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Abstract

We prove that for f :@ — @ a rational mapping of the Riemann
sphere of degree at least 2 and Q2 a simply connected immediate basin
of attraction to an attracting fived point, if |(f™) (p)| > Cn®*+¢ for
constants £ > 0,C' > 0 all positive integers n and all repelling periodic
points p of period n in Julia set for f, then a Riemann mapping
R: ID — Q eatends continuously to ID and FrQ is locally connected.
This improves a result proved by J. Rivera-Letelier for Q the basin of
infinity for polynomials, and 5+ & rather than 3 + €.
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We prove the following

Theorem 1. Let f be a polynomial of 1 complex variable of degree at
least 2, with connected Julia set. Suppose there are constants C' > 0 and
& > 0 such that for every repelling periodic point p in the complex plane
of period n,

(%) (£ ()| = COn®*

Then a Riemann map R : @\ ID — @ \ K(f) from the complement of the
closure of the unit disc ID to the complement of the filled-in Julia set in
the Riemann sphere, extends continuously to @\ ID. In particular Julia set
is locally connected and there are no Cremer periodic orbits.

In [R] Juan Rivera-Letelier proved this under the assumption |(f™)(p)| >
Cnb+e.

The same strategy proves in fact a stronger theorem below, in the setting
of [P2], including the case of an arbitrary simply connected immediate basin
of attraction to a periodic sink for a rational map of €.

Theorem 2. Let f be a rational mapping on the Riemann sphere
@ of degree at least 2 and let Q be a simply connected immediate basin
of attraction to an attracting fixed point. Suppose that (*) holds for all
repelling periodic points p in Julia set for f. Then any Riemann map
R : D — Q extends continuously to ID and Fr() is locally connected.

Most part of our proof of Theorems 1 and 2 follows [R]. The proof of
Theorem 1 uses an invariant measure of maximal entropy. However the
right measure to use in more general situations, like in Theorem 2, is an
f-invariant measure w equivalent to a harmonic measure on Fr{) viewed
from €Q; it coincides with the measure of maximal entropy in the case of
the basin of co for polynomials.

In the situation of Theorem 2 there is however a technical difficulty,
namely proving the existence of an expanding repeller X in Fr{2, such
that in particular the topological entropy of f|x is arbitrarily close to the
measure theoretical entropy hy,(f), in consequence such that Hausdorff di-
mension HD(X) is arbitrarily close to HD(w) = 1, see Lemma 3. This fact
is a strengthening of the theorem on the density of periodic points in Fr(2,
see [PZ]. The proof can be obtained as in [PZ] with the use of Pesin-Katok
theory and is omitted here. We devote a separate short paper [P4] to it. In
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the situation of Theorem 1 the existence of X is also needed in the proof,
but this case is easier (see the references in [R]).

Proof of Theorem 1 (and analogously Theorem 2) reduces to checking
the summability assumption in the following standard

Lemma 1, see [R]. Let wg € @ \ K(f) and wp,n = 1,2,... be an
increasing sequence of positive real numbers such that >.°°; w1 < co. If
for every w € f7"(wp) we have |(f™) (w)| > wp, then the Riemann map R
extends continuously to @\ ID.

Definitions. We call a closed set X C J(f) an expanding repeller if
f(X) C X the map f restricted to X is open, topologically mixing and
expanding.

Here expanding means that there exist C' > 0 and A > 1, called an
expanding constant, such that for every x € X we have |(f™) (z)| > CA".
The property that f|x is open is equivalent to the existence of a neighbour-
hood U of X in@, called a repelling neighbourhood, such that every forward
f-trajectory x, f(z),...f"(x), ... staying in U must be contained in X, see
for example [PU1, Ch.5]. This easily implies that if {z, f(z),...f"(z)} C U
then |(f™) (x)| > CA"™, maybe for a constant C' bigger than before and U a
smaller neighbourhood of X.

Let A\p,n = 1,2, ... be an increasing sequence of positive real numbers
such that for every n, every repelling periodic point p of period n has the
multiplier (f™)'(p) of absolute value at least A,,.

In the sequel C' will denote various positive constants which can change
even in one consideration.

