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Abstract

We prove that for f : ĪC → ĪC a rational mapping of the Riemann
sphere of degree at least 2 and Ω a simply connected immediate basin
of attraction to an attracting fixed point, if |(fn)0(p)| ≥ Cn3+ξ for
constants ξ > 0, C > 0 all positive integers n and all repelling periodic
points p of period n in Julia set for f , then a Riemann mapping
R : ID → Ω extends continuously to ĪD and FrΩ is locally connected.
This improves a result proved by J. Rivera-Letelier for Ω the basin of
infinity for polynomials, and 5 + ξ rather than 3 + ξ.
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We prove the following

Theorem 1. Let f be a polynomial of 1 complex variable of degree at
least 2, with connected Julia set. Suppose there are constants C > 0 and
ξ > 0 such that for every repelling periodic point p in the complex plane IC
of period n,

(∗) |(fn)0(p)| ≥ Cn3+ξ

Then a Riemann map R : ĪC \ ĪD → ĪC \K(f) from the complement of the
closure of the unit disc ID to the complement of the filled-in Julia set in
the Riemann sphere, extends continuously to ĪC \ ID. In particular Julia set
is locally connected and there are no Cremer periodic orbits.

In [R] Juan Rivera-Letelier proved this under the assumption |(fn)0(p)| ≥
Cn5+ξ.

The same strategy proves in fact a stronger theorem below, in the setting
of [P2], including the case of an arbitrary simply connected immediate basin
of attraction to a periodic sink for a rational map of ĪC.

Theorem 2. Let f be a rational mapping on the Riemann sphere
ĪC of degree at least 2 and let Ω be a simply connected immediate basin
of attraction to an attracting fixed point. Suppose that (*) holds for all
repelling periodic points p in Julia set for f . Then any Riemann map
R : ID→ Ω extends continuously to ĪD and FrΩ is locally connected.

Most part of our proof of Theorems 1 and 2 follows [R]. The proof of
Theorem 1 uses an invariant measure of maximal entropy. However the
right measure to use in more general situations, like in Theorem 2, is an
f -invariant measure ω equivalent to a harmonic measure on FrΩ viewed
from Ω; it coincides with the measure of maximal entropy in the case of
the basin of ∞ for polynomials.

In the situation of Theorem 2 there is however a technical difficulty,
namely proving the existence of an expanding repeller X in FrΩ, such
that in particular the topological entropy of f |X is arbitrarily close to the
measure theoretical entropy hω(f), in consequence such that Hausdorff di-
mension HD(X) is arbitrarily close to HD(ω) = 1, see Lemma 3. This fact
is a strengthening of the theorem on the density of periodic points in FrΩ,
see [PZ]. The proof can be obtained as in [PZ] with the use of Pesin-Katok
theory and is omitted here. We devote a separate short paper [P4] to it. In



An improvement of J. Rivera-Letelier result on weak hyperbolicity 279

the situation of Theorem 1 the existence of X is also needed in the proof,
but this case is easier (see the references in [R]).

Proof of Theorem 1 (and analogously Theorem 2) reduces to checking
the summability assumption in the following standard

Lemma 1, see [R]. Let w0 ∈ IC \ K(f) and ωn, n = 1, 2, ... be an
increasing sequence of positive real numbers such that

P∞
n=1 ω

−1
n < ∞. If

for every w ∈ f−n(w0) we have |(fn)0(w)| ≥ ωn, then the Riemann map R
extends continuously to ĪC \ ID.

Definitions. We call a closed set X ⊂ J(f) an expanding repeller if
f(X) ⊂ X the map f restricted to X is open, topologically mixing and
expanding.

Here expanding means that there exist C > 0 and λ > 1, called an
expanding constant, such that for every x ∈ X we have |(fn)0(x)| ≥ Cλn.
The property that f |X is open is equivalent to the existence of a neighbour-
hood U of X in IC, called a repelling neighbourhood, such that every forward
f -trajectory x, f(x), ...fn(x), ... staying in U must be contained in X, see
for example [PU1, Ch.5]. This easily implies that if {x, f(x), ...fn(x)} ⊂ U
then |(fn)0(x)| ≥ Cλn, maybe for a constant C bigger than before and U a
smaller neighbourhood of X.

Let λn, n = 1, 2, ... be an increasing sequence of positive real numbers
such that for every n, every repelling periodic point p of period n has the
multiplier (fn)0(p) of absolute value at least λn.

In the sequel C will denote various positive constants which can change
even in one consideration.

Lemma 2, see [R]. Let f be a polynomial of 1 complex variable of
degree at least 2. Let X ⊂ J(f) be an expanding repeller of positive
Hausdorff dimension, HD(X) > 0, and λ be its expanding constant. Then
there is U , a repelling neighbourhood of X, a ”base point” w0 ∈ IC \K(f)
and a constant C > 0 such that the following holds.

