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Abstract

A new form of B-compactness is introduced in L-topological spaces
by means of B-open L-sets and their inequality where L is a complete
de Morgan algebra. This new form doesn’t rely on the structure of ba-
sis lattice L. It can also be characterized by means of B-closed L-sets
and their inequality. When L is a completely distributive de Morgan
algebra, its many characterizations are presented. Meanwhile count-
able B-compactness and the B-Lindeldf property are also researched.
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1. Introduction

As we know, stronger and weaker forms of compactness occupy very im-
portant places in general topology. In [5], Abd El-Monsef et al introduced
the concepts of B-open sets and [-continuous functions in general topology,
and Fath Alla in [1] introduced these concepts in [0,1]-topological spaces.
In [2], G. Balasubramanian generalized the concept of S-compactness [6] to
[0, 1]-topological spaces along the line of Chang’s compactness which is not
a good extension.

In [12, 13|, a new definition of fuzzy compactness is presented in L-
topological spaces by means of open L-sets and their inequality where L is
a complete de Morgan algebra. This new definition doesn’t depend on the
structure of L. When L is completely distributive, it is equivalent to the
notion of fuzzy compactness in [9, 10, 15]. In this paper, following the lines
of [12, 13], we shall introduce a new form of S-compactness in L-topological
spaces by means of -open L-sets and their inequality. This new form of
[B-compactness has many characterizations if L is completely distributive.

2. Preliminaries

Throughout this paper (L,\/,A,”) is a complete de Morgan algebra, X a
nonempty set. LX is the set of all L-fuzzy sets (or L-sets for short) on X.
The smallest element and the largest element in L are denoted by 0 and
1.

An element ¢ in L is called prime element if @ > b A ¢ implies a > b or
a > c. ain L is called co-prime element if o’ is a prime element [7]. The set
of non-unit prime elements in L is denoted by P(L). The set of non-zero
co-prime elements in L is denoted by M (L).

The binary relation < in L is defined as follows: for a,b € L, a < b if and
only if for every subset D C L, the relation b < sup D always implies the
existence of d € D with a < d [4]. In a completely distributive de Morgan
algebra L, each element bis asup of {a € L |a < b}. {a € L |a <b}is
called the greatest minimal family of b in the sense of [9, 15], in symbol 3(b).
Moreover for b € L, define 8*(b) = B(b) N M(L), a(b) ={a € L |a' <V}
and o*(b) = a(b) N P(L).

For a € L and A € L¥, we use the following notations in [14].

A ={z € X | A(z) > a}, AW ={rec X | Alx) £a}.

An L-topological space (or L-space for short) is a pair (X, 7 ), where 7
is a subfamily of LX which contains X, Xx and is closed for any suprema



A New Form of Fuzzy -Compactness 107

and finite infima. 7 is called an L-topology on X. Members of 7 are called
open L-sets and their complements are called closed L-sets. We often don’t
differ a crisp subset A of X and its character function X4.

Definition 2.1 ([9,15]) : An L-space (X,7) is called weak induced if
Va € L, VA €T, it follows that A® € [T], where [T] denotes the topology
formed by all crisp sets in 7.

Definition 2.2 ([9,15]) : For a topological space (X, 7), let wr,(7) de-
note the family of all the lower semi-continuous maps from (X, 7) to L, i.e.,
wr(r) = {A € LX | A® ¢ 74 € L}. Then wy(r) is an L-topology on
X, in this case, (X,wr(7)) is called topologically generated by (X, 7). A
topologically generated L-space is also called an induced L-space.

It is obvious that (X, wr (7)) is weak induced.

For a subfamily ® C LX, 2(®) denotes the set of all finite subfamily of
®. 2[®] denotes the set of all countable subfamily of ®.

