Proyecciones Vol. 24, N° 3, pp. 277-286, December 2005. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172005000300006

AN IMPROVEMENT OF J. RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS

FELIKS PRZYTYCKI * Polish Academy of Sciences, Polonia

Received : January 2005. Accepted : November 2005

Abstract

We prove that for $f: \overline{\mathbf{C}} \to \overline{\mathbf{C}}$ a rational mapping of the Riemann sphere of degree at least 2 and Ω a simply connected immediate basin of attraction to an attracting fixed point, if $|(f^n)'(p)| \geq Cn^{3+\xi}$ for constants $\xi > 0, C > 0$ all positive integers n and all repelling periodic points p of period n in Julia set for f, then a Riemann mapping $R: \mathbb{D} \to \Omega$ extends continuously to $\overline{\mathbb{D}}$ and $\operatorname{Fr}\Omega$ is locally connected. This improves a result proved by J. Rivera-Letelier for Ω the basin of infinity for polynomials, and $5 + \xi$ rather than $3 + \xi$.

*Supported by Polish KBN grant 2P03A 03425

We prove the following

Theorem 1. Let f be a polynomial of 1 complex variable of degree at least 2, with connected Julia set. Suppose there are constants C > 0 and $\xi > 0$ such that for every repelling periodic point p in the complex plane \mathcal{C} of period n,

$$(*) \qquad \qquad |(f^n)'(p)| \ge Cn^{3+\xi}$$

Then a Riemann map $R: \overline{C} \setminus \overline{D} \to \overline{C} \setminus K(f)$ from the complement of the closure of the unit disc D to the complement of the filled-in Julia set in the Riemann sphere, extends continuously to $\overline{C} \setminus D$. In particular Julia set is locally connected and there are no Cremer periodic orbits.

In [R] Juan Rivera-Letelier proved this under the assumption $|(f^n)'(p)| \ge Cn^{5+\xi}$.

The same strategy proves in fact a stronger theorem below, in the setting of [P2], including the case of an arbitrary simply connected immediate basin of attraction to a periodic sink for a rational map of $\bar{\mathcal{C}}$.

Theorem 2. Let f be a rational mapping on the Riemann sphere $\overline{\mathcal{C}}$ of degree at least 2 and let Ω be a simply connected immediate basin of attraction to an attracting fixed point. Suppose that (*) holds for all repelling periodic points p in Julia set for f. Then any Riemann map $R: \mathbb{D} \to \Omega$ extends continuously to $\overline{\mathbb{D}}$ and $\operatorname{Fr}\Omega$ is locally connected.

Most part of our proof of Theorems 1 and 2 follows [R]. The proof of Theorem 1 uses an invariant measure of maximal entropy. However the right measure to use in more general situations, like in Theorem 2, is an f-invariant measure ω equivalent to a harmonic measure on Fr Ω viewed from Ω ; it coincides with the measure of maximal entropy in the case of the basin of ∞ for polynomials.

In the situation of Theorem 2 there is however a technical difficulty, namely proving the existence of an expanding repeller X in Fr Ω , such that in particular the topological entropy of $f|_X$ is arbitrarily close to the measure theoretical entropy $h_{\omega}(f)$, in consequence such that Hausdorff dimension HD(X) is arbitrarily close to HD(ω) = 1, see Lemma 3. This fact is a strengthening of the theorem on the density of periodic points in Fr Ω , see [PZ]. The proof can be obtained as in [PZ] with the use of Pesin-Katok theory and is omitted here. We devote a separate short paper [P4] to it. In the situation of Theorem 1 the existence of X is also needed in the proof, but this case is easier (see the references in [R]).

Proof of Theorem 1 (and analogously Theorem 2) reduces to checking the summability assumption in the following standard

Lemma 1, see [R]. Let $w_0 \in \mathcal{C} \setminus K(f)$ and $\omega_n, n = 1, 2, ...$ be an increasing sequence of positive real numbers such that $\sum_{n=1}^{\infty} \omega_n^{-1} < \infty$. If for every $w \in f^{-n}(w_0)$ we have $|(f^n)'(w)| \ge \omega_n$, then the Riemann map R extends continuously to $\overline{\mathcal{C}} \setminus ID$.

Definitions. We call a closed set $X \subset J(f)$ an *expanding repeller* if $f(X) \subset X$ the map f restricted to X is open, topologically mixing and expanding.

