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Abstract

In this paper we study the existence of solutions for a semilinear
elliptic problem in case two eigenvalues are not necessarily consecu-
tive.

Résumé : Dans cet article, nous étudions l’existence des solu-
tions entre deux valeurs propres non nécessairement consecutives d’un
problème semi-linéaire elliptique.
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1. Introduction

Let Ω be a bounded domain in Rn, and let g : Ω×R→ R be a nonlinear
function satisfying the Carathéodory conditions. We consider the Dirichlet
problem (

−∆u = g(x, u) + h(x) in Ω
u = 0 on ∂Ω

(1.1)

where h ∈ L2(Ω). Given 0 < λ1 < λ2 ≤ λ3 . . . ≤ λk ≤ . . . the sequence of
eigenvalues of the problem −∆u = λu in Ω, u = 0 on ∂Ω.

Let us denote by G(x, s), the primitive
R s
0 g(x, t) dt, and write

l±(x) =lim inf
s→±∞

g(x, s)

s
, k±(x) =lim sup

s→±∞
g(x, s)

s

L±(x) =lim inf
s→±∞

2G(x, s)

s2
, K±(x) =lim sup

s→±∞
2G(x, s)

s2

with, for an autonomous nonlinearity g(x, s) = g(s), l± instead of l±(x).
Assume that

λk ≤ l±(x) ≤ k±(x) ≤ λk+1(1.2)

uniformly for a.e. x ∈ Ω.
As is well known, in the special case when g is linear, i.e. g(x, s) = λs,

the problem (1.1) is completely solved by the Fredholm alternative, namely
(1.1) has a solution for each h, if and only if λ is not an eigenvalue of the
linear operator −∆. For instance, we recall that, according to Dolph [8],
the solvability of (1.1)), for any h ∈ L2(Ω), is ensured when

λk < νk ≤ l±(x) ≤ k±(x) ≤ νk+1 < λk+1(1.3)

However, the situation where l±(x) ≡ λk or k±(x) ≡ λk+1 was consid-
ered in several works, (see [12], [1] [4], [2], [14], [7], [9], [13]).

In [6], Costa and Oliviera extended the result of [8], allowing equality
in both sides of (1.3) for every x ∈ Ω, and assumed the following condition

λk ≤ L±(x) ≤ K±(x) ≤ λk+1(1.4)

uniformly for a.e. x ∈ Ω, with strict inequalities λk < L±(x),K±(x) < λk+1
holding on subset of positive measure.

More recently, the author and Moussaoui, in [10], proved an existence
result in situation L±(x) ≡ λk for a.e. x ∈ Ω and K±(x) ≡ λk+1 for a.e.
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x ∈ Ω. They showed that (1.1) is solvable when g(x,s)
s stays ”between” λk

and λk+1 for large values of |s| and they replaced (1.4) by classical resonance
conditions of Ahmad-Lazer-Paul on two sides of (1.4).

In this paper, our main objective is to study the solutions of problem
(1.1) when the nonlinearity g lies asymptotically between two eigenvalues
not necessarily consecutive. It is clear that is such situations the solvability
of (1.1) cannot be guaranteed without further assumption on the potential
G.

To state our main result, let us denote by E(λj) the λj-eigenspace. For
every u ∈ H1

0 (Ω) write u
j = Pju, where Pj is orthogonal projection onto

E(λj).

Theorem 1.1. Let k ≥ 2 and make the following assumptions:
G0) sup|s|≤R |g(x, s)| ∈ L2(Ω) for all R > 0,

G1) λk−1 < νk−1 ≤ l±(x) ≤ k±(x) ≤ λk+1 uniformly on Ω

G2) whenever un ⊂ H1
0 (Ω) is such that

un
kunk - z 6≡ 0 ukn

kunk → zk 6≡ 0 as
n→∞, then

0 <lim sup
n→∞

Z
[g(x, un(x))− λkun(x)]

ukn(x)

kunk2 dx.

G3)

Z
z>0
(λk+1 −K+(x))z

2 dx+

Z
z<0
(λk+1 −K−(x))z2 dx > 0,

for every z ∈ E(λk+1).

G4) λk ≤ L±(x) and
Z
z>0
(L+(x)−λk)z2 dx+

Z
z<0
(L−(x)−λk)z2 dx > 0,

for every z ∈ E(λk).

