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Abstract

We consider the family of functions fλ(z) = exp(iλz), λ real.
With the help of MATLAB computations, we show fλ has a unique
attracting fixed point for several values of λ. We prove there is no
attracting periodic orbit of period n ≥ 2.
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1. Introduction

In this note we show the existence and uniqueness of an attracting fixed
point for the map fλ(z) = exp(iλz), z ∈ C, for certain (real) values of the
parameter λ. The proofs depend on MATLAB calculations, and as such
can be viewed as computer-assisted proofs. By contrast, the exponential
map z 7→ exp(z) admits no attracting fixed point. ([2], see Remark 12)

We began with a MATLAB program in which one inputs a value λ,
a point z0 a positive integer N , and a tolerance . The program outputs
fn(z0), where n is the least integer k ≤ N for which

|fk−1(z0)− fk(z0)| <

if there is such an n. Here fn(z) is the n−fold iterate of f at z: thus,
f1(z) = f(z), and fn(z) = f(fn−1(z)) for n > 1.

We experimented with various values of λ and the computations indi-
cated the function fλ had a fixed point inside the circle |z| ≤ 1/|λ| for
|λ| ≤ 1.96 (approximately). However in order to prove the existence of a
fixed point, one must use a theorem, which usually involves an invariant
domain. Since it was not easy to find such a domain, we took another
approach, using the Maximum Modulus Theorem. While the analysis is
elementary, the computer-assisted proofs have yielded new results.

Definition 1. A point z ∈ C is called an attracting fixed point of a
map f if z satisfies f(z) = z and |f 0(z)| < 1.

Suppose that z0 is an attracting fixed point of the map f(z). Then for
z sufficiently close to z0, the iterates z, f(z), f

2(z), . . . converge to z0.

Let’s begin by stating some facts. Let f be the function fλ.

Fact 1. If z0 is an attracting fixed point of f , then |z0| < 1/|λ|.
Conversely, any fixed point in the disk |z| < 1/|λ| is attracting.

Proof. We have |f 0(z0)| = |iλf(z0)| = |λ||z0| < 1 ⇐⇒ |z0| < 1/|λ|. 2

Fact 2. For z ∈ C, z = x + iy (x, y real), |f 0(z)| < 1 ⇐⇒ (sgnλ)y >
1
|λ| log(|λ|).

Proof. If z = x+ iy,

|f 0(z)| = |iλexp(iλz)| = |λ|e−λy,
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The conclusion is an easy exercise. 2

Fact 3. The region Rλ defined by the inequalities

|z| < 1

|λ| , sgn(λ)y >
1

|λ| log(|λ|), z = x+ iy

is empty if |λ| ≥ e.

Proof. 1
|λ| log(|λ|) < sgn(λ)y ≤ |z| <

1
|λ| , so log(|λ|) < 1, or |λ| < e. 2

Our first goal was to prove the existence of a fixed point inside the circle
|z| = 1/|λ|. We did this using the Maximum Modulus Theorem, or rather
a Corollary, called the Minimum Modulus Theorem. Our MATLAB calcu-
lations indicated the attracting fixed point should lie in the intersection of
|z| ≤ 1/λ with the first quadrant (for λ > 0), denoted Qλ (or simply Q if
λ is fixed), so it was in that region we applied the the Minimum Modulus
Principle.

A more conventional approach to the existence of a fixed point using,
say, the Brouwer Theorem, requires a having region which is mapped into
itself by f . But neither Qλλ nor Rλ (see Fact 3) is invariant. Say λ >
1, 0 ∈ Qλ but 1 = fλ(0) /∈ Qλλ. Also

i
λ ∈ Rλ, but fλ(

i
λ) = e−1 /∈ Rλ since

Rλ is disjoint from the real axis if λ > 1. (But see Remark 9.)

Remark 2. It is enough to determine fixed points of fλ for λ > 0, for

f−λ(z) = exp(−iλz) = exp((iλz)) = fλ(z),

the last equality resulting from the fact the power series has real coefficients.
Also, it is an easy observation that z0 is an attracting fixed point for f−λ
iff z0 is an attracting fixed point for fλ.

Notation 1. We use both ‘ exp(·) ’ and ‘e· ’ to denote the exponential
function.

2. Existence and Uniqueness of the Fixed Point

Theorem 3. Minimum Modulus Principle ([3], p. 313)

Let U be a bounded open set in C, and let f be analytic on U and
continuous on the closure Ū . Assume that f never vanishes on Ū . Then
the minimum value of |f | on Ū occurs on the boundary, ∂U .
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Theorem 4.

Let λ ∈ R be one of the values 0.1, 0.2, 0.3, . . . , 1.8, 1.9, 1.95, or 1.96.
Let Q be the intersection of the first quadrant <z ≥ 0, =z ≥ 0, with the
closed disk |z| ≤ 1/λ. Then there exists a fixed point z in the interior Qo

of Q for the map f(z) = exp(iλz).

Proof. Our calculations using MATLAB show that

[min{z ∈ Q : |z − f(z)|} < 10−6.