Here expanding means that there exist C > 0 and $\lambda > 1$, called an expanding constant, such that for every $x \in X$ we have $|(f^n)'(x)| \geq C\lambda^n$. The property that $f|_X$ is open is equivalent to the existence of a neighbourhood U of X in \mathcal{C} , called a *repelling neighbourhood*, such that every forward f-trajectory $x, f(x), \dots f^n(x), \dots$ staying in U must be contained in X, see for example [PU1, Ch.5]. This easily implies that if $\{x, f(x), \dots f^n(x)\} \subset U$ then $|(f^n)'(x)| \geq C\lambda^n$, maybe for a constant C bigger than before and U a smaller neighbourhood of X.

Let $\lambda_n, n = 1, 2, ...$ be an increasing sequence of positive real numbers such that for every n, every repelling periodic point p of period n has the multiplier $(f^n)'(p)$ of absolute value at least λ_n .

In the sequel C will denote various positive constants which can change even in one consideration.

Lemma 2, see [R]. Let f be a polynomial of 1 complex variable of degree at least 2. Let $X \subset J(f)$ be an expanding repeller of positive Hausdorff dimension, HD(X) > 0, and λ be its expanding constant. Then there is U, a repelling neighbourhood of X, a "base point" $w_0 \in \mathcal{C} \setminus K(f)$ and a constant C > 0 such that the following holds.

For every $\varepsilon > 0$ for every n large enough there exists an integer $\ell = \ell(n)$ satisfying $0 \leq \ell \leq (1/(\text{HD}(X) \ln \lambda) + \varepsilon) \ln n$, and there exists $x = x(n) \in f^{-\ell}(w_0)$ satisfying $x, \dots, f^{\ell}(x) \in U$, such that for every $z \in f^{-n}(x)$

$$|(f^{n+\ell})'(z)| \ge C\lambda_{n+\ell}.$$

Sketch of Proof. This Lemma in a slightly different formulation was proved in [R] and in a more rough version in [PRS1]. See also [PRS2, §2]

and [P-Kyoto]. The idea is first to find $\hat{x} \in X$, a safe point, that is

$$\hat{x} \notin \left(\bigcap_{k=1}^{\infty} \bigcup_{n \ge k} B(f^{2n}(\operatorname{Crit}(f)) \cup f^{2n+1}(\operatorname{Crit}(f)), n^{-a})\right) \cup \bigcup_{n \ge 1} f^n(\operatorname{Crit}(f))$$

for an arbitrarily fixed a > 1/HD(X). The latter inequality assures the existence of \hat{x} . Here Crit(f) denotes the set of all *f*-critical points in \mathcal{C} .

Fix an arbitrary point $\hat{w} \in X$ and $r_0 > 0$ such that $B' := B(\hat{w}, r_0)$ is well inside U and choose an arbitrary $w_0 \in B' \setminus K$ as a base point.

Let ℓ be a minimal time such that a component V of $f^{-\ell}(B')$ intersecting X is in $B'' := B(\hat{x}, \delta n^{-a})$, where $0 < \delta << 1$ is a constant. By construction f^{ℓ} is univalent on V and has bounded distortion. Denote the branch of $f^{-\ell}$ leading B' to V by F_1 .

(More precisely, F_1 can be constructed in two steps. First, let k be the smallest integer such that f^k maps B'' to a boundedly distorted large disc B'''. Denote the branch of f^{-k} leading B''' to B'' by F'_1 . Next using the topological transitivity of f on X we find a branch F''_1 of f^{-M} on B'mapping it in B''', where M is bounded independently of n. We define $F_1 := F'_1 \circ F''_1$ and $\ell = k + M$.)

Each branch F_2 of f^{-n} on $B(\hat{x}, n^{-a})$, can be composed with F_3 being the composition of at most N branches of f^{-1} for N bounded independently of n, so that $F_3 \circ F_2$ maps $B(\hat{x}, \delta n^{-a})$ deep in B'. Then $F = F_3 \circ F_2 \circ F_1$, a branch of $f^{-(n+\ell+N)}$, maps B' deep in itself, so F(B') contains a periodic point p of period $n + \ell + N$.