Then, for any h ∈ L2(Ω), problem (1.1) has at least one solution.

Remark 1. Note that the assumptions G3) and G4) are weaker than con-
dition on the potential G assumed in [6]. Indeed,
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1. G3) occurs if G verified K±(x) ≤ λk+1 and the following condition:
there exists a subset Ω0 of Ωsuch that

K+(x) =lim sup
s→∞

2G(x, s)

s2
(resp.K−(x)

=lim sup
s→−∞

2G(x, s)

s2
) < λk+1 a.e. in Ω

0.

2. Furthermore G4) is satisfied if λk < L+(x) or λk < L−(x) holds on
the subset of positive measure.

Next, we are interested in situations where g(x,s)
s is less than λ2 and

both l±(x), L±(x) can be greater than λ1.

Theorem 1.2. Assume that G2), k = 1 and
G5) |g(x, s)| ≤ A|s|+b(x), for all s ∈ R and all every x ∈ Ω, A > 0, b ∈

L2(Ω).

G6) k±(x) ≤ λ2 uniformly on Ω

G7)

Z
z>0
(λ2 −K+(x))z

2 dx+

Z
z<0
(λ2 −K−(x))z2 dx > 0,

for every z ∈ Eλ2 .
Then, for any h ∈ L2(Ω), problem (1.1) has at least one solution.

The proofs of theorem 1.1 and 1.2 use the general minimax theorem
proved by Bartolo et al. in [3].

In section 4, we present several examples where our results apply and
where, as far as we can see, previously known results do not hold.

2. Preliminaries. A compactness condition

By a solution of (1.1) we mean a function u ∈ H1
0 (Ω) satisfyingZ

Ω
∇u∇v −

Z
Ω
g(x, u)v −

Z
Ω
h(x)v = 0, for all v ∈ H1

0 (Ω)

where H1
0 (Ω) is the dual space obtained through completion of C

∞
c (Ω) with

respect to the norm induced by the inner product

< u, v >=

Z
Ω
∇u∇v, u, v ∈ H1

0 (Ω)
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If g is Hölder continuous, then the regularity arguments imply that any
solution of (1.2) is, in fact, in C2(Ω) ∩ C(Ω), and satisfies the equation
(1.1) for every x ∈ Ω.

Define, for all u ∈ H1
0 (Ω), the functional

Φ(u) =

Z
Ω
|∇u|2 −

Z
G(x, u)−

Z
h(x)u.

Under the growth condition on g, it is well know that Φ is well defined
on H1

0 (Ω), weakly lower semicontinuous and continuously Fréchet differen-
tiable, with derivative given by

Φ0(u)v =
Z
Ω
∇u∇v −

Z
g(x, u)v −

Z
h(x)v, for all u, v ∈ H1

0 (Ω)

Thus, finding solutions of (1.1) is equivalent to finding critical points of the
functional Φ.

In order to apply minimax methods for finding critical points of Φ, we
need to verify that Φ satisfies a compactness condition of the Palais-Smale
type which was introduced by Cerami.

A functional Φ ∈ C1(E,R), where E is a real Banach space, is said to
satisfy condition (C)c at the level c ∈ R if the following holds:

(C)c i) any bounded sequence (un) ⊂ E such that Φ(un)→ c andΦ0(un)→
0 possesses a convergent subsequence;

ii) there exist constants δ, R,α > 0 such that

kΦ0(u)kkuk ≥ α for any u ∈ Φ−1([c− δ, c+ δ]) with kuk ≥ R.

It was shown in [3] that condition (C) actually is sufficient to get a
deformation theorem and then, by standard minimax arguments (see [3]),
the following result was proved.

Theorem 2.1. : Suppose that Φ ∈ C1(E,R), E is a real Banach space
and satisfies condition (C)c ∀c ∈ R and that there exists a closed subset
S ⊂ E and Q ⊂ E with boundary ∂Q satisfying the following conditions :

i) supu∈∂QΦ(u) ≤ α < β ≤ infu∈S Φ(u) for some 0 ≤ α < β;
ii) S and ∂Q link;
iii) supu∈QΦ(u) <∞.
Then Φ possesses a critical value c ≥ β.
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Since we are going to apply the variational characterization of the eigen-
values, we will decompose the space H1

0 (Ω) as E = E− ⊕ Ek ⊕ E+, where
E− is the subspace spanned by the λj- eigenfunctions with j < k and Ej

is the eigenspace generated by the λj-eigenfunctions and E+ is the orthog-
onal complement of E− ⊕ Ek in H1

0 (Ω). We will also decompose for any
u ∈ H1

0 (Ω), as u = u−+ uk + u+ where u− ∈ E−, uk ∈ Ek, and u+ ∈ E+.

