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Abstract
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topological spaces by means of open B,—cover. It is a generalization
of Lowen’s strong compactness, but it is different from Wang’s strong
compactness. Ultra-compactness implies Sg—compactness. Sg—compactness
implies fuzzy compactness. But in general N-compactness and Wang’s
strong compactness need not imply Sz—compactness.
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1. Introduction

The concept of compactness in [0, 1]-set theory was first introduced by C.L.
Chang in terms of open cover [1]. Goguen was the first to point out a defi-
ciency in Chang’s compactness theory by showing that the Tychonoff Theo-
rem is false [5]. Since Chang’s compactness has some limitations, Gantner,
Steinlage and Warren introduced a—compactness [3], Lowen introduced
fuzzy compactness, strong compactness and ultra-compactness [10, 11],
Liu introduced Q-compactness [8], Li introduced strong Q-compactness [7]
which is equivalent to strong fuzzy compactness in [11], and Wang and Zhao
introduced N-compactness [16, 18]. In 1988, fuzzy compactness, strong
compactness and ultra-compactness were generalized to general L-fuzzy
subset by Wang in [17] (These can also be seen in [9]).

Recently in [14] Shi introduced a new notion of fuzzy compactness by
means of fB;—cover and (),—cover, which is called S*-compactness. For
an L-topological space, Ultra compactness implies S*-compactness and S*-
compactness implies fuzzy compactness in the sense of [17]. When L =
[0, 1], strong compactness implies S*-compactness. But when L # [0, 1],
we don’t know whether N-compactness and strong compactness imply S*-
compactness.

In this paper, we shall present a new definition of fuzzy compactness in
L-topological spaces by means of 3, —cover, which is called Sg—compactness.
Sg—compactness is a generalization of strong compactness in [11], but it
is different from Wang’s strong compactness in [9, 17]. Ultra-compactness
implies Sg—compactness. Sg—compactness implies S*-compactness, hence
it implies fuzzy compactness. But in general N-compactness and Wang’s
strong compactness need not imply Sg—compactness.

2. Preliminaries

Throughout this paper (L,\/, \,’) is a completely distributive de Mor-
gan algebra, X is a nonempty set, LX is the set of all L-fuzzy sets on X.
The smallest element and the largest element in L¥ are denoted respec-
tively by 0 and 1. An L-fuzzy set is briefly written as an L-set. We often
don’t differ a crisp subset A of X and its character function x 4.

An element ¢ in L is said to be prime if ¢ > b A ¢ implies a > b or
a > c¢. An element a in L is said to be co-prime if o’ is prime [4]. The
set of nonunit prime elements in L is denoted by P(L). The set of nonzero
co-prime elements in L is denoted by M (L). The set of nonzero co-prime
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elements in LX is denoted by M (L¥X).

The binary relation < in L is defined as follows: for a,b € L, a < b if
and only if for every subset D C L, the relation b < sup D always implies
the existence of d € D with a < d [2]. In a completely distributive de
Morgan algebra L, each member b is a sup of {a € L | a < b}. In the
sense of [9, 17], {a € L | a < b} is called the greatest minimal family of b,
in symbol 3(b). Moreover for b € L, define a(b) = {a € L | a’ < b/} and
a*(b) = a(b) N P(L).

For a € L and A € L¥, we use the following notations in [13].

AM ={ze X | A(z) > a}, Agag ={ze X |acp(A(x))},
Al ={re X |ad a(A(z))}, AY={reX | A(z) £a}.

An L-topological space (or L-space for short) is a pair (X, 7 ), where 7
is a subfamily of LX which contains 0, 1 and is closed for any suprema and
finite infima. 7 is called an L-topology on X. Members of 7 are called
open L-sets and their complements are called closed L-sets.

Definition 2.1 ([9, 17]). For a topological space (X, ), let wr(7) denote
the family of all lower semi-continuous maps from (X, 7) to L, i.e., wr(T) =
{AecLX| A% ¢ r.aec L}. Then wr(r) is an L-topology on X, in this
case, (X,wr (7)) is called topologically generated by (X, T).

Definition 2.2 ([9, 17]). An L-space (X,T) is called weak induced if
Va € L, VA € T, it follows that A € [T], where [T] denotes the topology
formed by all crisp sets in T .

Lemma 2.3 ([14]). Let (X,T) be a weakly induced L-space, a € L, A € T.
Then A(q) is an open set in [T].

Definition 2.4 ([9, 17]). An L-space (X,7T) is called ultra-compact if
(T is compact, where 1,(T) is the topology generated by {A® | A €
T,a€L}.