The idea of the proof is to show |z − f(z)| is bounded below along
the boundary of Q by some constant which is greater than 10−6. Theo-
rem would then assert the existence of a fixed point for f in Q. Writing
z = x+ iy, for x, y ∈ R we have

|f(z)− z|2 = |exp(iλz)− z|2
= |e−λyeiλx − (x+ iy)|2

= |e−λy(cos(λx) + i sin(λx))− (x+ iy)|2
= e−2λy + x2 + y2 − 2e−λy(x cos(λx) + y sin(λx)).

Denote the right hand side of the above by g(x, y). We now have to
check the values of g(x, y) along the boundaries of Q. We will start with
y = 0. Then for 0 ≤ x ≤ 1/λ

g(x, 0) = x2 + 1− 2x cos(λx).

Thus

g(x, 0) = (x− 1)2 + 2x(1− cos(λx)).

Since 0 < λ < e we have g(x, 0) ≥ (1 − e−1)2 on 0 ≤ x ≤ e−1 and by
2e−1(1− cos(λe )) ≥ 2e−1(1− cos(1)) on e−1 ≤ x ≤ λ−1.

Next we check the boundary x = 0, 0 ≤ y ≤ 1/λ:

g(0, y) = y2 + e−2λy ≥ e−2λy ≥ 1

e2
.

Finally we need to check the boundary on the quarter circle; it is con-
venient to convert to polar coordinates

x = (1/λ) cos θ, y = (1/λ) sin θ, for 0 ≤ θ ≤ π/2.
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Then,

g
³
1
λ cos θ,

1
λ sin θ

´
=

( 1λ)
2 + e−2 sin θ − e− sin θ

³
2
λ cos θ cos (cos θ)−

2
λ sin θ sin (cos θ)

´

and using the identity cos(α± β) = cosα cosβ ∓ sinα sinβ we see that

g( 1λ cos θ,
1
λ sin θ) = (

1
λ)
2 + e−2 sin θ − e− sin θ( 2λ cos(θ − cos θ))

= (λ−1 − e− sin θ)2 + 2
λe
− sin θ(1− cos(θ − cos θ)).

Since both (λ−1− e− sin θ)2 and 2
λe
− sin θ(1− cos (θ − cos θ)) are nonneg-

ative, we must see where both terms are zero: the second expression is zero
only when cos θ = θ. Call this θ0; so θ0 is approximately .739085. Putting

θ = θ0 into the first term and setting it to zero yields λ = λ0 := e
√
1−θ20 , or

approximately 1.96131.

From this we can conclude: suppose λ is in the interval 0 < λ ≤ 1.96.
Then for 0 ≤ θ ≤ .741,

λ−1 − e− sin θ ≥ 1.96−1 − e− sin .741 > 10−3.

And for .741 ≤ θ ≤ π
2 ,

2
λe
− sin θ(1− cos(θ − cos θ))

≥ 2
1.96e

− sin .741(1− cos(.741− cos .741)) > (2.67)10−6

We conclude that |g(x, y)| 12 > 10−3 on the boundary of Q. Since

min
z∈Q

{|z − f(z)|} = min
(x,y)∈Q

{g(x, y) 12 } < 10−6

for any λ in the Table, it follows from the Minimun Modulus Principle that
the function f(z) = exp(iλz) has a fixed point. 2

Corollary 5. From Fact 1, any fixed point for f inside the circle |z| < 1
λ

is attracting, so that Theorem 4 establishes the existence of an attracting
fixed point in Q◦. By Fact 2, the fixed point lies in the intersection Q◦∩R.

Below are the approximate fixed points for different values of λ. For
each λ the program terminated when |f(z)− z| < 10−8.

Table of Fixed Points
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λ Fixed Point λ Fixed point
.1 0.9854986 + 0.0974364i 1.1 0.5463106 + 0.3745068i
.2 0.9470891 + 0.1815722i 1.2 0.5191342 + 0.3729401i
.3 0.8954147 + 0.2464877i 1.3 0.4945130 + 0.3703950i
.4 0.8396697 + 0.2931240i 1.4 0.4721254 + 0.3671575i
.5 0.7852571 + 0.3251993i 1.5 0.4516947 + 0.3634355i
.6 0.7346292 + 0.3465471i 1.6 0.4329840 + 0.3593815i
.7 0.6885773 + 0.3602367i 1.7 0.4157904 + 0.3551080i
.8 0.6470987 + 0.3685124i 1.8 0.3999401 + 0.3506985i
.9 0.6098583 + 0.3729619i 1.9 0.3852840 + 0.3462151i
1.0 0.5764127 + 0.3746990i 1.95 0.3783627 + 0.3439606i

1.96 0.3770090 + 0.3435093i

One might infer from our results that fλ has a attracting fixed point for
all values of λ, 0 < λ < λ0. But our method of proof can only be applied
to finitely many λ.