3. Proofs of theorems

To apply theorem 2.1, we shall do separate studies of the ”compactness” of
Φ and its ”geometry”. First, we prove that Φ satisfies the Cerami condition.

Lemma 3.1. Φ satisfies the (C)c condition on H1
0 (Ω), for all c ∈ R.

Proof: Let us initially verify that the Palais-Smale condition is satisfied
on the bounded subset of H1

0 (Ω). Let (un)n ⊂ H1
0 (Ω), be bounded and such

that Φ0(un) → 0 in H−1(Ω). If we identify L2(Ω) with its dual, one has
that

−∆un − g(x, un)− h(x)→ 0 in H−1(Ω).

This implies that

un − (−∆)−1[g(x, un) + h]→ 0 in H1
0 (Ω).

Since (un) is bounded we can select a subsequence noted also (un) weakly
converging to u0 ∈ H1

0 (Ω) and on the other hand, we have u 7→ g(x, u) + h
is completely continuous from H1

0 (Ω)→ H−1(Ω) then,

(−∆)−1[g(x, un) + h]→ (−∆)−1[g(x, u0) + h].

It obvious that the subsequence (un) converges in H1
0 (Ω).

Let us now prove that (C)cii) is satisfied for every c ∈ R. Assume by
contradiction, Let c ∈ R and (un)n ⊂ H1

0 (Ω) such that:

Φ(un)→ c(3.1)

kunk| < Φ0(un), v > | ≤ �nkvk ∀v ∈ H1
0 (Ω)(3.2)

kunk→∞, �n → 0, as n→∞.
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Set zn =
un
kunk , we have kznk = 1 and, passing if necessary to a subsequence,

we may assume that: zn - z weakly in H1
0 (Ω), zn → z strongly in L2(Ω)

and zn(x)→ z(x) a.e. in Ω.

We consider (g(.,un(.))kunk ) which, by the linear growth of g, remains bounded

in L2. Thus , for a subsequence (g(.,un(.))kunk ) converges weakly in L2 to some

g̃ ∈ L2 and by standard arguments based on G0) −G1), g̃ can be written
as

g̃(x) = m(x)z(x)

where the L∞-function m satisfy

λk−1 < νk−1 ≤ m(x) ≤ λk+1.(3.3)

Now, by (3.2), we have

< Φ0(un), un >

kunk2 → 1−
Z
g̃(x)z(x) dx = 0.

So that, z 6≡ 0. In other words , we verify easily that z satisfied

(I)

(
−∆z = m(x)z in Ω

z = 0 on ∂Ω

We now distinguish two cases : i) m(x) < λk+1 on subset of positive mea-
sure; ii) m(x) ≡ λk+1.

Case i). First, we claim that zk 6≡ 0. Assume by contradiction that
zk ≡ 0. Multiplying the first equation of (I) by z− − z+ and integrating
over Ω, we obtainZ

|∇z+|2 −m(x)z+
2
dx =

Z
|∇z−|2 −m(x)z−2 dx(3.4)

From (3.3) and (3.4), it is obvious that

0 ≤
Z
|∇z+|2 −m(x)z+

2
dx ≤ (λk−1 − νk−1)

Z
z−2 dx ≤ 0.

This leads to

z− ≡ 0 and
Z
|∇z+|2 −m(x)z+

2
dx = 0.
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Define the functional µ : E+ → R by

µ(v) =

Z
|∇v|2 −m(x)v2 dx = 0, for all v ∈ E+.

We first show that µ(v) = 0 implies that v ≡ 0. Indeed, since R |∇v|2 ≥
λk+1

R |v|2 for v ∈ E+, we have

µ(v) ≥
Z
[λk+1 −m(x)]v2 dx ≥ 0, for all v ∈ E+.

Thus, if µ(v) = 0 then v = 0 on the set Ω0 = {x ∈ Ω : m(x) < λk+1}
We also get

0 = µ(v) ≥
Z
|∇v|2 − λk+1

Z
|v|2 ≥ 0.