In [16], Wang introduced the notion of N-compactness in [0,1]-topological
spaces by means of a-nets. Zhao [18] generalized the notion of N-compactness
to L-fuzzy set theory in terms of a—R-neighborhood family and a~—R-
neighborhood family as follows:
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Definition 2.5 ([18]). Let (X,7) be an L-space, a € M (L) and G € LX.
A family P C T’ is called an a—R-neighborhood family of G if for any
x € X with G(z) > a, there exists a B € P such that B(x) # a. P is called
an a~ —R-neighborhood family of G if there exists b € *(a) such that P is
b—R-neighborhood family of G.

It is obvious that P is an a—R-neighborhood family of G if and only if
P’ is an open a—Q-cover of G in [9].

Definition 2.6 ([18]). Let (X,T) be an L-space, A € LX. A is called
N-compact if for every a € M(L), every a—R-neighborhood family of G
has a finite subfamily which is an o~ —R-neighborhood family of G.

Definition 2.7 ([15]). A net S with index set D is also denoted by
{S(n) | n € D} or {S(n)}nep. For G € LX, anet S is said to quasi-coincide
with G if Vn € D,S(n) £ G'.

Definition 2.8 ([9, 17]). Let (X,T) be an L-space, G € LX. G is called
strongly compact if for every a € M (L), every constant a—net in G has a
cluster point in G with height a.

Definition 2.9. Let (X,7) be an L-space, a € L\{1} and G € LX. A
subfamily U of L is said to be an a—shading of G if for any x € X with
G(zx) > d/, there exists an A € U such that A(z) £ a.

The notion of a—shading in Definition 2.9 is a generalization of the
corresponding notion in [6, 17].

Theorem 2.10 ([17]). Let (X,7) be an L-space, G € LX. Then G is
strongly compact if and only if for every a € P(L), every open a—shading
of G has a finite subfamily which is an a—shading of G.

Definition 2.11 ([14]). Let (X,7) be an L-space, a € M(L) and G €
LX. A subfamily U of LX is called a B,—cover of G if for any © € X, it

follows that a € (3 (G’(w) VARV, A(:p)) :
AelU
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Definition 2.12. Let (X,7) be an L-space, a € L\{0} and G € LX.
A subfamily U of LX is called a Q,—cover of G if for any x € X with
G(z) £ d, it follows that \/ A(z) > a.
AcU
It is obvious that for a € M (L), the notion of @,—cover in Definition
2.12 is a generalization of ),—open cover in [15].

Definition 2.13 ([9, 17]). Let (X,7) be an L-space, G € LX. G is called
fuzzy compact if for any a € M(L) and for any b € *(a), every constant
a—net in G has a cluster point in G with height b.

Theorem 2.14 ([15]). Let (X,T) be an L-space, G € LX. Then G is
fuzzy compact if and only if for all a € M(L), for all b € $*(a), each open
Qu—cover ® of G has a finite subfamily B such that B is an open Qp— cover

of G.

Definition 2.15 ([14]). Let (X,7T) be an L-space, G € LX. Then G is
S*-compact if and only if for all a € M(L), each open 3,—cover ® of G has
a finite subfamily B such that B is an open Q),—cover of G.

3. Sg—compactness

Definition 3.1. Let (X,7T) be an L-space and G € LX. Then G is called
Sg—compact if for each a € M (L), each open [3,—cover of G has a finite sub-
family which is still an open 3,—cover of G. (X,T) is called Sz—compact
if 1 is Sg—compact.

When L = [0,1], U is an open [g,—cover of X if and only if U is an
open a—shading of X in the sense of [3]. Therefore Sz—compactness is a
generalization of strong compactness in [11].

The following two theorems are obvious.

Theorem 3.2. An L-set with finite support is Sg—compact.

Theorem 3.3. In an L-space (X, T) with a finite L-topology T , each L-set
is Sg—compact.
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Theorem 3.4. If G is Sg—compact and H is closed, then G AN H 1is
Sg—compact.

Proof. Suppose that U is an open 3, —cover of GAH. Then UU{H'} is an
open f,—cover of G. By Sg—compactness of G we know that &/ U{H’} has
a finite subfamily V which is an open B,—cover of G. Take W = V\{H'}.
Then W is a finite open ,—cover of G A H. This shows that G A H is
Sp—compact.

Theorem 3.5. Let (X,7;), (Y,72) be two L-spaces, f : X — Y be a set
map and G be Sg—compact in (X, Ty). If f;" : L — LY is continuous and
for any y € Y, there exists x € f~1(y) such that f;’(G)(y) = G(x), then
17 (G) is Sg—compact in (Y, Tz).

