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1. Introduction

An important branch in probability and statitics is the study of distri-
butions with given marginals. This study was initialized by Wassily Ho-
effding (1940, 1941) and Maurice Fréchet (1951). Since then, its theo-
retical and applied development have been remarkable (for an account
of the first steps in this development see Dall’Aglio (1991)). When the
marginals are unidimensional, the most important tool in this study are
copulas. Copulas were introduced by Abe Sklar (1959) in response to a
query of Fréchet. Sklar proved that if H is the joint distribution func-
tion of n random variables X1, ...,Xn, and F1, ..., Fn are the distribution
functions of X1, ...,Xn, respectively, then there exists an n-copula C such
that H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)). The n-copula is uniquely deter-
mined on range(F1) × ... × range(Fn), so that C can be thought of as a
description of the way in which a joint distribution function is related to
its one-dimensional marginals. Excellent references about copulas are Joe
(1997) and Nelsen (1999).

Independently of the above mentioned development and using a geo-
metrical approach, Ezio Marchi (1969, 1972) studied the set of discrete
multivariate density functions with given unidimensional marginals which
it motivates a great variety of new concepts of cooperative equilibrium
in game theory (see Marchi (1976, 1986a, 1986b, 1988, 1992, 1996) and
Marchi, Garćıa Jurado and Prada (1991)). He first studied the bivariate
case concerning to some problems about bimatrix zero sum games. Then,
he studied the multivariate case introducing a natural vector bundle.

In particular, Marchi (1972) showed by considering finite sets Xi, i =
1, ..., n, that the Cartesian product eXN of the sets of density functionsfXi defined on Xi, i = 1, ..., n, is naturally embedded in the set gXN of
the density functions defined on the Cartesian product XN of the sets Xi.
Moreover, he derived gXN as a vector bundle having as the underlined man-
ifold the image of the sets fXi under the natural embedding. The interest
for the probability theory is restricted to the nonnegative elements in the
sets of the derived vector bundle. Specifically, the base of the vector bundle
contains the set eXN and the space contains the set of tensor products of
elements in fXi, i = 1, ..., n. If gi ∈ fXi, i = 1, ..., n, then the set of func-
tions in gXN with unidimensional marginals gi consists of the nonnegative
elements of the fiber in the vector bundle at the tensor product ⊗ni=1gi.
Moreover, any element of this set can be written as the sum of ⊗ni=1gi and
an element of the type fiber of the vector bundle. So the fiber plays an
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important role, namely that of being the space of all correlation measures
among a multivariate density function and its unidimensional marginals.

In this paper we extend the results obtained by Marchi (1972) consider-
ing σ-finite measure spaces (Xi, µi), i = 1, ..., n. It is worth noting that in
the papers just mentioned, Marchi, in order to prove the results, considered
extreme points and introduced basis which are not available in the general
setting of arbitrary measure spaces. Here we use decompositions for the
different involved spaces simplifying considerably the proofs of the different
results.

The rest of the paper is organized as follows. In section 2 we obtain a
decomposition of L1(XN , µN) where (XN , µN ) denotes the product measure
space corresponding to the measure spaces (Xi, µi), i = 1, ..., n. We express
L1(XN , µN) as a topological sum of tensor products of some subspaces of
L1(Xi, µi) , i = 1, ..., n. In section 3 we obtain a description of the set
of density functions in L1(XN , µN) with given unidimensional marginals
and, in section 4, we introduce the vector bundle. Finally, some concluding
remarks are given in section 5.

2. A decomposition of L1(XN , µN).

If A is a finite set, then |A| denotes the number of elements of A. We denote
with N and

R the set of natural numbers and the set of real numbers, respectively.
If n ∈ N, then N = {1, ..., n}. To avoid ambiguities we assume that n ≥ 2.
If K = {k1, ..., km} ⊆ N with k1 < ... < km, then (xK) = (xk1 , ..., xkm). If
S1, ..., Sn are sets, then SK = Sk1 × ...× Skm .