Definition 2.3 ([12,13]) : Let (X,7) be an L-space, G € L¥ is called
(countably) compact if for every (countably) family UC7, it follows that

A (G’(w)\/ \/ A(x)) <V A (G’(:p)\/ \/ A(:p)).

zeX Aeld yea2t) zeX Aey

Definition 2.4 [13] : Let (X, 7T) be an L-space, G € L is said to have
the Lindel6f property if for every family UCT, it follows that

A (G’(m)v \V A(m)) <V (G’(x)\/ \/ A(x)).

zeX Aecl yealu] zeX AeV

Lemma 2.5 [13] : Let L be a complete Heyting algebra, f: X — Y be
a map, f; : LX — LY is the extension of f, then for any family P C LY,
we have:

V (fF(G)(y)A A B(?J)) =V (G(x)/\ A fE(B)(fE)>-

yey BeP zeX BeP
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The following definition is presented in [0,1]-topological spaces. Analo-
gously we can generalize it to L-fuzzy setting as follows:

Definition 2.6 [1] : An L-set A in an L-space (X,d) is said to be
B-open if A < cl (int (cl (A))).

Definition 2.7. A map f : (X,§) — (Y,u) is said to be fuzzy (-
continuous [1] (resp. Mp-continuous [8] if the inverse image f; (B) of
every open (resp. (-open) L-set B in Y is S-open in X.

3. Definition and characterizations of S-compactness

Definition 3.1 : Let (X,7) be an L-space. G € L* is called (countably)
B-compact if for every (countable) family U of S-open L-sets, it follows that

A (G’(z)\/ \/ A(:f:)) <V A (G’(:n)v \ A(:@).

zeX Aeld yeat) zeX Aey

Definition 3.2 :Let (X,7) be an L-space. G € L¥ is said to have
the -Lindel6f property (or be an 8-Lindelof L-set) if for every family U of
(-open L-sets, it follows that

A\ (G’(m)\/ \ A(z)) <V A (G’(:n)v \/ A(@).

zeX Aeld vealul zeX AeV

Obviously we have the following theorem.

Theorem 3.3 : [-compactness implies countably S-compactness and
the B-Lindel6f property. Moreover an L-set having the 5-Lindel6f property
is B-compact if and only if it is countably -compact.

Since an open L-set must be S-open, we have the following theorem.



A New Form of Fuzzy -Compactness 109

Theorem 3.4 : [-compactness implies compactness, countably [-
compactness implies countably compactness, and the S-Lindel6f property
implies the Lindelof property.

From Definition 3.1 and Definition 3.2 we can obtain the following two
theorems by simply using complement.

Theorem 3.5 : Let (X,7) be an L-space. G € L¥ is (countably)
B-compact if and only if for every (countable) family B of 5-closed L-sets,
it follows that

\V <G(x)/\ A\ B(x)) > ANV (G(x)/\ A B(x)).

zeX BeB Fea2B) zeX BeF

Theorem 3.6 : Let (X,7) be an L-space. G € LX has the S-Lindelof
property if and only if for every family B of -closed L-sets, it follows that

\/ (G(x)/\ A B(x)) > A (G(:p)/\ A B(x)).

reX BeB FealBl zeX BeF

In order to present characterizations of S-compactness, countable -
compactness and the S-Lindelof property, we generalize the notions of
a—shading and a—R-neighborhood family in [12, 13] as follows:

Definition 3.7 : Let (X,7) be an L-space, a € L\{1} and G € LX.
A family A C LX is said to be

(1) An a—shading of G if for any = € X, (G’(:p) v A\e/u A(:L‘)) £ a.

(2) A strong a—shading of G if A (G’(x) VARV, A(z)) £ a.
zeX Aeld

(3) An a—remote family of G if for any = € X, (G(m) AN A B(m)) 7 a.
BeP

(4) A strong a—remote family of G if \/ (G(ZL‘) A B(:B)) 7 a.
reX BeP

It is obvious that a strong a—shading of G is an a—shading of G, a
strong a—remote family of G is an a—remote family of GG, and P is a strong
a—remote family of G if and only if P’ is a strong a’—shading of G.
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Definition 3.8 : Let a € L\{0} and G € LX. A subfamily A of L is
said to have weak a—mnonempty intersection in G if

V (G(a:) A A(x)) > a. A is said to have the finite (countable) weak
zeX AcA

a—intersection property in G if every finite (countable) subfamily F of A
has weak a—nonempty intersection in G.

From Definition 3.1, Definition 3.2, Theorem 3.5 and Theorem 3.6 we
immediately obtain the following two results.

Theorem 3.9 : Let (X,7) be an L-space and G € LX. Then the
following conditions are equivalent:

(1) G is (countably) S-compact.

(2) For any a € L\{1}, each (countable) S-open strong a—shading U of
G has a finite subfamily which is a strong a—shading of G.