Proof. Let U C T3 be an open f,—cover of f;7(G). Then for any y € Y,
we have that a € 8 (f;(G)’(y) vV A(y)) Hence for any z € X, a €
Aeld

g (G’(x) \/A\e/u fi (A)(x) |. This shows that f; (U) = {f; (4A) | A € U}

is an open [, —cover of G. By Sg—compactness of G we know that U/ has
a finite subfamily V such that f; (V) is an open [,—cover of G. For any
y €Y, take x € f~1(y) such that f;"(G)(y) = G(x). We have that

a € B (G'(w) \ (\/ ff(A)(x)>> =B (G’(w) \ (\/ A(f(ﬂﬁ))))

AeVy Aey

_ 5 (f;<G>'<y> v (\/ A<y>>)

Aey

This implies that V is an open fS,—cover of f;”(G). Therefore f;7(G)
is Sg—compact.

Theorem 3.6. If (X,7) is a weakly induced L-space, then (X, [T]) is com-
pact if and only if (X,T) is Sg—compact.

Proof. Necessity. Let (X,[7]) be compact. For a € M(L), let U
be an open fg—cover of 1 in (X,7). Then by Lemma 2.3 we know that
{Aw@) | A € U} is an open cover of (X,[7]). By compactness of (X, [T]),
there exists a finite subfamily V of U such that Vi) = {A) | A € V} is
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an open cover of (X, [7]). Obviously V is an open [,—cover of 1 in (X, 7).
This shows that (X, 7T) is Sg—compact.

Sufficiency. Let (X,7) be Sg—compact and U be an open cover of
X in (X,[7]). Then for any a € 5*(1), U is an open [,—cover of 1 in
(X,T). By Sg—compactness of (X,7), U has a finite subfamily V which is
an open [,—cover. Obviously V is an open cover of (X, [7]). This shows
that (X, [7]) is compact.

Corollary 3.7. For a topological space (X, 7), (X,wr(7)) is Sg—compact
if and only if (X, T) is compact.

4. The Tychonoff Theorem

Lemma 4.1. Let (X,7T) be an L-space and for any b,c € L, B(bAc) =
B(b) N B(c). Then for each a € L, (X,7(,)) is a topological space, where
Ty ={Aw@w | A€ T}

Proof. This can be proved from the following fact.

(AN B)@) = A@) N Ba): (\/ Az) = J (A -
(a)

1€Q) 1€Q

Theorem 4.2. Let (X,T) be an L-space, G € L* and for any b,c € L,
BbAc) = B(b)Np(c). Then G is Sg—compact if and only if for each
a € M(L), Gl is compact in (X, T(0))-

Proof. This can be shown from the following fact.

A subfamily U of 7 is an open f,—cover of G if and only if for any
x € X, it follows that a € <G/(ZL‘) Y A\e/u A(:r)) if and only if for each
a€ M(L), a & 5(G'(x)) implies a € 3 < V A(z)) if and only if for each
a € M(L), ¢ a(G(z)) implies a € UAEBM(A(QU)) if and only if for each
a€ M(L), z € Gl implies z € | A:)EZ/ilf and only if for each a € M(L),
Gllc U Ay D e

AelU
The proof of the following two lemmas is easy.
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Lemma 4.3. Suppose that for any a,b € L, B(a ANb) = ( ) A B(b).
If (X, T) is the product of {(Xi,T;)}icq, then for each a € L, T, =
1 (T)o)-

Lemma 4.4. Let X = [[ X;,G = [] Gi, where G; € LXi. Then for each
icQ icQ
acL, Gl =T (Gy)4.
1€0Q
By Theorem 4.2, Lemma 4.3 and Lemma 4.4 we can obtain the following
theorem.

Theorem 4.5. Suppose that for any a,b € L, (a Ab) = (a) A 3(b). Let
(X, T) be the product of {(Xi, T;) Yieq- If for each i € Q, G; is Sg—compact
in (X;,7;), then G = [] G; is Sg—compact in (X, T).
1€Q
The following example shows that B(b A ¢) = B(b) A B(c) cannot be
omitted in Theorem 4.5.

Example 4.6. Let X =Y be the set of all natural numbers and let L =
[0,1/3]U{a,b}U[2/3,1], where a,b are incomparable and 1/3 = aAb,2/3 =
aVb. For each e € L with e # a,b, define ¢’ =1 —e¢, and a’ = b,/ = a.
Then L is a completely distributive de Morgan algebra, and

M(L) = (0,1/3] U {a, b} U (2/3, 1],
Blanb))=pB(1/3) =[0,1/3) #[0,1/3] = B(a) N B(b).