If S is a subset of a vectorial space, then hSi is the linear space generated
by S. If E is a subset of a normed vectorial space X, then clE is the closure
of E in X. If Xi, i ∈ N , are normed vectorial spaces with norms k.ki, then
XN is equipped with the product topology defined by any of the equivalent
norms k(xN )kN = max(kxiki : i ∈ N), or k(xN )kN =

Pn
i=1 kxiki for all

(xN) ∈ XN . The symbol ⊕ denotes the topological sum.
In this paper we use some notions from measure and integral theory.

For Fubini’s theorem to be valid, all the measure spaces are considered to
be σ-finite. If f ∈ L1(X,µ), then kfk(X,µ) is the norm of f . We consider the

subspace of L1(X,µ), L10(X,µ) = {f ∈ L1(X,µ) :
R
X fdµ = 0}. If (Xi, µi),

i ∈ N , are σ-finite measure spaces and (XN , µN) is the corresponding
product measure space, we set

R
XK

fdµK = f for f ∈ L1(XN , µN) and
K = ∅.
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Theorem 2.1. 2.1. Let g ∈ L1(X,µ) be such that
R
X gdµ = 1. Then

L1(X,µ) = L10(X,µ)⊕ hgi.

Proof. Let σ be the continuous function defined by

σ : L10(X,µ)× hgi→ L1(X,µ)
(z, cg)→ z + cg..

(2.1)

The function σ is one to one and onto. In effect, if f ∈ L1(X,µ), we
can write f = z + cg with c =

R
X fdµ and z = f − cg ∈ L10(X,µ). This

shows that σ is onto. Suppose now that

z1 + c1g = z2 + c2g,

with z1, z2 ∈ L10(X,µ), c1, c2 ∈ R. Integrating the previous equality on X,
and taking into account that

R
X z1dµ =

R
X z2dµ = 0 and

R
X gdµ = 1, we

obtain c1 = c2, and then z1 = z2. Thus σ is one to one.
By the open map theorem, since L10(X,µ) and hgi are closed subspaces

of L1(X,µ), then σ is a topological isomorphism, or which is the same, the
subspaces L10(X,µ) and hgi decompose L1(X,µ) in a topological sum.

2

Given n real functions fi : Xi → R, i ∈ N , where eachXi is an arbitrary
set, the tensor product of the functions fi is the function ⊗ni=1fi : XN → R
given by ⊗ni=1fi(x1, ..., xn) = f1(x1)...fn(xn). Given n closed subspaces
Ei ⊆ L1(Xi, µi), i ∈ N , the tensor product of the spaces Ei is ⊗ni=1Ei =
cl h{⊗ni=1fi : fi ∈ Ei, i ∈ N}i. For i ∈ N , let Ei, Fi ⊆ L1(Xi, µi) be closed
subspaces, fi ∈ Ei, gi ∈ Fi and K = {k1, ..., km} ⊆ N with k1 < ... < km,
then we set

⊗k∈Kfk ⊗k0∈N\K gk0 = g1 ⊗ ...⊗ gk1−1 ⊗ fk1 ⊗ gk1+1 ⊗ ...⊗ gkm−1⊗
⊗fkm ⊗ gkm+1 ⊗ ...⊗ gn,

and

⊗k∈KEk ⊗k0∈N\K Fk0 = F1 ⊗ ...⊗ Fk1−1 ⊗Ek1 ⊗ Fk1+1 ⊗ ...⊗ Fkm−1⊗
⊗Ekm ⊗ Fkm+1 ⊗ ...⊗ Fn.

We have the equality
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L1(XN , µN ) = ⊗ni=1L1(Xi, µi).(2.2)

In effect, the set of simple integrable functions is dense in L1(XN , µN )
and any simple integrable function can be approximated in L1(XN , µN )
by finite linear combinations of characteristic functions of the type χEN =
⊗ni=1χEi with Ei ⊆ Xi, µi(Ei) <∞ (this last fact can be deduced from the
definition of product measure).

From Theorem 2.1 and (2.2) we obtain a decomposition of L1(XN , µN )
given in the next theorem.