(3) For any a € L\{0}, each (countable) [-closed strong a—remote
family P of G has a finite subfamily which is a strong a—remote family of
G.

(4) For any a € L\{0}, each (countable) family of 8-closed L-sets which
has the finite weak a—intersection property in G has weak a—nonempty
intersection in G.

Theorem 3.10 :Let (X,7) be an L-space and G € L. Then the
following conditions are equivalent:

(1) G has the -Lindel6f property.

(2) For any a € L\{1}, each S-open strong a—shading & of G has a
countable subfamily which is a strong a—shading of G.

(3) For any a € L\{0}, each -closed strong a—remote family P of G
has a countable subfamily which is a strong a—remote family of G.

(4) For any a € L\{0}, each family of S-closed L-sets which has the
countable weak a—intersection property in G has weak a—nonempty inter-
section in G.

4. Properties of (countable) f-compactness

Theorem 4.1 : Let L be a complete Heyting algebra. If both G and H
are (countably) S-compact, then G V H is (countably) S-compact.
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Proof. For any (countable) family P of fS-closed L-sets, by Theorem

3.5 we have that

V ((GVH) B(z )
zeX
. V(GMAB Vbl (1
zeX BeP rzeX BeP
> AV |Gz A/\B
Fea(P) zeX
= A V [(GVH)@)A A B(z)
FeaP) zeX BeF

This shows that GV H is (countably) S-compact.

Analogously we have the following result.

)

) { A Y (0 p B |
FeaP) zeX BeF

Theorem 4.2 : Let L be a complete Heyting algebra. If both G and
H have the -Lindelof property, then G V H has the §-Lindelof property.

Theorem 4.3 : If G is (countably) S-compact and H is S-closed , then
G A H is (countably) S-compact.

Proof : For any (countable) family P of S-closed L-sets, by Theorem

3.5 we have that
V

zeX

=V

zeX

>

A

Fe2(PUu{H}) xz€X

AV

{]—‘eQ(P) reX

AV [G@)A

FeaP) zeX

e 4
Fea2(P)zeX

((G A H)(x)

((G ANH)(z)N A B(z))
BeP

AN B(.r))

BeP

V <G($)/\ A B(ﬂﬁ))

BeF

<G(:L‘) AN A B(x)) } A
BeF

H(x)N A B(:U)) }

BeF

Gx)NH(z)N A B(:U))}
BeF
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ANV ((G/\H)(IE)/\ A B(Oﬂ))-

Fe2P) zeX BeF

This shows that G A H is (countably) S-compact.

Analogously we have the following result.

Theorem 4.4 : If G has the §-Lindelof property and H is -closed ,
then G A H has the -Lindel6f property.

Theorem 4.5 : Let L be a complete Heyting algebra and let f :
(X,71) — (Y, 73) be Mp-continuous. If G is an S-compact (respectively a
countably S-compact, an S-Lindelof) L-set in (X, 77), then so is f;7(G) in
(Y. To).

Proof. We only prove that the theorem is true for S-compactness.
Suppose that P is a family of S-closed L-sets in (Y, 72), by Lemma 2.5 and
(B-compactness of G we have that

V (fE(G)(y)A A B(y)>

yey BeP

=V (G(ﬂ«“)/\ A ff(B)($)>
BeP

zeX

> AV <G($)AB/€\ff‘L_(B)($)>

FeaP) zeX

= ANV (fF(G)(Z/)/\ A B(?J))-
BeF

Fe2(P) yey

Therefore f;7(G) is f-compact.

Analogously we have the following result.

Theorem 4.6 : Let L be a complete Heyting algebra and let f :
(X,71) — (Y,73) be B-continuous. If G is an [-compact (respectively a
countably [-compact, an (-Lindel6f) L-set in (X, 7;), then f77(G) is a
compact (countably compact, Lindeldf) L-set in (Y, 73).
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Definition 4.7 : Let (X,771) and (Y,72) be two L-spaces. A map
f:(X,T1) — (Y, T) is called strongly M -continuous if f; (G) is open in
(X,Th) for every B-open L-set G in (Y, 72).

It is obvious that a strongly M S-continuous map is M S-continuous.
Analogously we have the following result.