Finally replace $\hat{x} \in J(f)$ by $x \in V \setminus K(f)$ such that $f^{\ell}(x) = w_0$. For $z = F_2(x)$, since $|(f^{n+\ell+N})'(F_3(z))|/|(f^{n+\ell+N})'(p)|$ is bounded by a distortion constant, we get

$$|(f^{n+\ell})'(z)| = |(f^{n+\ell+N})'(F_3(z))| \cdot |F'_3(z)| \ge C\lambda_{n+\ell+N} \ge C\lambda_{n+\ell}.$$

QED

Proof of Theorem 1. Let X and other constants be as in Lemma 2. Let $\beta_2 \geq \beta_1 > 1$ be constants such that for all k large enough and all y such that $y, ..., f^k(y) \in U$ we have $\beta_1^k \leq |(f^k)'(y)| \leq \beta_2^k$.

Consider an arbitrary $w_n \in f^{-n}(w_0)$. Join x = x(n) to w_0 by a hyperbolic geodesic $\gamma = \gamma_n$ in $\mathbb{C} \setminus K(f)$. Let x_n be the end of the component of $f^{-n}(\gamma_n)$ having one end at w_n , different from w_n . Then we write

$$|(f^n)'(w_n)| = |(f^n)'(x_n)| \frac{|(f^n)'(w_n)|}{|(f^n)'(x_n)|}.$$

By Lemma 2 we have

$$|(f^n)'(x_n)| = |(f^{n+\ell})'(x_n)| \cdot |(f^\ell)'(x)|^{-1} \ge C\lambda_{n+\ell}\beta_2^{-\ell}.$$

Denote $\tilde{w}_0 = R^{-1}(w_0), \tilde{w}_n = R^{-1}(w_n), \tilde{x} = R^{-1}(x)$ and $\tilde{x}_n = R^{-1}(x_n)$. We have

$$\frac{|(f^n)'(w_n)|}{|(f^n)'(x_n)|} = \frac{|(R^{-1} \circ f^n)'(w_n)|}{|(R^{-1} \circ f^n)'(x_n)|} \frac{|R'(\tilde{w}_0)|}{|R'(\tilde{x})|} = \frac{|(f^{-n} \circ R)'(\tilde{x})|}{|(f^{-n} \circ R)'(\tilde{w}_0)|} \cdot \frac{|R'(\tilde{w}_0)|}{|R'(\tilde{x})|} = I \cdot II,$$

where f^{-n} is the branch leading x_0 to x_n and w_0 to w_n .

Note that $|\tilde{x}| - 1 \ge Cd^{-\ell}$, where C depends only on $|\tilde{w}_0|$. We estimate the fraction I by Koebe Distortion Lemma. Namely there is a constant $C_{\rm K}$ depending only on \tilde{w}_0 such that

$$I \ge C_{\mathrm{K}}(|\tilde{x}| - 1) \ge CC_{\mathrm{K}}d^{-\ell}$$

We have also, denoting $g(z) = z^d$, using $Rg^{\ell} = f^{\ell}R$,

$$II \ge |(f^{\ell})'(x)| \cdot |(g^{\ell})'(\tilde{x})|^{-1} \ge Cd^{-\ell}\beta_1^{\ell}$$

In conclusion

$$|(f^n)'(w_n)| \ge C\lambda_n \beta_2^{-\ell} d^{-2\ell} \beta_1^{\ell}.$$

Invoking the estimate of ℓ we get

$$|(f^{n})'(w_{n})| \geq C\lambda_{n}\beta_{2}^{-\ell}\beta_{1}^{\ell}d^{-2(1/(\ln\lambda)\operatorname{HD}(X)+\varepsilon)\ln n}$$
$$\geq C\lambda_{n}(\beta_{1}/\beta_{2})^{\ell} n^{-2(1/(\ln\lambda)\operatorname{HD}(X)+\varepsilon)\ln d}$$

By Pesin-Katok theory, applied to the measure of maximal entropy equal to $\ln d$, there exists X and its repelling neighbourhood U, such that $\beta_1 \geq d - \varepsilon$ and $\beta_2 \leq d + \varepsilon$, hence $\lambda \geq d - \varepsilon$. Moreover $HD(X) \geq 1 - \varepsilon$. Hence

(1)
$$|(f^n)'(w_n)| \ge C\lambda_n \frac{(d-\varepsilon)^\ell}{(d+\varepsilon)^\ell} n^{-2(\frac{1}{(\ln(d-\varepsilon))(1-\varepsilon)}+\varepsilon)\ln d} \ge \lambda_n n^{-2-\varepsilon'}$$

with ε , hence ε' , arbitrarily close to 0. So, if $\lambda_n \ge Cn^{3+\xi}$ the assumptions of Lemma 1 are satisfied and Theorem 1 follows. QED