Theorem 2.2. 2.2. Let gi ∈ L1(Xi, µi) with
R
Xi

gi = 1, i ∈ N . Then

L1(XN , µN) = ⊕K⊆N ⊗k∈K hgki⊗k0∈N\K L10(Xk0 , µk0).(2.3)

For a detailed proof of the above theorem see Morillas (2003).

3. Density functions in L1(XN , µN) with given unidimensional
marginals.

If ∅ ⊂ K ⊆ N , then the set of density functions in L1(XK , µK) is

gXK = {f ∈ L1(XK , µK) : f ≥ 0

and Z
XK

fdµK = 1}.

For i ∈ N , consider the continuous linear function

si : L
1(XN , µN)→ L1(Xi, µi)
f →

R
XN\{i}

fdµN\{i}.

If gi ∈ fXi, i ∈ N , then the set of density functions in L1(XN , µN) with
unidimensional marginals gi is

U(gN ) = {f ∈gXN : si(f) = gi, i ∈ N}.

In this section we are going to give an analytical description of U(gN).
In what follows we will suppose that for i ∈ N , gi, hi ∈ L1(Xi, µi) andR
Xi

gidµi =
R
Xi

hidµi = 1. Next we will consider some functions introduced
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by Marchi (1972) for the case in which Xi are finite sets. We begin with
the continuous linear function

sN : L
1(XN , µN)→ ×n

i=1L
1(Xi, µi)

f → (s1(f), ..., sn(f))

By Theorem 2.1, L1(Xi, µi) = L10(Xi, µi) ⊕ hhii. Thus, if we consider
the functions associated with this topological sum, σi given by (2.1) and
the projection pi given by

pi : L
1
0(Xi, µi)× hhii→ L10(Xi, µi)

(z, chi)→ z,

then the function
ui : L

1(Xi, µi)→ L10(Xi, µi)

f → piσ
−1
i (f),

is a continuous linear transformation. If f ∈ L1(XN , µN), then

si(f) = ui(si(f)) +
³R

Xi
si(f)dµi

´
hi

= ui(si(f)) +
³R

XN
fdµN

´
hi

(3.1)

Consider now the function

phi : L
1(Xi, µi)→ L1(Xi, µi)

f → ui(f) + hi.

Let
Mi : L

1(Xi, µi) = range(phi)µi)
= {f ∈ L1(Xi, µi) :

R
Xi

fdµi = 1}
= {z + hi : z ∈ L10(Xi, µi)},

(3.2)

and

M = {f ∈ L1(XN , µN) :

Z
XN

fdµN = 1}.(3.3)

From (3.1), if f ∈M then

phisi(f) = si(f).(3.4)

Let
phN : ×n

i=1L
1(Xi, µi)→ ×n

i=1L
1(Xi, µi)

(fN)→ (ph1(f1), ..., phn(fn)),
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Ψ : ×n
i=1L

1(Xi, µi)(fn)),→ L1(XN , µN )
(fN )→ ⊗ni=1fi,

(3.5)

and
πhN : L

1(XN , µN )→ L1(XN , µN )
f → ΨphN sN (f)

Next theorem asserts that U(gN) consists of the nonnegative elements
ofM ∩ π−1hN (Ψ(gN)).

Theorem 3.1. 3.1. M ∩ π−1hN (Ψ(gN)) = {f ∈ L1(XN , µN) : si(f) = gi, i ∈
N}.

Proof. Suppose that f ∈M. Using (3.4) we obtain

πhN = ΨphN sN(f)).
= ΨphN (s1(f), ..., sn(f))
= Ψ (s1(f), ..., sn(f))
= Ψ (sN (f))

(3.6)

By (3.6), if f ∈M ∩ π−1hN (Ψ(gN)), then

Ψ(sN (f)) = Ψ(gN).

Taking into account that
R
Xi

si(f)dµi =
R
XN

fdµN = 1 and
R
Xi

gidµi =
1, for all i ∈ N , from the previous equality it results that if i ∈ N , then

si(f) = si (Ψ (sN (f)))
= si(Ψ(gN ))

= gi.

Suppose now that for each i ∈ N , si(f) = gi. Then,

intXN
fdµN =

Z
Xi

si(f)dµi =

Z
Xi

gidµi = 1

and
Ψ(sN (f)) = Ψ(gN).