Theorem 4.8 : Let L be a complete Heyting algebra and let f :
(X,71) — (Y, 72) be a strongly M f-continuous map. If G is a compact
(respectively countably compact, Lindelof) L-set in (X, 77), then f;7(G) is
an [-compact (a countably S-compact, an -Lindelof) L-set in (Y, 73).

5. Further characterizations of S-compactness and goodness

In this section, we assume that L is a completely distributive de Morgan
algebra.

Now we generalize the notions of open (§,—cover and open (),—cover
[13] as follows:

Definition 5.1 : Let (X,7) be an L-space, a € L\{0} and G € L¥.
A family UC L¥X is called a B,—cover of G if for any = € X, it follows

that a € (G’(x) vV A(z)) U is called a strong S,—cover of G if
AelU

aeﬁ( A (G’(:p)\/ V A(x)))
rzeX AelU

Definition 5.2 : Let (X,7) be an L-space, a € L\{0} and G € LX. A
family U C LX is called a Qu—cover of G if for any = € X, it follows that
G'(x)v V A(z) > a.

AelU

It is obvious that a strong 8,—cover of G must be a 8,—cover of G and
a (B,—cover of G must be a QQ,—cover of G.

Analogous to the proof of Theorem 2.9 in [13] we can obtain the follow-
ing theorem.

Theorem 5.3 : Let (X,7) be an L-space and G € L*. Then the
following conditions are equivalent.
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(1) G is S-compact.

(2) For any a € L\{0}, each [-closed strong a—remote family P of G
has a finite subfamily which is a strong a—remote family of G.

(3) For any a € L\{0}, each S-closed strong a—remote family P of G
has a finite subfamily which is an a—remote family of G.

(4) For any a € L\{0} and any S-closed strong a—remote family P of
G, there exist a finite subfamily F of P and b € [(a) such that F is a
strong b—remote family of G.

(5) For any a € L\{0} and any (-closed strong a—remote family P of
G, there exist a finite subfamily F of P and b € ((a) such that F is a
b—remote family of G.

(6) For any a € L\{1}, each S-open strong a—shading & of G has a
finite subfamily which is a strong a—shading of G.

(7) For any a € L\{1}, each (-open strong a—shading U of G has a
finite subfamily which is an a—shading of G.

(8) For any a € L\{l} and any [-open strong a—shading U of G,
there exist a finite subfamily V of U and b € a(a) such that V is a strong
b—shading of G.

(9) For any a € L\{1} and any (-open strong a—shading U of G, there
exist a finite subfamily V of & and b € a(a) such that V is a b—shading of
G.

(10) For any a € L\{0}, each (-open strong SB,—cover U of G has a
finite subfamily which is a strong (,—cover of G.

(11) For any a € L\{0}, each S-open strong (,—cover U of G has a
finite subfamily which is a 5, —cover of G.

(12) For any a € L\{0} and any /-open strong [,—cover U of G, there
exist a finite subfamily V of & and b € L with a € 5(b) such that V is a
strong fB,—cover of G.

(13) For any a € L\{0} and any S-open strong B,—cover U of G, there
exist a finite subfamily V of & and b € L with a € 3(b) such that V is a
By—cover of G.

(14) For any a € L\{0} and any b € 3(a)\{0}, each -open Q,—cover
of G has a finite subfamily which is a Qp—cover of G.

(15) For any a € L\{0} and any b € 3(a)\{0}, each S-open @Q,—cover
of G has a finite subfamily which is a B,—cover of G.

(16) For any a € L\{0} and any b € 8(a)\{0}, each S-open Q,—cover
of G has a finite subfamily which is a strong gp—cover of G.



A New Form of Fuzzy -Compactness 115

Remark 5.4 : In Theorem 5.3, a € L\ {0} and b € [B(a) can be
replaced by a € M (L) and b € 5* (a) respectively, a € L\ {1} and b € a(a)
can be replaced by a € P (L) and b € a* (a)

Now we consider the goodness of -compactness.
For a € L and a crisp subset D C X, we define a A D and aV D as
follows:

(a/\D)(z)z{g: i;g (avD)(w)Z{i: i;g

Theorem 5.5 ([14]) :For an L-set A € L, the following facts are true.
(1) A= VL(CL NAw) =V (@A Ap).
ac

acl

2) A= A (aVvVA@) = A (aVv Al).

acL a€L

Theorem 5.6 ([15])Let (X,wr (7)) be the L-space topologically gener-
ated by (X,7) and A € LX. Then the following facts hold.