Thus v is an eigenfunction for λk+1. Therefore, since v = 0 on a set of
positive measure, the unique continuation implies that v ≡ 0. Therefore,
we conclude that z+ ≡ 0. This contradicts z 6≡ 0. So that, zk 6≡ 0.

Therefore, from G2) we obtain

lim sup
n→∞

Z
[g(x, un(x))− λkun(x) + h(x)]ukn(x) dx =∞.

On the other hand, we have

lim sup
n→∞

kΦ0(un)kkunk ≥lim sup
n→∞

Z
[g(x, un(x))−λkun(x)+h(x)]ukn(x) dx| > 0.

this contradicts (3.2).

Case ii). If m(x) ≡ λk+1
Dividing (3.1) by kunk2, then we have

Φ(un)

kunk2 → 0, as n→∞.

Since zn → z strongly in H1
0 (Ω), we getZ

G(x, un(x))

kunk2 dx→ 1

2

Z
|∇z|2 dx

and using the Fatou’s lemma, we also have
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λk+1

Z
z2 ≤

Z
lim sup

2G(x, un(x))

|un|2
u2n
kunk2 dx

≤
Z
z>0

lim sup
2G(x, un(x))

|un|2 z2 dx+

Z
z<0

lim sup
2G(x, un(x))

|un|2 z2 dx.

Therefore, we obtainZ
z>0
(λk+1 −K+(x))z

2 dx+

Z
z<0
(λk+1 −K−(x))z2 dx ≤ 0.

But this gives us once more a contradiction from G3). The proof is com-
plete.

Lemma 3.2. : Under hypothesis of Theorem 1.1, the functional Φ has the
following properties:

i) Φ(w)→∞, as kwk→∞, w ∈ E+.

ii) Φ(v)→ −∞, as kvk→∞, v ∈ Ek ⊕E−

Proof i) The proof is by contradiction. Suppose that

Φ(wn) =
1

2

Z
|∇wn|2 dx−

Z
G(x,wn)−

Z
hwn dx ≤ B(3.5)

for some constant B and some sequence (wn) ⊂ E+ with kwnk→∞.
Let ε > 0, from G0)-G1) there exists Bε(x) ∈ L1(Ω) such that

G(x, s) ≤ λk+1
s2

2
+ εs2 +Bε(x) a.e. in Ω, ∀ s ∈ R.(3.6)

However, by (3.5) and (3.6) we get that kwnk2 →∞, as n→∞, otherwise,
we would obtain

kwnk2 ≤ λk+1kwnk22 + 2�kwnk22 + 2
Z
B�(x) dx+

Z
|hwn| dx+ 2B.(3.7)

If we take 0 < ε < 1
2 , we obtain

kwnk ≤ constant.
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Letting zn =
wn

kwnk2 and dividing (3.7) by kwnk22, we obtain in view of

Poincaré inequality that

kznk2 − λk+1 ≤ 2 ε

λ1
kznk2 + 2

R
B�(x) dx+ 2B

kwnk2 +

R |hzn| dx
kwnk2 .

As kwnk2 →∞, there exist constants M,N > 0 such that

kznk2 − λk+1 ≤ �Mkznk2 +N.(3.8)

If we take 0 < ε < min(12 ,
1
M ), we get

kznk ≤ cte.(3.9)

Passing to a subsequence if necessary, we obtain

zn → z weakly in H1
0 (Ω), zn → z a.e. on Ω and in L2

for some z ∈ H1
0 (Ω) with kzk2 = 1 (since kznk2 = 1).

As z ∈ Ek+1 ⊕ E+ we have necessarily, from (3.8) and (3.9), that z is
λk+1-eigenfunction. since wn ∈ E+, inequality (3.5) becomes

λk+1

Z
w2n dx ≤

Z
2G(x,wn)− 2

Z
hwn dx+ 2B

Dividing the above estimate by kwnk22 and using Fatou’s lemma, we get

λk+1

Z
z2 dx ≤

Z
z>0

K+(x)z
2 dx+

Z
z<0

K−(x)z2 dx.

Hence Z
z>0
(λk+1 −K+)z

2 dx+

Z
z<0
(λk+1 −K−(x))z2 dx ≤ 0.

But this yields us a contradiction.