Thus f ∈M and, by (3.6), πhN (f) = Ψ(gN). 2
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Remark 3.2. Observe that if f ∈ L1(XN , µN ), by (3.1)

πhN (f) = πhN (f)sN (f)
= ΨphN (s1(f), ..., sn(f))

=
ΨphN (u1(s1(f)) +

³R
XN

fdµN
´
h1, ..., un(sn(f))

+
³R

XN
fdµN

´
hn)

= Ψ(u1(s1(f)) + h1, ..., un(sn(f)) + hn)
=

P
K ⊆N ⊗k∈Khk ⊗k0∈N\K uk0(sk0(f)).

(3.7)

By (3.1), if si(f) =
³R

XN
fdµN

´
hi, i ∈ N , then ui(si(f)) = 0 and, by

(3.7), πhN (f) = Ψ(hN).

On the other hand, since
R
Xk

hkdµk = 1 and uk(sk(f)) ∈ L10(Xk, µk),
k ∈ N , from (3.7) we deduce that

si(πhN (f)) = ui(si(f)) + hi.

If πhN (f) = Ψ(hN ), then for each i ∈ N , si(πhN (f)) = hi; and from the
above equality, ui(si(f)) = 0, so, by (3.1), si(f) = (

R
XN

fdµN )hi.
From the previous observations we have,

π−1hN (Ψ(hN)) = {f ∈ L1(XN , µN) : si(f) =

µZ
XN

fdµN

¶
hi, i ∈ N}.(3.8)

In the sequel we will need the following results which proofs can be
found in Morillas (2003).

Lemma 3.2. 3.3. Let gi ∈ L1(Xi, µi) with
R
Xi

gidµi = 1, i ∈ N . The
following identities hold:

1. ⊗ni=1 hgii = h⊗ni=1gii.

2. ⊗k∈N\{i} hgki⊗ L10(Xi, µi) = {⊗k∈N\{i}gk ⊗ zi : zi ∈ L10(Xi, µi)}.

3. If K ⊆ N , |K| ≥ 2, then
⊗k∈N\K hgki⊗k0∈K L10(Xk0 , µk0) =

= cl{⊗k∈N\Kgk ⊗
Pm

l=1⊗k0∈Kzlk0 : zlk0 ∈ L10(Xk0 , µk0), k
0 ∈ K, l ∈

{1, ...,m},m ∈ N}.
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Lemma 3.3. 3.4. Let gi ∈ L1(Xi, µi) with
R
Xi

gidµi = 1, i ∈ N . Let

∅ ⊂ K ⊆ N , ∅ ⊆ J ⊆ N and fN\K ∈ ⊗k∈N\K hgki⊗k0∈K L10(Xk0 , µk0). The
following assertions hold:

1. If J = K, then
R
XN\J

fN\KdµN\J ∈ ⊗k0∈KL10(Xk0 , µk0).

2. If J 6= K and |K| ≥ |J |, then
R
XN\J

fN\KdµN\J = 0.

Now are in conditions to give an analytical description of the setM ∩
π−1hN (Ψ(gN )).

Theorem 3.4. 3.5. M ∩ π−1hN (Ψ(gN)) = {f ∈ L1(XN , µN ) : f = Ψ(gN ) +

r, r ∈ ⊕K⊆N,|K|≥2 ⊗k∈N\K hgki⊗k0∈K L10(Xk0 , µk0)}.

Proof. Suppose that f = Ψ(gN ) + r where r ∈ ⊕K⊆N,|K|≥2 ⊗k∈N\K
hgki ⊗k0∈K L10(Xk0 , µk0). If i ∈ N , using Lemma 3.4 (2) with J = {i}, it
results that si(f) = gi. So, by Theorem 3.1, f ∈M ∩ π−1hN (Ψ(gN )).