Remark 1 (corresponding to an observation in [R]). The measure of maximal entropy is optimal in this construction. If μ is any *f*-invariant ergodic measure on J(f) of positive Lyapunov exponent $\chi_{\mu}(f) := \int \ln |f'| d\mu$, then $(\ln \lambda) \text{HD}(X) \approx \chi_{\mu}(f)(h_{\mu}(f)/\chi_{\mu}(f)) = h_{\mu}(f)$, where $h_{\mu}(f)$ is the measure-theoretic entropy. \approx means that the ratio is arbitrarily close to 1 for appropriate X. Therefore $|(f^n)'(w_n)| \geq \lambda_n n^{-2\ln d/h_\mu(f)-\varepsilon'}$, which attains maximum at $h_\mu(f) = h_{\text{top}}(f) = \ln d$, the topological entropy, giving (1).

Remark 2. The property (*) excludes an existence of parabolic periodic points in Fr Ω . Otherwise we would find periodic orbits spending almost all the time close to such a parabolic point q, so its multiplier would about Cn^a , where $a = t/(t-1) \leq 2$ for $f^m(z) = z + b(z-q)^t + ...$ for some integer m and $b \neq 0$, for z close to q.

The absence of Cremer periodic orbits follows from the local connectedness, see [R] and the references there. We do not know whether Siegel discs can exist. The proof given in [PRS] under the assumption of the uniform exponential growth of the multipliers of repelling periodic orbits ω_n does not seem to work here. We do not know whether (*) implies a summability condition which would already imply the absence of Siegel discs and Cremer points due to so-called backward asymptotic stability, cf. [GS] or [P3, Th.B and Remark 3.2] and [PU2, Appendix B].

Now we pass to the setting of Theorem 2, where $R : \mathbb{I} \to \Omega$ is a Riemann mapping. Let g be a holomorphic extension of $R^{-1} \circ f \circ R$ to a neighbourhood of the unit circle $\partial \mathbb{I} D$. It exists and it is expanding on $\partial \mathbb{I} D$, see [P2, §7].

Now we formulate a lemma about the existence of appropriate expanding repellers. As we mentioned in Introduction it follows from Pesin-Katok theory. For the detailed proof see [P4], developing [PZ].

Lemma 3. Let ν be an ergodic *g*-invariant probability measure on $\partial \mathbb{D}$, such that for ν -a.e. $\zeta \in \partial \mathbb{D}$ there exists a radial limit $\hat{R}(\zeta) := \lim_{r \nearrow 1} R(r\zeta)$. Assume that the measure $\mu := \hat{R}_*(\nu)$ has positive Lyapunov exponent $\chi_{\mu}(f)$. Let $\varphi : \partial \mathbb{D} \to \mathbb{R}$ be a continuous real-valued function. Then for every $\varepsilon > 0$ there exist $Y \subset \partial \mathbb{D}$ a *g*-invariant expanding repeller in the domain of \hat{R} and C > 0 such that for every $\delta > 0$ small enough there exists $r(\delta) < 1$, such that for all $r : r(\delta) \leq r < 1$ and $\zeta \in Y$ and all positive integers *n*

(i) $C^{-1} \exp n(\int \varphi \, d\nu - \varepsilon) \le \exp \sum_{j=0}^{n-1} \varphi(g^j(\zeta)) \le C \exp n(\int \varphi \, d\nu + \varepsilon).$

(ii) $X = \hat{R}(Y)$ is an expanding repeller for f and for every $r : r(\delta) < r < 1$ it holds $R(r\zeta) \in B(\hat{R}(\zeta), \delta)$.

(iii) $C^{-1} \exp n(\chi_{\mu}(f) - \varepsilon) \le |(f^n)'(\hat{R}(\zeta))| \le C \exp n(\chi_{\mu}(f) + \varepsilon).$ (iv) $\operatorname{HD}(X) \ge \operatorname{HD}(\mu) - \varepsilon.$ **Proof of Theorem 2.** For every $\zeta \in \partial \mathbb{D}$, $\alpha : 0 < \alpha < \pi/2$ and t > 0 denote

$$S_{\alpha,t}(\zeta) = \zeta \cdot (1 + \{x \in \mathcal{C} \setminus \{0\} : \pi - \alpha \le \operatorname{Arg}(x) \le \pi + \alpha\}, |x| < t).$$

Such a set is called Stolz angle. If we do not mind t we skip it and write $S_{\alpha}(\zeta)$.