For each n € X, define Say,, Sony1 € LX as follows:

a, y=2n; b, y=2n+1;
Szn(y):{b y #2n S2n+1(y):{a y #2n + 1.

Let T; be the L-topology on X generated by A = {S, | n € X}, and
let Ty be the L-topology on Y generated by {Cy,Cy}, where C, and C
are respectively the constant L-sets on Y with value a and b. It is easy to
prove that each 3,—open cover of X consisting of members of A has a finite
subfamily which is an open ,—cover of X and each [,—open cover of X
consisting of members of A has a finite subfamily which is a 8,—open cover
of X. Moreover it is easy to prove that for all e € [0,1/3], each S.—open
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cover of X consisting of members of A has a finite subfamily which is a
Be—open cover of X. This implies that (X,71) is Sg—compact. Obviously
(Y, T) is also Sg—compact. But (X x Y,Ty x 73) is not Sg—compact. In
fact, it is easy to see that

{Py (Ca), Py (Cy)} UL{P (Sp) [ n € X}
is a base of T1 x 15 and
{Py (Ca) NP (S2n) [ n € X} U{P (Cp) APL (Sont1) [ n € X}

is a 51/3—open cover of X X Y, but it has no finite subfamily which is a
fB1/3—open cover of X x Y.

Corollary 4.7. Suppose that for any a,b € L, 5(aAb) = B(a)\B(b). Then
the product of {(X;,T;)}icq is Sg—compact if and only if for each i € €2,
(Xi,T;) is Sg—compact.

Proof can be obtain from Theorem 3.5 and Theorem 4.5.

5. Sg—compactness characterized by nets

Definition 5.1. Let {S(n) | n € D} be a net in (X,T) and e € M(LYX).
e is called a f—cluster point of S, if for all U € T with e € p(U), S is
frequently in S(U). e is a B—Iimit point of S, if for allU € T withe € B(U),
S is eventually in S(U), in this case we also say that S [—converges to e,

denoted by S P

Theorem 5.2. An L-set G is Sg—compact in (X, T) if and only if Va €
M(L), each constant a—net {S(n) }nep which is not in 5*(G') has a B— cluster

point x4 & B*(G').

Proof. Suppose that G is Sg—compact. For a € M (L), let {S(n) | n €
D} be a constant a—net which is not in 5*(G’). Suppose that S has no
B—cluster point x, which is not in 8*(G’). Then for each z, ¢ B*(G’),
there exist an open L-set U, with z, € *(U,) and n, € D such that
Vn > ng,S(n) € *(Ug). Take ® = {U, | x, € B*(G")}, then ® is an
open f,—cover of G. Since G is Sg—compact, ® has a finite subfamily
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U ={U, | i=1,2,---,k} which is a S,—open cover of G. Since D is a
directed set, there exists ng € D such that ng > n,: for each ¢« < k. Thus

k
we can obtain that ¥Yn > ng,S(n) € B V U, |. This contradicts that
i=1

¥ is an open [,—cover of G. Therefore S has at least a S—cluster point
Ta & B (G').

Conversely suppose that Va € M(L), each constant a—net which is
not in 8*(G’) has a B—cluster point z, € 5*(G’). We now prove that G is
Sg—compact. Let ® be an open 3,—cover of G. If none of finite subfamilies
of @ is an open [,—cover of G , then for each finite subfamily W of ®, there
exists S(¥) € M (LX) with height a such that S(¥) ¢ 3 (G’ Vv \V ¥).

Take

S ={S(V¥) | ¥ is a finite subfamily of ®}.

S is a constant a—net which is not in 8*(G’). Let z, be a S—cluster point
of S and z, ¢ f*(G’). Then for each finite subfamily ¥ of ® we have that
zq & B(V V), in particular, z, ¢ 8*(B) for each B € ®. But since ® is an
open [, —cover of G, we know that there exists B € ® such that z, € 5(B),
this is a contradiction. So G is Sg—compact.

Corollary 5.3. (X,7) is Sg—compact if and only if Ya € M(L), each
constant a—net has a f— cluster point x, with height a.

6. A comparison of different compactness

Theorem 6.1. If (X,7) is an ultra-compact L-space, then it is
Sg—compact.

Proof. By ultra-compactness of (X, 7) we know that (X, ¢(7)) is com-
pact. This implies (X,wr, o ¢(7)) is Sg—compact from Corollary 3.7.
Further from wy, 0 ¢,(7) 2 7 we can obtain the proof.