Suppose now that f ∈M ∩ π−1hN (Ψ(gN)). By Theorem 2.2,

f = cΨ(gN ) +
X

K⊆N,|K|≥1
fN\K ,(3.9)

with fN\K ∈ ⊗k∈N\K hgki⊗k0∈KL10(Xk0 , µk0), forK ⊆ N . Using Lemma 3.4
(2) with J = ∅, it results

R
XN

fdµN = c. Since f ∈ M, then c = 1. By

Lemma 3.3 (2), for each i ∈ N , there exists zi ∈ L10(Xi, µi) such that
fN\{i} = ⊗k∈N\{i}gk ⊗ zi. If i ∈ N , by Lemma 3.2. with J = {i} and (3.9)
with c = 1, we have

si(f) = gi + zi.

By Theorem 3.1, since f ∈ M ∩ π−1hN (Ψ(gN )), then si(f) = gi, and
consequently zi = 0. Thus, for i ∈ N , fN\{i} = 0, resulting for f the
expression that we like. 2
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Remark 3.6. Using (3.8) and a similar argument to that used in the
previous proof, we obtain that

π−1hN (Ψ(hN)) = {f ∈ L1(XN , µN ) : f =
³R

XN
fdµN

´
Ψ(hN ) + r,

r ∈ ⊕K⊆N,|K|≥2 ⊗k∈N\K hhki⊗k0∈K L10(Xk0 , µk0)}.

By Theorem Theorem 3.5,

M ∩ π−1hN (Ψ(gN))−Ψ(gN) =
⊕K⊆N,|K|≥2 ⊗k∈N\K hgki⊗k0∈K L10(Xk0 , µk0).

(3.10)

Corollary 3.1. Let g0i ∈ L1(Xi, µi) be such that
R
Xi

g0idµi = 1, i ∈ N .

ThenM ∩ π−1hN (Ψ(gN ))−Ψ(gN ) =M ∩ π
−1
hN
(Ψ(g0N ))−Ψ(g0N ).

Proof. If r ∈ M ∩ π−1hN (Ψ(gN)) − Ψ(gN ), then there exists f ∈ M ∩
π−1hN (Ψ(gN )) such that r = f − Ψ(gN ). By Theorem 3.1, si(f) = gi, so
f 0 = r+Ψ(g0N) satisfies si(f

0) = g0i. Consequently, using again Theorem 3.1,
f 0 ∈ M ∩ π−1hN (Ψ(g

0
N )), and thus r ∈ M ∩ π−1hN (Ψ(g

0
N)) − Ψ(g0N). This

shows thatM ∩ π−1hN (Ψ(gN))−Ψ(gN) ⊆M ∩ π
−1
hN
(Ψ(g0N))−Ψ(g0N). Since

(gN ) and (g
0
N) are arbitrary, this shows thatM ∩ π−1hN (Ψ(gN))−Ψ(gN) =

M ∩ π−1hN (Ψ(g
0
N))−Ψ(g0N). 2

By the previous corollary and (3.10),

⊕K⊆N,|K|≥2 ⊗k∈N\K hgki⊗k0∈K L10(Xk0 , µk0) =

= ⊕K⊆N,|K|≥2 ⊗k∈N\K hg0ki⊗k0∈K L10(Xk0 , µk0).

In what follows we will denote with R the set given by

R =M ∩ π−1hN (Ψ(gN))−Ψ(gN)
= ⊕K⊆N,|K|≥2 ⊗k∈N\K hgki⊗k0∈K L10(Xk0 , µk0)

(3.11)

The previous results tell us that the Banach space R (R is a closed
subspace of L1(XN , µN)) do not depend of the functions gi nor of the
functions hi.

By the results of this section, when each gi ∈ fXi, by Theorem 3.1, U(gN )
consists of the nonnegative elements ofM ∩ π−1hN (Ψ(gN)) whose analytical
description is given by Theorem 3.5. Concretely,

U(gN ) = {f ∈M ∩ π−1hN (Ψ(gN )) : f ≥ 0}
= {Ψ(gN) + r : r ∈ Randr ≥ −Ψ(gN)}.
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4. The natural vector bundle associated with gXN

In this section we are going to use some notions about differentiable man-
ifolds (see e.g. Larotonda (1980)). For simplicity, we are going to use the
term manifold as a synonym of C∞-manifold.