Proof of (ii). This part of the proof is also by contradiction. Assume
that there exist a constant B and a sequence (vn) ⊂ V with kvnk → ∞
such that

B ≤ Φ(vn) = 1

2

Z
|∇vn|2 dx−

Z
G(x, vn)−

Z
hvn dx,
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and so

2B +

Z
2G(x, vn) + 2

Z
hvn dx ≤ λk

Z
v2n dx.(3.10)

Set zn =
vn
kvnk , and passing to a subsequence if necessary, we obtain zn - z

weakly in H1
0 (Ω), zn → z strongly in L2(Ω) and zn(x)→ z(x) a.e. in Ω.

Proceeding as in ii) and using λk ≤ L±(x), we obtain z is a λk-
eigenfunction. Dividing (4.0) by kvnk22 and using Fatou’s lemma, one has
that Z

z>0
(L+(x)− λk)z

2 dx+

Z
z<0
(L−(x)− λk)z

2 dx ≤ 0.

This is a contradiction with assumption G4).

Proof of theorem 1.1. In view of lemmas 3.1 and 3.2, we may apply
theorem 2.1 letting S = E+ and Q = {v ∈ E−⊕Ek : kvk ≤ R}, with R > 0
being such that

α = max
∂Q
Φ < inf

E+
Φ = β

It follows that the functional Φ has a critical value c ≥ β and, hence,
problem (1) has a solution u ∈ H1

0 .

Proof of theorem 1.2. In the similar way of lemma 3.1 we prove
that Φ satisfies the (C)c condition, for every c ∈ R. In the second step, we
establish that Φ has the following properties :

i) Φ(w)→∞, as kwk→∞, w ∈ E+,

ii) Φ(v)→ −∞, as kvk→∞, v ∈ E1.

Let us prove the anticoercivness onΦ onE1. SinceE1 is one-dimensional,
we set E1 = {tϕ1 | t ∈ R}, where ϕ1 is the normalized λ1-eigenfunction
(i.e. kϕ1k = 1). We note that ϕ1 does not change sign in Ω. Letting
h(x, s) = g(x, s) + h(x) and H(x, s) =

R s
0 h(x, t) dt, we have for all R > 0,

Z
H(x, tϕ1) dx =

Z
H(x,Rϕ1) dx+

Z µZ t

R
h(x, sϕ1)ϕ1 ds

¶
dx

=

Z
H(x,Rϕ1) dx+

Z t

R

1

s

µZ
h(x, sϕ1)sϕ1 dx

¶
ds(3.11)

On the other hand, there exist γ, R > 0 such that
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R
[h(x, sϕ1) − λ1s]sϕ1 dx ≥ γs2 for all |s| ≥ R. If not, there is a sequence

sn ∈ R such that

lim sup
n→∞

Z
h(x, snϕ1)− λ1snϕ1

s2n
snϕ1 dx ≤ 0.

This contradicts G2). We conclude that from (15),

Z
H(x, tϕ1) dx ≥

Z t

R

1

s
(γs2) ds+

Z
H(x,Rϕ1) dx

=
t2

2
γ − R2

2
+

Z
H(x,Rϕ1) dx

Hence, Φ(tϕ1) =
t2

2 −
R
G(x, tϕ1) dx−

R
h(x)tϕ1 dx→ −∞, as |t|→∞.

Since E1 = {tϕ1 | t ∈ R}, Φ is anticoercive in E1.
We verify easily as in i) of lemma 3.2 that Φ is coercive on E+. Then

theorem 1.2 follows from theorem 2.1. The proof is complete.

4. EXAMPLES

First, we establish the following result

Claim There exist Ω1 ⊂ Ω such that meas(Ω1) > 0 andZ
Ω1

zzk dx <

Z
Ω\Ω1

zzk dx, ∀z ∈ H1
0 (Ω), kzkk = 1.

If not, for every sequence (Ωn) such that meas(Ωn) > 0 there exist (zn) ⊂
H1
0 (Ω), with kzknk = 1 andZ

Ωn
znz

k
n dx ≥

Z
Ω\Ωn

znz
k
n dx =

Z
Ω
(zkn)

2 dx−
Z
Ωn

znz
k
n dx.(4.1)

From a sequence (Ωn) satisfying

Ωn+1 ⊂ Ωn, meas(Ωn) =
1

n
,∀n ≥ 1.

