(nE;F ) is of type PL(I)
- P ∈ PL(I)(nE;F ) - if there exist a Banach space G, a linear operator
u ∈ I(E;G) and a polynomial Q ∈ P(nG;F ) such that P = Q ◦ u.

• The linearization method: a multilinear mapping A ∈ L(E1, . . . , En;F )

is of type [I] if Ψ(n)i (A) ∈ I(Ei;L(E1, [i]. . ., En;F )) for every i = 1, . . . , n. A
polynomial P ∈ P(nE;F ) is of type [I] - P ∈ P[I](nE;F ) - if P̌ is of type [I].

Results

First we give an alternative simpler proof of [6, Theorem 6].
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Theorem 3. Let E be a Banach space. If PPI(nE;F ) = PN(nE;F ) for
every Banach space F and some n ∈N, then E is an Asplund space.

Proof. In view of Theorem 1 it suffices to show that PI(E;F ) ⊆ N(E;F )
for every F . Let u ∈ PI(E;F ). By [7, Theorem VI.3.11] there exist a
regular Borel measure µ on BE0 with the weak-star topology and a linear
operator v : L1(µ) → F such that u = v ◦ j ◦ i, where i : E → C(BE0)
is the canonical injection and j : C(BE0) → L1(µ) is the formal inclusion.
Fix 0 6= a ∈ E and choose a linear functional ϕ on C(BE0) such that
ϕ(i(a)) = 1. Define R ∈ L(nC(BE0);L1(µ)) by

R(f1, . . . , fn) :=
1

n

nX
k=1

(j(fk)
nY

m=1,m6=k
ϕ(fm)).

It is easy to see that R is semi-integral (use, e.g., the fact that j is absolutely
summing). From a result due to R. Alencar-M. Matos [3, Theorem 5.6],
it follows that R is Pietsch integral. By [2, Proposition 2], R̂ is Pietsch
integral, and consequently nuclear, by hypothesis. Now define a polynomial
P := (v ◦ R̂ ◦ i) ∈ P(nE;F ) and a linear operator S : E → F by S(x) =
P̌ (x, a, . . . , a). Then S is nuclear (R̂ nuclear ⇒ P nuclear ⇒ S nuclear).
From

P̌ (x1, . . . , xn) =
1

n

nX
k=1

(u(xk)
nY

m=1,m6=k
ϕ(i(xm))),

for every x1, . . . , xn ∈ E, we obtain

S(x) =
1

n
u(x) +

n− 1
n

(ϕ ◦ i)(x)u(a),

for every x ∈ E. But S is nuclear and (ϕ◦i)(·)u(a) is a finite rank operator,
so we conclude that u is nuclear, what completes the proof. 2

Theorem 4. For a Banach space E and operator ideals I1 and I2, the
following assertions are equivalent:

(i) I1(E;F ) ⊆ I2(E;F ) for every Banach space F .
(ii) PL(I1)(nE;F ) ⊆ PL(I2)(nE;F ) for every F and every n ∈N.
(iii) PL(I1)(nE;F ) ⊆ PL(I2)(nE;F ) for every F and some n ∈ N.
(iv) P[I1](nE;F ) ⊆ P[I2](nE;F ) for every F and every n ∈N.
(v) P[I1](nE;F ) ⊆ P[I2](nE;F ) for every F and some n ∈ N.
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Proof. (ii) ⇒ (iii) and (iv) ⇒ (v) are obvious.

(i) ⇒ (ii) and (i) ⇒ (iv): Let P ∈ PL(I1)(nE;F ) (resp. P ∈ P[I1](nE;F )).
Then P = Q ◦ u with u ∈ I1(E;G) ⊆ I2(E;G) (resp. Ψ

(n)
i (P̌ ) ∈

I1(E;L(n−1E;F )) ⊆ I2(E;L(n−1E;F ))), hence P ∈ PL(I2)(nE;F ) (resp.
P ∈ P[I2](nE;F )).
(iii)⇒ (i): Assume that PL(I1)(nE;F ) ⊆ PL(I2)(nE;F ) for every F and let
u ∈ I1(E;F ), u 6= 0. Choosing ϕ ∈ F 0, ϕ 6= 0, a ∈ E such that u(a) 6= 0
and ϕ(u(a)) = 1, and defining P ∈ P(nE;F ), Q ∈ P(nF ;F ) by

P (x) := ϕ(u(x))n−1u(x); Q(y) := ϕ(y)n−1y,

we have that P = Q ◦ u. Therefore P ∈ PL(I1)(nE;F ) ⊆ PL(I2)(nE;F ).
Thus there exist a Banach space G, R ∈ P(nG;F ) and v ∈ I2(E;G) so that
P = R ◦ v. For every x ∈ E, P̌ (x, a, . . . , a) = (Ř(·, v(a), . . . , v(a)) ◦ v)(x),
hence P̌ (·, a, . . . , a) ∈ I2(E;F ). From P̌ = Q̌ ◦ (u, . . . , u) we have that

P̌ (·, a, . . . , a) = 1

n
u(·) + n− 1

n
ϕ(u(·))u(a).