In order to obtain the vector bundle we introduce some differentiable
structures.

Lemma 4.1. 4.1. Let q be the continuous linear transformation defined
by

q : L1(X,µ)→ R
f →

R
X fdµ.

(4.1)

Then q is a submersion.

Proof. Clearly q is C∞. Since for all f ∈ L1(X,µ), Dq(f) = q is
onto, then Ker(Dq(f)) = L10(X,µ) and, by Theorem 2.1, L10(X,µ) has a
topological supplement, then Dq(f) is a topological epimorphism. Thus q
is a submersion. 2

Proposition 4.2. 4.2. The set M given in (3.3) is a closed submanifold
of L1(XN , µN) pure of model L

1
0(XN , µN).

Proof. If q is given by (??) with (XN , µN ) instead of (X,µ), then
M = q−1({1}) 6= ∅ and the proposition follows from Lemma ??. 2

In a similar manner it can be proved that Mi (see (3.2) is a closed sub-
manifold of L1(Xi, µi) pure of model L

1
0(Xi, µi). We also consider the prod-

uct manifold MN = ×n
i=1Mi = range(phN ) pure of model ×n

i=1L
1
0(Xi, µi).

Lemma 4.3. 4.3. Let Ψ be the continuous symmetric multilinear function
given by (3.5). Then Ψ|MN :MN → L1(XN , µN) is a regular immersion.
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Proof. Let (fN), (f
0
N) ∈ MN such that Ψ(fN ) = Ψ(f

0
N). For each

i ∈ N , Z
XN\{i}

Ψ(fN)dµN\{i} =
Z
XN\{i}

Ψ(f 0N)dµN\{i},

or which is the same, fi = f 0i . Then, (fN) = (f
0
N). This shows that Ψ|MN

is one to one.

Since

kΨ(fN )−Ψ(f 0N)k(XN ,µN )
=

=
°°°Ψ(fN )− fi ⊗k∈N\{i} f 0k + fi ⊗k∈N\{i} f 0k −Ψ(f 0N)

°°°
(XN ,µN )

≤ kfik(Xi,µi)

°°°⊗k∈N\{i}fk −⊗k∈N\{i}f 0k°°°(X
N\{i} ,µN\{i})

+

+ kfi − f 0ik(Xi,µi)

°°°⊗k∈N\{i}f 0k°°°(X
N\{i} ,µN\{i})

,

it results that Ψ is continuous.

If (fN), (f
0
N) ∈MN , we haveZ

XN\{i}
⊗k∈N\{i}fkdµN\{i} =

Z
XN\{i}

⊗k∈N\{i}f 0kdµN\{i} = 1

for each i ∈ N . Therefore

kfi − f 0ik(Xi,µi)
=

=

R
Xi

j
fi
R
XN\{i}

⊗k∈N\{i}fkdµN\{i}
−f 0i

R
XN\{i}

⊗k∈N\{i}f 0kdµN\{i}
¯̄̄
dµi

=
R
Xi

R
XN\{i}

|Ψ(fN)−Ψ(f 0N )| dµN\{i}dµi
= kΨ(fN )−Ψ(f 0N)k(XN ,µN )

.

Thus, Ψ|MN is a topological isomorphism from MN to Ψ(MN ).

Since Ψ is a continuous symmetric multilinear function then it is C∞

and its differential is given by

DΨ(gN)(zN ) =
nX
i=1

Ψ(zi, gN\{i}),
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for all (gN), (zN) ∈ ×n
i=1L

1(Xi, µi). Let (gN) ∈MN , (zN ) ∈ ×n
i=1L

1
0(Xi, µi)

be such that DΨ(gN)(zN ) = 0. For each k ∈ N ,

zk =
Pn

i=1

R
XN\{k}

Ψ(zi, gN\{i})dµN\{k}
=
R
XN\{k}

Dψ(gN )(zN)dµN\{k}
= 0.