(1) c(A) = a\g/L(a AN(Aw@)™) = Q\G/L(a A (A) 7
(2) cl(A) ) C (Aw@)~ ) (Aj) ™) C cl(A) a3
(3) cl(A) = QGL( vV (A@)= ) QGL(G v (Al)7);
(4) cl(A)@ c (A@)7) c (Al)7) C cl(A)l);

(5) int(A) = aeL(a ANAw)°) = a\G/L(a A (A));
(6) int(A)(q) C (Aw)°) C (A)°) Cint(A);
(7) int(A) = a/e\L(a V (A@)°) = aé\L(a v (Ald)e);
(8) int(A)@ C (A@)°) C (Al)°) C ing(A)lal,

where (A(,))~ and (A(,))° denote respectively the closure and the interior
of A(y) in (X, 7), and cl(A) and int(A) denote respectively the closure and
the interior of A in (X,wr(7)).

Lemma 5.7 : Let (X,wr (7)) be generated topologically by (X, 7). If
A is an -open L-set in (X, 7), Then X4 is an S-open set in (X,wr(7)). If
B is an f-open L-set in (X,wr (7)), Then B, is an S-open set in (X, T)
for every a € L.



116 Fu-Gui Shi

Proof. If A is a S-open set in (X,7), then A C ((A7)°)”. Thus we
have that

Xa < Xa-yo)- = cl(Xa-yo) = cl(int(Xy-)) = cl(int(cl(a)))-

This shows that 4 is S-open in (X, wr(7)).
If B is a S-open L-set in (X,wr (7)), then B < cl(int(cl(B))). From
Theorem 4.2 we have that

B(a) C c(int(cl(B)))(a) < (int(cl(B)) @)~ € ((cl(B)@)°)” € ((Bw) ™))"
This shows that B is a S-open set in (X, 7).

The following two theorems show that [-compactness, countable (-
compactness and the §-Lindel6f property are good extensions.

Theorem 5.8 : Let (X,wr (7)) be generated topologically by (X, 7).
Then (X,wr (7)) is (countably) S-compact if and only if (X, 7) is (count-
ably) [-compact.

Proof : (Necessity) Let A be an (a countable) S-open cover of (X, 7).
Then {4] A € A} is a family of S-open L-sets in (X, wr(7)) with

A | V a(z)| = 1. From (countable) S-compactness of (X,wr (7)) we
xeX \AcU
know that

1=V A (\/A<x>)z A (\/A@:))—l.

vea) zeX \AeV zeX \AeU

This implies that there exists V € 2 such that A ( V A(a:)) =1
zeX \AeV

Hence V is a cover of (X, 7). Therefore (X, 7) is (countably) S-compact.
(Sufficiency) Let U be a (countable) family of S-open L-sets in

(X,wr(7)) and let A ( V B(a:)) = a. If a = 0, then obviously we have
zeX \BeU
that

A <\/ B(w))s VoA (\/ B@)).

zeX \BelUu veat) zeX \AeV
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Now we suppose that a # 0. In this case, for any b € 5(a)\{0} we have
that

beﬁ(/\ (\/ B<m>)) <N B(\/ B<x>) _ N U sBw).
reX \BeU rxeX Beu reX BeU

From Lemma 5.7 this implies that {B) | B € U} is a $-open cover
of (X, 7). From (countable) S-compactness of (X,7) we know that there
exists V € 2¢) such that {Bw) | B € V} is a cover of (X,7). Hence

b< A ( \V B(w)) . Further we have that
reX \BEV

bS/\(\/B(:r)>§ \V (\/B(:@).
z€X \BeY vet) zeX \BeV
This implies that
A (\/ B(:r)) —a-\plbes@ls VA (\/ B(:c)).
r€X \BelU Veo) z€X \BEV

Therefore (X,wr (7)) is (countably) S-compact.

Analogously we have the following result.

Theorem 5.1. Let (X,wr (7)) be generated topologically by (X, 7). Then
(X,wr(7)) has the B-Lindeldf property if and only if (X,7) has the (-
Lindelof property.
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