Lemma 2, see [R]. Let f be a polynomial of 1 complex variable of
degree at least 2. Let X C J(f) be an expanding repeller of positive
Hausdorff dimension, HD(X) > 0, and A be its expanding constant. Then
there is U, a repelling neighbourhood of X, a ”base point” wy € @\ K(f)
and a constant C > 0 such that the following holds.

For every € > 0 for every n large enough there exists an integer ¢ = ¢(n)
satisfying 0 < ¢ < (1/(HD(X)In\) 4+ €)Inn, and there exists © = z(n) €
% (wo) satisfying z, ..., f'(x) € U, such that for every z € f~"(x)

[(f"H)(2)] = CAnge

Sketch of Proof. This Lemma in a slightly different formulation was
proved in [R] and in a more rough version in [PRS1]. See also [PRS2, §2]
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and [P-Kyoto]. The idea is first to find & € X, a safe point, that is

#¢ (U BU @) U P @), ) U U 7(Crit)

k=1n>k n>1

for an arbitrarily fixed a > 1/HD(X). The latter inequality assures the
existence of Z. Here Crit(f) denotes the set of all f-critical points in @'

Fix an arbitrary point @ € X and r¢9 > 0 such that B’ := B(w,rq) is
well inside U and choose an arbitrary wg € B’ \ K as a base point.

Let £ be a minimal time such that a component V of f~¢(B’) intersecting
X isin B” := B(#,0n~")), where 0 < § << 11is a constant. By construction
f%is univalent on V and has bounded distortion. Denote the branch of f—*
leading B’ to V' by Fj.

(More precisely, F; can be constructed in two steps. First, let k& be
the smallest integer such that f¥ maps B” to a boundedly distorted large
disc B". Denote the branch of f~* leading B” to B" by F{. Next using
the topological transitivity of f on X we find a branch F{' of f~ on B’
mapping it in B"”’, where M is bounded independently of n. We define
Fy:=F/oFand{=k+ M.)

Each branch F» of f~" on B(Z,n~%), can be composed with Fj being
the composition of at most N branches of f~! for N bounded independently
of n, so that F3o Fy maps B(Z,dn~*) deep in B'. Then F = F30 Fy0 F}, a
branch of f~("++N) maps B’ deep in itself, so F(B’) contains a periodic
point p of period n + ¢+ N.

Finally replace 2 € J(f) by z € V \ K(f) such that f*(z) = wo.
For z = Fy(x), since |(fPHHNY(F3(2))|/|(f* TN (p)| is bounded by a
distortion constant, we get

(FH (2)] = [(F Y (F3(2))] - [F3(2)] > Chnsesn > Chnye

QED

Proof of Theorem 1. Let X and other constants be as in Lemma 2.
Let By > 1 > 1 be constants such that for all k large enough and all y
such that y, ..., f*(y) € U we have gF < |(f*)'(y)| < 5.

Consider an arbitrary wy, € f~"(wp). Join z = z(n) to wp by a hyper-
bolic geodesic v =, in@ \ K(f). Let =, be the end of the component of
f7"™(~n) having one end at wy,, different from w,,. Then we write

(™) (wn)

(™) (wn)l = (") ()] DIENE
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By Lemma 2 we have

[(F7) (@)l = 1Y (@) 1) (@) 7 2> ChneBy "

Denote wg = R~ (wp), @, = R~ (wy), 7 = R~Y(x) and &, = R~ (z,,).
We have

[(F™) (wa)l _ [(B™" 0 f*) (wn)| [R'(0)] _ [(f7" 0 R)'(&)| |[R'(do)| _, .,

() (@)l (BT o fr) (@n)| [RI(Z)] |(f7" 0 R (@o)|  |R/(Z)]
where f~" is the branch leading zy to z, and wqg to w,.