Then (zN ) = 0. Therefore, for each (gN ) ∈MN ,DΨ(gN)|×n
i=1L

1
0(Xi, µi)

is one to one.
We also have, from Lemma 3.3 and Theorem 2.2, that for each (gN) ∈

MN , the set

range(DΨ(gN)| ×n
i=1 L

1
0(Xi, µi))

= {Pn
i=1Ψ(zi, gN\{i}) : zi ∈ L10(Xi) for i ∈ N}

= ⊕ni=1 ⊗k∈N\{i} hgki⊗ L10(Xi, µi),

is a direct subspace of L1(XN , µN ).
Consequently, for each (gN ) ∈MN , DΨ(gN )| ×n

i=1 L
1
0(Xi, µi) is a direct

monomorphism.
Since Ψ|MN is a topological isomorphism fromMN to Ψ(MN), Ψ is C

∞

and for each (gN ) ∈ MN , DΨ(gN)| ×n
i=1 L

1
0(Xi, µi) is a direct monomor-

phism, then Ψ is a regular immersion. 2

As a consequence of the previous lemma we have

Proposition 4.4. 4.4. Ψ(MN) is a submanifold of L
1(XN , µN ) andΨ|MN :

MN → Ψ(MN ) is a C
∞-isomorphism.

In the sequel we will think about Ψ|MN as a function from MN onto
Ψ(MN) and we will consider inM ∩ π−1hN (Ψ(gN )) the structure of normed
vectorial space that makes the map

T :M ∩ π−1hN (Ψ(gN ))→ R
f → f −Ψ(gN)

a topological isomorphism. With this structure,M ∩ π−1hN (Ψ(gN)) is a
Banach space.

Now we are in condition to state and prove the main result of this
section.
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Theorem 4.5. 4.5. (Ψ(MN),M, πhN |M) is a vector bundle with type
fiber R.

Proof. Since sN : L1(XN , µN ) → ×n
i=1L

1(Xi, µi) is C
∞, then sN |M :

M → MN is C∞. We also have that Ψ : MN → Ψ(MN) is C∞ and
πhN |M = ΨphN sN |M = ΨsN |M. Then, πhN |M : M → Ψ(MN) is C

∞,
because is the composition of C∞ functions.

Now define

ϕhN : (πhN |M)−1(Ψ(MN))→ Ψ(MN)×R
Ψ(gN ) + r→ (Ψ(gN), r).

Clearly, ϕhN is a C
∞-isomorphism and

pΨ(MN )ϕhN (Ψ(gN) + r) = Ψ(gN )
= (πhN |M)(Ψ(gN))

where pΨ(MN ) : Ψ(MN )×R→ Ψ(MN ) is the projection. Taking into in ac-

count the structure of normed vectorial space defined inM∩π−1hN (Ψ(gN)) =
(πhN |M)−1(Ψ(gN )), this set is a Banach space and the map

(πhN |M)−1(Ψ(gN ))→
f → f −Ψ(gN )

is a topological isomorphism. 2

By the results of the previous section, if for each i ∈ N , gi ∈ fXi, then
U(gN ) consists of the nonnegative elements of the fiber (πhN |M)−1(Ψ(gN )).
Also, any density function f in L1(XN , µN) with unidimensional marginals
gi, can be written as f = Ψ(gN) + r where r is in the type fiber R.

5. Concluding remarks.

If the sets Xi are finite and we consider on them the cardinal measure, the
above results reduce to those in Marchi (1972). As we have mentioned in
the introduction, in the discrete case they motivate a great variety of new
concepts of cooperative equilibrium in game theory. Now we could use the
results obtained in this paper to extend all these concepts for continuous
games. On the other hand, there are several properties of the derived fiber
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bundle that can be studied. For example, problems concerning perturbation
of the fibers and cross sections.

It is important to note that the set of density functions with given
marginals appears in the study of the optimal transportation problem (see,
e. g., Cafarelli, Feldman and McCann (2001), Cafarelli (2003)). More
recently, it also appears in conexion with the application of game theory
to physics, in particular, to quantum mechanics (see, e.g., Landsburg and
references therein). We think that the results obtained here provide new
geometrical tools to study all these matters.

Acknowledgement : We are grateful to Prof. Lizzetta Bruschi for
some received help in the initial stage of this research.
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