Since P̌ (·, a, . . . , a) ∈ I2(E;F ) and ϕ(u(·))u(a) is a finite rank operator, we
conclude that u ∈ I2(E;F ).
(v) ⇒ (i): Assume that P[I1](nE;F ) ⊆ P[I2](nE;F ) for every F and let
u ∈ I1(E;F ), u 6= 0. Fixing 0 6= a ∈ E, choosing ϕ ∈ E0 such that
ϕ(a) = 1 and defining P ∈ P(nE;F ) by P (x) := ϕ(x)n−1u(x) we have that

nΨ
(n)
1 (P̌ )(x1)(x2, . . . , xn) = ϕ(x2) · · ·ϕ(xn)u(x1)+· · ·+ϕ(x1) · · ·ϕ(xn−1)u(xn),

for every x1, . . . , xn ∈ E. Defining R : E → L(n−1E;F ), S : F →
L(n−1E;F ) by

R(x1)(x2, . . . , xn) :=
1

n
ϕ(x2) · · ·ϕ(xn)u(x1),

S(y1)(x2, . . . , xn) :=
1

n
ϕ(x2) · · ·ϕ(xn)y1,

and T : E → L(n−1E;F ) by T (x1)(x2, . . . , xn) :=
1

n
ϕ(x1)ϕ(x3) · · ·ϕ(xn)u(x2) + · · ·+ 1

n
ϕ(x1)ϕ(x2) · · ·ϕ(xn−1)u(xn),

it follows that R = S ◦ u, hence R ∈ I1(E;L(n−1E;F )), and that T is a

finite rank operator. Since Ψ
(n)
1 (P̌ ) = R+T we have that Ψ

(n)
1 (P̌ ) belongs
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to I1. So, P ∈ P[I1](nE;F ) ⊆ P[I2](nE;F ), and therefore Ψ(n)1 (P̌ ) belongs
to I2. Now let us define J : L(n−1E;F )) → F by J(A) := A(a, . . . , a) to
obtain

(J ◦Ψ(n)1 (P̌ ))(x) = 1

n
u(x) +

n− 1
n

ϕ(x)u(a) for every x ∈ E.

But J ◦Ψ(n)1 (P̌ ) ∈ I2(E;F ) and ϕ(·)u(a) has finite rank, so u ∈ I2(E;F ). 2
Combining Theorems 1, 2, 3 and 4 we obtain the announced character-

izations of Asplund spaces.

Theorem 5. For a Banach space E, the following assertions are equivalent:

(i) E is an Asplund space.

(ii) For all n ∈ N and every F , we have PL(PI)(nE;F ) = PL(N)(nE;F ).
(iii) There is n ∈ N such that PL(PI)(nE;F ) = PL(N)(nE;F ) for every F .

(iv) For all n ∈ N and every F , we have P[PI](nE;F ) = P[N ](nE;F ).
(v) There is n ∈N such that P[PI](nE;F ) = P[N ](nE;F ) for every F .
(vi) For all n ∈ N and every F , we have PPI(nE;F ) = PN (nE;F ).
(vii) There is n ∈N such that PPI(nE;F ) = PN (nE;F ) for every F .

The same techniques can be used to prove the following additional char-
acterizations:

Theorem 6. For a Banach space E, the following assertions are equivalent:

(i) E is an Asplund space.

(ii) For all n ∈ N and every F , we have PL(PI)(nE;F ) ⊆ P[N ](nE;F ).
(iii) There is n ∈ N such that PL(PI)(nE;F ) ⊆ P[N ](nE;F ) for every F .
(iv) For all n ∈ N and every F , we have PL(PI)(nE;F ) ⊆ PN (nE;F ).
(v) There is n ∈N such that PL(PI)(nE;F ) ⊆ PN(nE;F ) for every F .
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