Note that |#| — 1 > Cd~*, where C' depends only on |@|. We estimate
the fraction I by Koebe Distortion Lemma. Namely there is a constant Ck
depending only on wg such that

I>Ck(|E|—1) > CCxd ™"
We have also, denoting g(z) = 2%, using Rq¢' = f'R,
I > |(fY ()] - (g @) > cd 1.
In conclusion
’(fn)/(wn” > C)‘nBQ_Zdiﬂﬁf
Invoking the estimate of £ we get
’(fn)/(wn” > C}\nﬁgéﬁfdfﬂl/(ln A)HD(X)+¢)Inn
> C)\n(ﬁl/ﬁ2)e n72(1/(ln/\)HD(X)+s) Ind

By Pesin-Katok theory, applied to the measure of maximal entropy
equal to Ind, there exists X and its repelling neighbourhood U, such that
B1>d—cand B < d+ e, hence A > d —e. Moreover HD(X) > 1 — .
Hence

(d—¢e)f
(d+e)t

Ind

D) 1" (wn)| = Con R R Wi g

with €, hence ¢/, arbitrarily close to 0. So, if A, > Cn3T¢ the assumptions
of Lemma 1 are satisfied and Theorem 1 follows. QED

Remark 1 (corresponding to an observation in [R]). The measure of
maximal entropy is optimal in this construction. If x4 is any f-invariant er-
godic measure on J(f) of positive Lyapunov exponent x,(f) := [In|f’|dpu,
then (In VHD(X) ~ x,u(N)(bu(f)/xu(F)) = hu(f), where b (f) is the
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measure-theoretic entropy. = means that the ratio is arbitrarily close to
1 for appropriate X. Therefore |(f) (wy)| > Apn=2m4/u(H)=¢" which at-
tains maximum at h,(f) = hep(f) = Ind, the topological entropy, giving

(1).

Remark 2. The property (*) excludes an existence of parabolic periodic
points in Fr(). Otherwise we would find periodic orbits spending almost all
the time close to such a parabolic point ¢, so its multiplier would about
Cn®, where a = t/(t—1) < 2 for f™(z) = 2+b(z —q) + ... for some integer
m and b # 0, for z close to q.

The absence of Cremer periodic orbits follows from the local connected-
ness, see [R] and the references there. We do not know whether Siegel discs
can exist. The proof given in [PRS] under the assumption of the uniform
exponential growth of the multipliers of repelling periodic orbits w, does
not seem to work here. We do not know whether (*) implies a summability
condition which would already imply the absence of Siegel discs and Cre-
mer points due to so-called backward asymptotic stability, cf. [GS] or [P3,
Th.B and Remark 3.2] and [PU2, Appendix B].

Now we pass to the setting of Theorem 2, where R : ID — § is a
Riemann mapping. Let g be a holomorphic extension of R~1 o fo R to a
neighbourhood of the unit circle ID. It exists and it is expanding on 01D,
see [P2, §7].

Now we formulate a lemma about the existence of appropriate expand-
ing repellers. As we mentioned in Introduction it follows from Pesin-Katok
theory. For the detailed proof see [P4], developing [PZ].

Lemma 3. Let v be an ergodic g-invariant probability measure on 9D,
such that for v-a.e.( € dID there exists a radial limit R(¢) := lim, ~ R(r().
Assume that the measure p := R*(V) has positive Lyapunov exponent
Xu(f). Let ¢ : 0ID — IR be a continuous real-valued function. Then for
every € > 0 there exist Y C 0ID a g-invariant expanding repeller in the
domain of R and C > 0 such that for every 0 > 0 small enough there exists
r(d) < 1, such that for all 7 : 7(6) < r < 1 and ¢ € Y and all positive
integers n

(i) Cexpn(f pdv —e) < expY7=g 9(¢7(¢)) < Cexpn([pdv +¢).

(ii) X = R(Y) is an expanding repeller for f and for every r : 7(§) <

~

r < 1 it holds R(r¢) € B(R(¢),9).

(iii) C~texpn(xu(f) — ) < |(f*)(R(C))] < Cexpnlxu(f) +e).
(iv) HD(X) > HD(y) — e.
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Proof of Theorem 2. For every ( € 0D, a: 0 < a < m/2and t > 0
denote

Sat(Q)=C-1+{ze@\{0}: 7 —a<Arg(z) <7 +a}l,|z| <t).

Such a set is called Stolz angle. If we do not mind ¢ we skip it and write
5a(0).

By a distortion estimate for iterates of g there exist tp < 1,C' > 0 and
¥ :0 <9 < 7/2such that if for all j = 0,1,2,...,m it holds 1— g/ (r¢)| < o
then ¢™(r¢) € Sy.ct,(9™(¢)), for an arbitrary m.