Theorem 6.2. Sg—compactness implies S*—compactness, hence fuzzy com-
pactness.

Proof. Let G be Sg—compact in (X,7) and U be an open [,—cover of
G. Then U has a finite subfamily V which forms an open §,— cover of G,
of course V is also an open Qp—cover of G. Therefore GG is S*—compact.

The following example shows that N-compactness in [17, 18] need not
imply Sg—compactness, hence strong compactness in [9, 17] need not imply
Sz—compactness.
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Example 6.3. In Example 4.6, we have proved that X XY is not
Sg—compact. To prove that it is N-compact, we only need to prove that
X,Y are N-compact.

(i) For a € M(L), let ¥ C A" and F be a closed a—R-neighborhood
family of X. Then for each x € X, there exists A € F such that A(x) %
a. In particular, for 2,4 € X, there exists A, B € F such that A(2) #
a,B(4) # a. In this case, we have that A(2) = b and B(4) = b. This
implies that {A, B} is an a~ —R-neighborhood family of X. Analogously
we can prove that each closed b—R-neighborhood family of X has a finite
subfamily which is a b~ —R-neighborhood family of X.

(ii) Let e € M(L) and e # a,b. We need only consider e > % Let
F C A" and F be a closed e—R-neighborhood family of X. Then for
1,2 € X, there exists A, B € F such that A(1) # e, B(2) # e. In this case,
{A, B} is an e~ —R-neighborhood family of X.

By (i), (ii) and the Alexander Subbase Theorem for N-compactness,
we know that (X,7;) is N-compact. N-compactness of (Y,7Tz) is obvious.
Therefore X x Y is N-compact.

When L = [0,1], since Sg—compactness is equivalent to strong com-
pactness, we know that Sz—compactness need not imply N-compactness
and S*—compactness need not imply Sg—compactness (see Example 6.4
in [14]). Moreover we don’t know whether Sz—compactness implies strong
compactness. We leave it as an open problem.

References

[1] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968),
182-190.

[2] P. Dwinger, Characterizations of the complete homomorphic images of
a completely distributive complete lattice, I, Nederl. Akad. Wetensch.
indag. Math. 44(1982), 403-414.

[3] T.E. Gantner et al., Compactness in fuzzy topological spaces, J. Math.
Anal. Appl. 62(1978), 547-562.

[4] G. Gierz, et al., A compendium of continuous lattices, Springer Verlag,
Berlin, 1980.



164

[5]

[6]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Fu - Gui Shi

J.A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl.
43(1973), 734-742.

T. Kubiak, The topological modification of the L-fuzzy unit interval,
Chapter 11, in Applications of Category Theory to Fuzzy Subsets, S.E.
Rodabaugh, E.P. Klement, U. Hohle, eds., 1992, Kluwer Academic
Publishers, 275-305.

Z.F. Li, Compactness in fuzzy topological spaces, Chinese Kexue Tong-
bao 6(1983), 321-323.

Y.M. Liu, Compactness and Tychnoff Theorem in fuzzy topological
spaces, Acta Mathematica Sinica 24(1981), 260-268.

Y.M. Liu, M.K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.

R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math.
Anal. Appl. 56(1976), 621-633.

R. Lowen, A comparision of different compactness notions in fuzzy
topological spaces, J. Math. Anal. Appl. 64(1978), 446-454.

F.-G. Shi, A new form of fuzzy B-compactness, submitted to Proyec-
ciones, 2005.

F.-G. Shi, Theory of Lg-nested sets and Lq-nest sets and its applica-
tions, Fuzzy Systems and Mathematics 4(1995), 65-72 (in Chinese).

F.-G. Shi, A new notion of fuzzy compactness in L-topological spaces,
Information Sciences, 173(2005) 35-48.

F.-G. Shi, C.-Y. Zheng, O-convergence of fuzzy nets and its applica-
tions, Fuzzy Sets and Systems 140(2003), 499-507.

G.-J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math.
Anal. Appl. 94(1983), 1-23.

G.-J. Wang, Theory of L-fuzzy topological space, Shaanxi Normal Uni-
versity Press, Xian, 1988. (in Chinese).

D.-S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math.
Anal. Appl. 128(1987), 64-70.



Sg—compactness in L-topological spaces 165

Fu-Gui Shi

Department of Mathematics

School of Science

Beijing Institute of Technology

Beijing 100081

P.R. China

e-mail : fuguishi@bit.edu.cn or f.g.shi@263.net