For every ε > 0 for every n large enough there exists an integer = (n)
satisfying 0 ≤ ≤ (1/(HD(X) lnλ) + ε) lnn, and there exists x = x(n) ∈
f− (w0) satisfying x, ..., f (x) ∈ U , such that for every z ∈ f−n(x)

|(fn+ )0(z)| ≥ Cλn+ .

Sketch of Proof. This Lemma in a slightly different formulation was
proved in [R] and in a more rough version in [PRS1]. See also [PRS2, §2]
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and [P-Kyoto]. The idea is first to find x̂ ∈ X, a safe point, that is

x̂ /∈
µ ∞\
k=1

[
n≥k

B(f2n(Crit(f)) ∪ f2n+1(Crit(f)), n−a)
¶
∪
[
n≥1

fn(Crit(f))

for an arbitrarily fixed a > 1/HD(X). The latter inequality assures the
existence of x̂. Here Crit(f) denotes the set of all f -critical points in IC.

Fix an arbitrary point ŵ ∈ X and r0 > 0 such that B0 := B(ŵ, r0) is
well inside U and choose an arbitrary w0 ∈ B0 \K as a base point.

Let be a minimal time such that a component V of f− (B0) intersecting
X is inB00 := B(x̂, δn−a)), where 0 < δ << 1 is a constant. By construction
f is univalent on V and has bounded distortion. Denote the branch of f−

leading B0 to V by F1.
(More precisely, F1 can be constructed in two steps. First, let k be

the smallest integer such that fk maps B00 to a boundedly distorted large
disc B000. Denote the branch of f−k leading B000 to B00 by F 01. Next using
the topological transitivity of f on X we find a branch F 001 of f

−M on B0

mapping it in B000, where M is bounded independently of n. We define
F1 := F 01 ◦ F 001 and = k +M .)

Each branch F2 of f
−n on B(x̂, n−a), can be composed with F3 being

the composition of at mostN branches of f−1 forN bounded independently
of n, so that F3 ◦F2 maps B(x̂, δn−a) deep in B0. Then F = F3 ◦F2 ◦F1, a
branch of f−(n+ +N), maps B0 deep in itself, so F (B0) contains a periodic
point p of period n+ +N .

Finally replace x̂ ∈ J(f) by x ∈ V \ K(f) such that f (x) = w0.
For z = F2(x), since |(fn+ +N )0(F3(z))|/|(fn+ +N )0(p)| is bounded by a
distortion constant, we get

|(fn+ )0(z)| = |(fn+ +N)0(F3(z))| · |F 03(z)| ≥ Cλn+ +N ≥ Cλn+ .

QED

Proof of Theorem 1. Let X and other constants be as in Lemma 2.
Let β2 ≥ β1 > 1 be constants such that for all k large enough and all y
such that y, ..., fk(y) ∈ U we have βk1 ≤ |(fk)0(y)| ≤ βk2 .

Consider an arbitrary wn ∈ f−n(w0). Join x = x(n) to w0 by a hyper-
bolic geodesic γ = γn in IC \K(f). Let xn be the end of the component of
f−n(γn) having one end at wn, different from wn. Then we write

|(fn)0(wn)| = |(fn)0(xn)|
|(fn)0(wn)|
|(fn)0(xn)|

.
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By Lemma 2 we have

|(fn)0(xn)| = |(fn+ )0(xn)| · |(f )0(x)|−1 ≥ Cλn+ β−2 .

Denote w̃0 = R−1(w0), w̃n = R−1(wn), x̃ = R−1(x) and x̃n = R−1(xn).
We have

|(fn)0(wn)|
|(fn)0(xn)|

=
|(R−1 ◦ fn)0(wn)|
|(R−1 ◦ fn)0(xn)|

|R0(w̃0)|
|R0(x̃)| =

|(f−n ◦R)0(x̃)|
|(f−n ◦R)0(w̃0)|

· |R
0(w̃0)|

|R0(x̃)| = I·II,

where f−n is the branch leading x0 to xn and w0 to wn.
Note that |x̃|− 1 ≥ Cd− , where C depends only on |w̃0|. We estimate

the fraction I by Koebe Distortion Lemma. Namely there is a constant CK
depending only on w̃0 such that

I ≥ CK(|x̃|− 1) ≥ CCKd
− .

We have also, denoting g(z) = zd, using Rg = f R,

II ≥ |(f )0(x)| · |(g )0(x̃)|−1 ≥ Cd− β1.

In conclusion
|(fn)0(wn)| ≥ Cλnβ

−
2 d−2 β1.