By a distortion estimate for iterates of g there exist $t_0 < 1, C > 0$ and $\vartheta : 0 < \vartheta < \pi/2$ such that if for all j = 0, 1, 2, ..., m it holds $1 - |g^j(r\zeta)| \le t_0$ then $g^m(r\zeta) \in S_{\vartheta,Ct_0}(g^m(\zeta))$, for an arbitrary m.

Choose X, Y and all the constants as in Lemma 3, with $\varphi = \ln |g'|$. Consider an arbitrary positive integer n and choose $\hat{x} \in X$, $\delta > 0$ and ℓ as in Proof of Lemma 2, except that now ℓ is the first time $f^{\ell}(B(\hat{x}, \delta n^{-a}))$ becomes large. (This ℓ was k in Proof of Lemma 2.) We define only now $\hat{w} := f^{\ell}(\hat{x})$. Therefore \hat{w} depends on n.

Choose $y = s\hat{y}$ for $\hat{y} \in Y$ and s : 0 < s < 1, satisfying $\hat{R}(\hat{y}) = \hat{x}$ such that $x := R(y) \in \partial B(\hat{x}, \delta^2 n^{-a})$.

Note that in Proof of Th.1 y was denoted by \tilde{x} . It was defined as $y = R^{-1}(x)$, after x had been chosen. We did not care about the distance and position of y with respect to \hat{y} . (The latter point was not of interest there, a priori we did not even know it existed.) Here we are more careful, consider \hat{x} in the radial limit of a point \hat{y} and choose y belonging to the radius at \hat{y} .

If δ is small enough then all points $g^j(y)$ are close to $\partial \mathbb{D}$ for $j = 0, ..., \ell$ since all the distances between $\hat{R}g^j(\hat{y})$ and $Rg^j(y)$ are small, smaller than $C\delta$. (This is the reason why δ^2 appears in the choice of x). Otherwise there would be a sequence of points in \mathbb{D} with limit $z \in \mathbb{D}$ such that $R(z) \in \mathrm{Fr}\Omega$ by the continuity of R in \mathbb{D} , which would contradict $R(\mathbb{D}) = \Omega$.

In particular $g^{j}(y) \in S_{\vartheta,Ct_{0}}(g^{j}(\hat{y}))$. So all the distances $|g^{j}(\hat{y}) - g^{j}(y)|$ are small, hence by Lemma 3 (i) for $\zeta = \hat{y}$ and by the continuity of $\ln |g'|$ we get

$$|(g^{\ell})'(y)| \le C \exp \ell(\chi_{\nu}(g) + 2\varepsilon)$$

On the other hand the point $g^{\ell}(y) \in S_{\vartheta,Ct_0}(g^{\ell}(\hat{y}))$ is well inside \mathbb{D} . This follows from the assumption that $w_0 := R(g^{\ell}(y)) = f^{\ell}(x) \in f^{\ell}(\partial B(\hat{x}, \delta^2 n^{-a}))$ is far from $f^{\ell}(\hat{x})$, namely within the distance at least $C\delta$.

This was the (only) place where we used the uniform radial continuity of \hat{R} at Y assured by Lemma 3 (ii); more precisely we used the uniform nontangential continuity of R, at $\zeta = g^{\ell}(\hat{y})$, namely the uniform convergence of R(z) for $z \to \zeta$ such that $z \in S_{\vartheta}$. (Nontangential and radial convergences of R are equivalent properties by a general theory). Then the final estimate in Proof of Theorem 1 replaces by

$$|(f^n)'(w_n)| \ge \lambda_n n^{-2\chi_\nu(g)/\chi_\mu(f) \operatorname{HD}(\mu) - \varepsilon'}$$

Now we apply $HD(\mu) = h_{\mu}(f)/\chi_{\mu}(f)$ see [PU1, Ch.9] and $h_{\nu}(g) = h_{\mu}(f)$, see [P1] and [P2, §4]. We get

$$|(f^n)'(w_n)| \ge \lambda_n n^{-2\chi_\nu(g)/\mathbf{h}_\mu(f)-\varepsilon'} = \lambda_n n^{-2\chi_\nu(g)/\mathbf{h}_\nu(g)-\varepsilon'} = \lambda_n n^{-2-\varepsilon'}$$

the latter equality for ν equivalent to length (harmonic) measure, where $\chi_{\nu}(g)/h_{\nu}(g) = HD(\nu) = 1.$

Though in this construction w_0 depends on n, this does not influence the result. We can replace at the end w_0 by a base point independent of nwhich changes the final estimate only by a distortion constant, which can be absorbed by ε' for n large enough.