Choose X,Y and all the constants as in Lemma 3, with ¢ = In|¢/|.
Consider an arbitrary positive integer n and choose £ € X, § > 0 and ¢
as in Proof of Lemma 2, except that now £ is the first time f¢(B(Z,6n~?)
becomes large. (This ¢ was k in Proof of Lemma 2.) We define only now
W := f¢(&). Therefore @ depends on n.

Choose y = sy for y € Y and s : 0 < s < 1, satisfying R(@) = & such
that = := R(y) € dB(%,5*n™%).

Note that in Proof of Th.1 y was denoted by z. It was defined as
y = R71(z), after  had been chosen. We did not care about the distance
and position of y with respect to §. (The latter point was not of interest
there, a priori we did not even know it existed.) Here we are more careful,
consider Z in the radial limit of a point ¢ and choose y belonging to the
radius at g.

If § is small enough then all points g/ (y) are close to OID for j =0, ..., £
since all the distances between Rg?(jj) and Rg?(y) are small, smaller than
C0. (This is the reason why 62 appears in the choice of ). Otherwise there
would be a sequence of points in ID with limit z € ID such that R(z) € Fr{}
by the continuity of R in ID, which would contradict R(ID) = €.

In particular ¢7(y) € Sy.ct,(¢°(9)). So all the distances |¢7(9) — ¢’ (y)|
are small, hence by Lemma 3 (i) for ( = g and by the continuity of In|¢/|
we get

(9" ()| < Cexplixu(g) + 2¢)

On the other hand the point g*(y) € Sy o1, (g(7)) is well inside ID. This
follows from the assumption that wy := R(¢*(y)) = f*(z) € f4(0B(&,6*n~%))
is far from f!(z), namely within the distance at least C4§.

This was the (only) place where we used the uniform radial continuity
of R at Y assured by Lemma 3 (ii); more precisely we used the uniform non-
tangential continuity of R, at ¢ = ¢*(§), namely the uniform convergence of
R(z) for z — ( such that z € Sy. (Nontangential and radial convergences
of R are equivalent properties by a general theory).
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Then the final estimate in Proof of Theorem 1 replaces by

(Y (wn)] > Aun= X0/ (DG~

Now we apply HD(u) = h,(f)/xu(f) see [PUL, Ch.9] and h,(g) = h,(f),
see [P1] and [P2, §4]. We get

(P (wn)| > Agn=20@/mu(D)==" — \ p=20(@)/hlo) =" — ) p=2='

the latter equality for v equivalent to length (harmonic) measure, where
xv(9)/hy(g9) = HD(v) = 1.

Though in this construction wy depends on n, this does not influence
the result. We can replace at the end wy by a base point independent of n
which changes the final estimate only by a distortion constant, which can
be absorbed by &’ for n large enough.

QED

Remark 3. As in Remark 1 note that the measure v equivalent to
the length is optimal in the sense that for any other g-invariant probability
measure of positive Lyapunov exponent (which implies that 4 = R, (v) also
has positive Lyapunov exponent, see [P2]), as HD(v) < HD(0ID) = 1, we
obtain |(f™)(wy)| > Ayn 2P =€) " the estimate which is not better.

Remark 4. It would be natural to prove a local version of Theorem 2,
in the setting of [P2], assuming (*) only for periodic orbits in Fr{2. More
precisely the question is whether the following holds:

Let ©Q be a simply connected domain in @ and f be a holomorphic
map defined on a neighbourhood W of FrQ) to @. Assume f(W N Q) C €,
f(FrQ) C FrQ and FrQ repells to the side of Q, that is (0 (W NQ) =
FrQ2. Suppose that (*) holds for all repelling periodic points p in FrQ2. Then
any Riemann map R : ID — Q extends continuously to ID and Fr(2 is locally
connected.

We do not know how to overcome troubles with finding IV consecutive
branches of f~! whose composition maps Fy(B(&,n~%)) deep in B’ (in
the notation in Proof of Lemma 2). Even if we succeed we do not know
whether the periodic point p belongs to Fr{). The problem is that we want
to control every backward branch of f~" leading z into €2, rather than
(measure) typical, as in [PZ], or in accordance to some invariant hyperbolic
subset of Fr().

Note that at least Lemma 3 holds in this setting, see [P4].
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