Thus, we have
χΩn → 0 in L∞.

On the other hand, there exists z ∈ H1
0 (Ω) such that zn - z weakly in

H1
0 (Ω), zn → z strongly in L2(Ω) and zkn → zk strongly in Ek.
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From (4.2), we obtain Z
Ω
zk
2
dx ≤ 0,

and hence zk ≡ 0.This a contradiction, since kzkk = 1.

Example 1: Consider two-point boundary value problem

(
−u” = g(x, u) + h(x) 0 < x < π
u(0) = u(π) = 0

where h ∈ L2(0, π). Let g the continuous function defined by

g (s) =



s(k2 + 2(k − 1) sin(s)) + 3
2s(1 + sin(s)) if

s ≥ 1
as+ b if
−1 ≤ s ≤ 1
s sin(ln(1− ks))− s2

2 cos(ln(1− ks)) 1
1−ks + (k

2 + k)s if

s ≤ −1

A simple computation of the primitive G(s) =
R s
0 g(t) dt gives

G(s) =


(k2 + 3

2)
s2

2 − (k − 1
2)[s cos s− sin s] if s ≥ 1

as
2

2 + bs if −1 ≤ s ≤ 1
k s

2

2 sin(ln(1− ks)) + k2+k
2 s2 if s ≤ −1

Let, k ≥ 2 and

g(x, s) =


g(s) a.e. x ∈ Ω1,∀s ∈ R
(k2 + 2k − 2)s a.e. x ∈ Ω \ Ω1,∀s ∈ R

Set h(x, s) = g(x, s)− k2s. For every (un) ⊂ H1
0 (0, π) is such that

un
kunk -

z 6≡ 0 ukn
kunk → zk 6≡ 0 as n→∞, and since lim inf

|s|→∞
g(x,s)
s ≥ (k − 1)2 + 1 the

dominated convergence theorem can be used to show that
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lim sup
n→±∞

R
h(x, un(x))

ukn(x)
kunk2 dx

≥lim sup
n→±∞

R
Ω1
(2− 2k) unu1n

kunk2 +
R
Ω\Ω1 (2k − 2)

unu1n
kunk2

=
°°°zk°°°2 (2k − 2) hRΩ\Ω1 z

kzkk
zk

kzkk −
R
Ω1

z
kzkk

zk

kzkk
i

> 0

and thus conditionG2) is satisfied. It is clear that g(x, .) andG(x, .) satisfies

lim inf
s→±∞

g(x,s)
s = (k − 1)2 + 1, lim inf

s→±∞
2G(x,s)

s2

= k2 + 3
2 , lim sup

s→±∞
g(x,s)
s = (k + 1)2

lim inf
s→±∞

g(x,s)
s = k2 − 1, lim inf

s→±∞
2G(x,s)

s2 = k2, lim sup
s→±∞

2G(x,s)
s2

= k2 + 2k − 2, lim sup
s→±∞

g(x,s)
s

= (k + 1)2.

Theorem 1.1 thus implies that problem (1) has at least one solution for
any h ∈ L2(0, π).

Example 2: Consider

g(x, s) =


as a.e. x ∈ Ω1,∀s ∈ R
(2λ1 − a)s a.e. x ∈ Ω \Ω1,∀s ∈ R

with 2λ1 − λ2 < a < λ1, and put h(x, s) = g(x, s)− λ1s.

For every (un) ⊂ H1
0 (Ω) is such that

un
kunk - z 6≡ 0 u1n

kunk → z1 6≡ 0 as
n→∞, then
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lim sup
n→±∞

R
h(x, un(x))

u1n(x)
kunk2 dx

=lim sup
n→∞

R
Ω1
(a− λ1)

unu1n
kunk2 +

R
Ω\Ω1 (λ1 − a) unu1n

kunk2

= (λ1 − a)
hR

Ω\Ω1 zz
1dx− RΩ1 zz1dxi

> 0

and thus condition G2) is satisfied. It is clear that g and G satisfies

lim inf
s→±∞

g(x, s)

s
= a, lim inf

s→±∞
2G(x, s)

s2
= a, lim sup

s→±∞
g(x, s)

s
= 2λ1 − a

Theorem 1.2 thus implies that problem (1) has at least one solution for
any h ∈ L2.

Note that these examples is not covered by the results in (3.2) and
(3.5).
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