QED

Remark 3. As in Remark 1 note that the measure ν equivalent to the length is optimal in the sense that for any other *g*-invariant probability measure of positive Lyapunov exponent (which implies that $\mu = \hat{R}_*(\nu)$ also has positive Lyapunov exponent, see [P2]), as $\text{HD}(\nu) \leq \text{HD}(\partial \mathbb{ID}) = 1$, we obtain $|(f^n)'(w_n)| \geq \lambda_n n^{-2\text{HD}(\nu)-\varepsilon'}$, the estimate which is not better.

Remark 4. It would be natural to prove a local version of Theorem 2, in the setting of [P2], assuming (*) only for periodic orbits in Fr Ω . More precisely the question is whether the following holds:

Let Ω be a simply connected domain in $\overline{\mathcal{C}}$ and f be a holomorphic map defined on a neighbourhood W of $\operatorname{Fr}\Omega$ to $\overline{\mathcal{C}}$. Assume $f(W \cap \Omega) \subset \Omega$, $f(\operatorname{Fr}\Omega) \subset \operatorname{Fr}\Omega$ and $\operatorname{Fr}\Omega$ repells to the side of Ω , that is $\bigcap_{n=0}^{\infty} f^{-n}(W \cap \overline{\Omega}) =$ $\operatorname{Fr}\Omega$. Suppose that (*) holds for all repelling periodic points p in $\operatorname{Fr}\Omega$. Then any Riemann map $R : \mathbb{D} \to \Omega$ extends continuously to $\overline{\mathbb{D}}$ and $\operatorname{Fr}\Omega$ is locally connected.

We do not know how to overcome troubles with finding N consecutive branches of f^{-1} whose composition maps $F_2(B(\hat{x}, n^{-a}))$ deep in B' (in the notation in Proof of Lemma 2). Even if we succeed we do not know whether the periodic point p belongs to Fr Ω . The problem is that we want to control every backward branch of f^{-n} leading x into Ω , rather than (measure) typical, as in [PZ], or in accordance to some invariant hyperbolic subset of Fr Ω .

Note that at least Lemma 3 holds in this setting, see [P4].

References

- J. Graczyk, S. Smirnov, Weak expansion and geometry of Julia sets, preprint 1999.
- [2] F. Przytycki, J. Rivera-Letelier, S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Inventiones Mathematicae 151.1, pp. 29-63, (2003).
- [3] F. Przytycki, J. Rivera-Letelier, S. Smirnov, Equality of pressures for rational functions, Ergodic Theory and Dynamical Systems 23, pp. 891-914, (2004).
- [4] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80, pp. 161-179, (1985).
- [5] F. Przytycki, *Riemann map and holomorphic dynamics*, Invent. Math. 85, pp. 439-455, (1986).
- [6] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: Conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials, Transactions of the AMS 350.2, pp. 717–742, (1998).
- [7] F. Przytycki, Expanding repellers in limit sets for iteration of holomorphic functions, Fundamenta Math. 186. 1, pp. 85-96, (2005).
- [8] F. Przytycki, Hyperbolic Hausdorff dimension is equal to the minimal exponent of conformal measure on Julia set. A simple proof, Proceedings of Kyoto Conference, Feb. (2004).
- [9] F. Przytycki, M. Urbański. Fractals in the Plane, Ergodic Theory Methods. to appear in Cambridge University Press. Available on http://www.math.unt.edu/~urbanski and http://www.impan.gov.pl/~feliksp
- [10] F. Przytycki, M. Urbański, Porosity of Julia sets of non-recurrent and parabolic Collet-Eckmann rational functions, Annales Academiae Scientiarum Fennicae 26, pp. 125-154, (2001).

- [11] F. Przytycki, A. Zdunik, Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees techniques, Fundamenta Math. 145, pp. 65-77, (1994).
- [12] J. Rivera-Letelier. Weak hyperbolicity on periodic orbits for polynomials, C. R. Acad. Sci. Paris 334, pp. 1113-1118, (2002).

Feliks Przytycki

Institute of Mathematics Polish Academy of Sciences ul. Śniadeckich 8 00-956 Warszawa Poland e-mail: feliksp@impan.gov.pl