Invoking the estimate of we get

|(fn)0(wn)| ≥ Cλnβ
−
2 β1d

−2(1/(lnλ)HD(X)+ε) lnn

≥ Cλn(β1/β2) n−2(1/(lnλ)HD(X)+ε) ln d

By Pesin-Katok theory, applied to the measure of maximal entropy
equal to ln d, there exists X and its repelling neighbourhood U , such that
β1 ≥ d − ε and β2 ≤ d + ε, hence λ ≥ d − ε. Moreover HD(X) ≥ 1 − ε.
Hence

(1) |(fn)0(wn)| ≥ Cλn
(d− ε)

(d+ ε)
n
−2( 1

(ln(d−ε))(1−ε)+ε) ln d ≥ λnn
−2−ε0

with ε, hence ε0, arbitrarily close to 0. So, if λn ≥ Cn3+ξ the assumptions
of Lemma 1 are satisfied and Theorem 1 follows. QED

Remark 1 (corresponding to an observation in [R]). The measure of
maximal entropy is optimal in this construction. If µ is any f -invariant er-
godic measure on J(f) of positive Lyapunov exponent χµ(f) :=

R
ln |f 0|dµ,

then (lnλ)HD(X) ≈ χµ(f)(hµ(f)/χµ(f)) = hµ(f), where hµ(f) is the
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measure-theoretic entropy. ≈ means that the ratio is arbitrarily close to
1 for appropriate X. Therefore |(fn)0(wn)| ≥ λnn

−2 ln d/hµ(f)−ε0 , which at-
tains maximum at hµ(f) = htop(f) = ln d, the topological entropy, giving
(1).

Remark 2. The property (*) excludes an existence of parabolic periodic
points in FrΩ. Otherwise we would find periodic orbits spending almost all
the time close to such a parabolic point q, so its multiplier would about
Cna, where a = t/(t−1) ≤ 2 for fm(z) = z+ b(z−q)t+ ... for some integer
m and b 6= 0, for z close to q.

The absence of Cremer periodic orbits follows from the local connected-
ness, see [R] and the references there. We do not know whether Siegel discs
can exist. The proof given in [PRS] under the assumption of the uniform
exponential growth of the multipliers of repelling periodic orbits ωn does
not seem to work here. We do not know whether (*) implies a summability
condition which would already imply the absence of Siegel discs and Cre-
mer points due to so-called backward asymptotic stability, cf. [GS] or [P3,
Th.B and Remark 3.2] and [PU2, Appendix B].

Now we pass to the setting of Theorem 2, where R : ID → Ω is a
Riemann mapping. Let g be a holomorphic extension of R−1 ◦ f ◦ R to a
neighbourhood of the unit circle ∂ID. It exists and it is expanding on ∂ID,
see [P2, §7].

Now we formulate a lemma about the existence of appropriate expand-
ing repellers. As we mentioned in Introduction it follows from Pesin-Katok
theory. For the detailed proof see [P4], developing [PZ].

Lemma 3. Let ν be an ergodic g-invariant probability measure on ∂ID,
such that for ν-a.e.ζ ∈ ∂ID there exists a radial limit R̂(ζ) := limr%1R(rζ).

Assume that the measure µ := R̂∗(ν) has positive Lyapunov exponent
χµ(f). Let ϕ : ∂ID → IR be a continuous real-valued function. Then for
every ε > 0 there exist Y ⊂ ∂ID a g-invariant expanding repeller in the
domain of R̂ and C > 0 such that for every δ > 0 small enough there exists
r(δ) < 1, such that for all r : r(δ) ≤ r < 1 and ζ ∈ Y and all positive
integers n

(i) C−1 expn(
R
ϕdν − ε) ≤ expPn−1

j=0 ϕ(g
j(ζ)) ≤ C expn(

R
ϕdν + ε).

(ii) X = R̂(Y ) is an expanding repeller for f and for every r : r(δ) <
r < 1 it holds R(rζ) ∈ B(R̂(ζ), δ).

(iii) C−1 expn(χµ(f)− ε) ≤ |(fn)0(R̂(ζ))| ≤ C expn(χµ(f) + ε).

(iv) HD(X) ≥ HD(µ)− ε.
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Proof of Theorem 2. For every ζ ∈ ∂ID, α : 0 < α < π/2 and t > 0
denote

Sα,t(ζ) = ζ · (1 + {x ∈ IC \ {0} : π − α ≤ Arg(x) ≤ π + α}, |x| < t).

Such a set is called Stolz angle. If we do not mind t we skip it and write
Sα(ζ).

By a distortion estimate for iterates of g there exist t0 < 1, C > 0 and
ϑ : 0 < ϑ < π/2 such that if for all j = 0, 1, 2, ...,m it holds 1− |gj(rζ)| ≤ t0
then gm(rζ) ∈ Sϑ,Ct0(g

m(ζ)), for an arbitrary m.
Choose X,Y and all the constants as in Lemma 3, with ϕ = ln |g0|.