Remark 6. For θ0, λ0 as in the proof of the theorem, the proof shows
that the function f0(z) = exp(iλ0z) has a fixed point at z = z0 := λ−10 eiθ0 .
Since z0 lies on the circle |z| = 1/λ0, it follows |f 00(z0)| = 1. Such a point
is called a nonhyperbolic, or neutral fixed point.

Remark 7. It is possible to express the fixed point z of fλ as an analytic
function of λ. Solving z = fλ(z) for λ yields λ = −i log(z)/z. The inverse
function is given by z = g(λ) := iW (−iλ)/λ where W is the Lambert W -
function, or the principal branch of the inverse of w → wew. Since the
values of W are not easy to calculate, this does not simplify the question of
deciding when the fixed point z = g(λ) is attracting, i.e., when it satisfies
|g(λ)| < 1

|λ| . (Cf [1].)
Our MATLAB computation indicates the fixed point is unique. That

is indeed the case, as we now prove.

Theorem 8. Let λ be one of the values in the Table. Then the map
f(z) = exp(iλz) has a unique attracting fixed point.

Proof.
Let R be the region in C determined by the two inequalities x2 + y2 <

1/λ2 and y > 1
λ log(λ). The region R is convex, and by Facts 1, 2, and 3 it

is nonempty, and contains all attracting fixed points of the map f .
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Suppose now that z1, z2 are two distinct fixed points of f . Then z1, z2
lie in R, and if C is a contour joining z1and z2,

|z1 − z2| = |f(z1)− f(z2)| = |
R
C f 0(z) dx|f 0(z) dx|

≤
R
C |f 0(z)| d|z| ≤ maxz ∈C

{|f 0(z)|}length(C).

If C is the straight line contour joining z1and z2, then C ⊂ R so that
|f 0(z)| < 1 for z ∈ C, and since C is compact, max

z∈C
{|f 0(z)|} < 1.Since

length(C) = |z1 − z2| the calculation above implies |z1 − z2| < |z1 − z2|,
which is absurd. Thus the fixed point is unique. 2

Remark 9. An alternative, more conventional approach to the existence
of a fixed point may be possible using a standard fixed point theorem, such
as the Brouwer Theorem. Assume that z0satisfies |f(z0)− z0| < 10−6, and
|f 0(z0)| < 1.Let = 1− |f 0(z0)|.There is a δ > 0such that |f 0(z)| < 1− /2
for |z − z0| < δ. So for |z − z0| ≤ δ,

|f(z)− z0| ≤ |f(z)− f(z0)|+ |f(z0)− z0|
< max {|f 0(z)| : z ∈ C} δ + 10−6

< (1− /2)δ + 10−6

< δ

(where C is the line segment joining z and z0) is valid as long as 10−6 < 2δ.
A tolerance finer than 10−6 may be required. We have not carried out
these calculations. However, we do not see how the critical value λ0 could
be obtained through this approach.

3. Attracting Orbits

If z0, z1, . . . , zn−1 is a set of points satisfying

Remark 1.

z1 = f(z0), z2 = f(z1), . . . , z0 = f(zn−1)

then z0, z1, . . . , zn−1 is called an orbit of period n.

Definition 10. Let z0, z1, . . . , zn−1 be an orbit of period n. It is said to
be an attracting orbit if |f 0(zk)| < 1, 0 ≤ k ≤ n− 1.

Let f(z) = exp(iλz), λ > 0, and z0, z1, . . . , zn−1 a period n orbit, and
assume the orbit is attracting. Observe
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|f 0(z0)| = |iλexp(iλz0)| = λ|z1| < 1.

Similarly, z2, . . . , zn−1, z0 lie in the circle |z| < 1/λ.
Furthermore, it follows from Fact 2 that zk satisfy yk >

1
λ log(λ), where

zk = xk + iyk. Thus, z0, z1, . . . , zn−1 lie in the region R in the complex
plane determined by the two inequalities x2 + y2 < 1/λ2 and y > 1

λ log(λ).

Theorem 11. Let 0 6= λ ∈ R. Then the map f(z) = exp(iλz) does not
have any attracting periodic orbit of period n, for n ≥ 2.

Proof. As noted above (cf Remark 2) it is enough to prove the assertion
for λ > 0. The proof is in the spirit of the uniqueness proof (Theorem 8).
2

Note our definition of attracting orbit is stronger than the standard defi-
nition ([2]): |(fn)0(z0)| < 1, or equivalently that |f 0(z0) f 0(z1) · · · f 0(zn−1)| <
1.

Remark 12. Recall that the Julia set of a map f is the closure of the
repelling periodic points. It’s interesting to note the difference between the
maps fλ and the exponential map, z → ez. For the exponential map, it is
shown in [2] that the Julia set is all of C. But for the maps fλ (at least for
the values of λ in the table), the Julia set is a proper subset: indeed, there
is an open neighborhood U of the attracting fixed point, which is invariant
under fλ, not containing any other periodic points. Thus, the Julia set of
fλ is a proper subset of C.

Of course each fλ has a Julia set which is unbounded, and hence fλ has
infinitely many repelling periodic points.
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