Consider an arbitrary positive integer n and choose x̂ ∈ X, δ > 0 and
as in Proof of Lemma 2, except that now is the first time f (B(x̂, δn−a)
becomes large. (This was k in Proof of Lemma 2.) We define only now
ŵ := f (x̂). Therefore ŵ depends on n.

Choose y = sŷ for ŷ ∈ Y and s : 0 < s < 1, satisfying R̂(ŷ) = x̂ such
that x := R(y) ∈ ∂B(x̂, δ2n−a).

Note that in Proof of Th.1 y was denoted by x̃. It was defined as
y = R−1(x), after x had been chosen. We did not care about the distance
and position of y with respect to ŷ. (The latter point was not of interest
there, a priori we did not even know it existed.) Here we are more careful,
consider x̂ in the radial limit of a point ŷ and choose y belonging to the
radius at ŷ.

If δ is small enough then all points gj(y) are close to ∂ID for j = 0, ...,
since all the distances between R̂gj(ŷ) and Rgj(y) are small, smaller than
Cδ. (This is the reason why δ2 appears in the choice of x). Otherwise there
would be a sequence of points in ID with limit z ∈ ID such that R(z) ∈ FrΩ
by the continuity of R in ID, which would contradict R(ID) = Ω.

In particular gj(y) ∈ Sϑ,Ct0(g
j(ŷ)). So all the distances |gj(ŷ) − gj(y)|

are small, hence by Lemma 3 (i) for ζ = ŷ and by the continuity of ln |g0|
we get

|(g )0(y)| ≤ C exp (χν(g) + 2ε)

On the other hand the point g (y) ∈ Sϑ,Ct0(g (ŷ)) is well inside ID. This
follows from the assumption that w0 := R(g (y)) = f (x) ∈ f (∂B(x̂, δ2n−a))
is far from f (x̂), namely within the distance at least Cδ.

This was the (only) place where we used the uniform radial continuity
of R̂ at Y assured by Lemma 3 (ii); more precisely we used the uniform non-
tangential continuity of R, at ζ = g (ŷ), namely the uniform convergence of
R(z) for z → ζ such that z ∈ Sϑ. (Nontangential and radial convergences
of R are equivalent properties by a general theory).
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Then the final estimate in Proof of Theorem 1 replaces by

|(fn)0(wn)| ≥ λnn
−2χν(g)/χµ(f)HD(µ)−ε0 .

Now we apply HD(µ) = hµ(f)/χµ(f) see [PU1, Ch.9] and hν(g) = hµ(f),
see [P1] and [P2, §4]. We get

|(fn)0(wn)| ≥ λnn
−2χν(g)/hµ(f)−ε0 = λnn

−2χν(g)/hν(g)−ε0 = λnn
−2−ε0

the latter equality for ν equivalent to length (harmonic) measure, where
χν(g)/hν(g) = HD(ν) = 1.

Though in this construction w0 depends on n, this does not influence
the result. We can replace at the end w0 by a base point independent of n
which changes the final estimate only by a distortion constant, which can
be absorbed by ε0 for n large enough.

QED

Remark 3. As in Remark 1 note that the measure ν equivalent to
the length is optimal in the sense that for any other g-invariant probability
measure of positive Lyapunov exponent (which implies that µ = R̂∗(ν) also
has positive Lyapunov exponent, see [P2]), as HD(ν) ≤ HD(∂ID) = 1, we
obtain |(fn)0(wn)| ≥ λnn

−2HD(ν)−ε0), the estimate which is not better.

Remark 4. It would be natural to prove a local version of Theorem 2,
in the setting of [P2], assuming (*) only for periodic orbits in FrΩ. More
precisely the question is whether the following holds:

Let Ω be a simply connected domain in ĪC and f be a holomorphic
map defined on a neighbourhood W of FrΩ to ĪC. Assume f(W ∩ Ω) ⊂ Ω,
f(FrΩ) ⊂ FrΩ and FrΩ repells to the side of Ω, that is T∞n=0 f−n(W ∩ Ω̄) =
FrΩ. Suppose that (*) holds for all repelling periodic points p in FrΩ. Then
any Riemann map R : ID→ Ω extends continuously to ĪD and FrΩ is locally
connected.

We do not know how to overcome troubles with finding N consecutive
branches of f−1 whose composition maps F2(B(x̂, n

−a)) deep in B0 (in
the notation in Proof of Lemma 2). Even if we succeed we do not know
whether the periodic point p belongs to FrΩ. The problem is that we want
to control every backward branch of f−n leading x into Ω, rather than
(measure) typical, as in [PZ], or in accordance to some invariant hyperbolic
subset of FrΩ.

Note that at least Lemma 3 holds in this setting, see [P4].
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