Proyecciones Vol. 24, N^o 3, pp. 229-237, December 2005. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172005000300003

FIXED POINTS OF A FAMILY OF EXPONENTIAL MAPS

ERIC BLABAC*

and JUSTIN PETERS Iowa State University, U. S. A.

Received : September 2005. Accepted : November 2005

Abstract

We consider the family of functions $f_{\lambda}(z) = \exp(i\lambda z)$, λ real. With the help of MATLAB computations, we show f_{λ} has a unique attracting fixed point for several values of λ . We prove there is no attracting periodic orbit of period $n \geq 2$.

Keywords subjclass : 37510

 $^{^{*}\}mathrm{Eric}$ Blabac is an MS student in the Mathematics Department at Iowa State University.

1. Introduction

In this note we show the existence and uniqueness of an attracting fixed point for the map $f_{\lambda}(z) = \exp(i\lambda z), z \in \mathbf{C}$, for certain (real) values of the parameter λ . The proofs depend on MATLAB calculations, and as such can be viewed as computer-assisted proofs. By contrast, the exponential map $z \mapsto \exp(z)$ admits no attracting fixed point. ([2], see Remark 12)

We began with a MATLAB program in which one inputs a value λ , a point z_0 a positive integer N, and a tolerance ϵ . The program outputs $f^n(z_0)$, where n is the least integer $k \leq N$ for which

$$|f^{k-1}(z_0) - f^k(z_0)| < \epsilon$$

if there is such an n. Here $f^n(z)$ is the n-fold iterate of f at z: thus, $f^1(z) = f(z)$, and $f^n(z) = f(f^{n-1}(z))$ for n > 1.

We experimented with various values of λ and the computations indicated the function f_{λ} had a fixed point inside the circle $|z| \leq 1/|\lambda|$ for $|\lambda| \leq 1.96$ (approximately). However in order to prove the existence of a fixed point, one must use a theorem, which usually involves an invariant domain. Since it was not easy to find such a domain, we took another approach, using the Maximum Modulus Theorem. While the analysis is elementary, the computer-assisted proofs have yielded new results.

Definition 1. A point $z \in \mathbf{C}$ is called an **attracting fixed point** of a map f if z satisfies f(z) = z and |f'(z)| < 1.

Suppose that z_0 is an attracting fixed point of the map f(z). Then for z sufficiently close to z_0 , the iterates z, f(z), $f^2(z)$,... converge to z_0 .

Let's begin by stating some facts. Let f be the function f_{λ} . Fact 1. If z_0 is an attracting fixed point of f, then $|z_0| < 1/|\lambda|$.

Conversely, any fixed point in the disk $|z| < 1/|\lambda|$ is attracting.

Proof. We have $|f'(z_0)| = |i\lambda f(z_0)| = |\lambda||z_0| < 1 \iff |z_0| < 1/|\lambda|$. \square Fact 2. For $z \in \mathbf{C}$, z = x + iy (x, y real), $|f'(z)| < 1 \iff (\operatorname{sgn} \lambda)y > \frac{1}{|\lambda|} \log(|\lambda|)$.

Proof. If z = x + iy,

$$|f'(z)| = |i\lambda \exp(i\lambda z)| = |\lambda|e^{-\lambda y},$$

The conclusion is an easy exercise.

Fact 3. The region \mathbf{R}_{λ} defined by the inequalities

$$|z| < \frac{1}{|\lambda|}, \quad \operatorname{sgn}(\lambda)y > \frac{1}{|\lambda|}\log(|\lambda|), \ z = x + iy$$

is empty if $|\lambda| \ge e$.

Proof. $\frac{1}{|\lambda|}\log(|\lambda|) < \operatorname{sgn}(\lambda)y \le |z| < \frac{1}{|\lambda|}$, so $\log(|\lambda|) < 1$, or $|\lambda| < e$. \Box Our first goal was to prove the existence of a fixed point inside the circle

Our first goal was to prove the existence of a fixed point inside the circle $|z| = 1/|\lambda|$. We did this using the Maximum Modulus Theorem, or rather a Corollary, called the Minimum Modulus Theorem. Our MATLAB calculations indicated the attracting fixed point should lie in the intersection of $|z| \leq 1/\lambda$ with the first quadrant (for $\lambda > 0$), denoted Q_{λ} (or simply Q if λ is fixed), so it was in that region we applied the the Minimum Modulus Principle.

A more conventional approach to the existence of a fixed point using, say, the Brouwer Theorem, requires a having region which is mapped into itself by f. But neither $\mathcal{Q}_{\lambda\lambda}$ nor \mathcal{R}_{λ} (see Fact 3) is invariant. Say $\lambda >$ 1, $0 \in \mathcal{Q}_{\lambda}$ but $1 = f_{\lambda}(0) \notin \mathcal{Q}_{\lambda\lambda}$. Also $\frac{i}{\lambda} \in \mathcal{R}_{\lambda}$, but $f_{\lambda}(\frac{i}{\lambda}) = e^{-1} \notin \mathcal{R}_{\lambda}$ since \mathcal{R}_{λ} is disjoint from the real axis if $\lambda > 1$. (But see Remark 9.)

Remark 2. It is enough to determine fixed points of f_{λ} for $\lambda > 0$, for

$$f_{-\lambda}(\overline{z}) = \exp(-i\lambda\overline{z}) = \exp(\overline{(i\lambda z)}) = \overline{f_{\lambda}(z)},$$

the last equality resulting from the fact the power series has real coefficients. Also, it is an easy observation that $\overline{z_0}$ is an attracting fixed point for $f_{-\lambda}$ iff z_0 is an attracting fixed point for f_{λ} .

Notation 1. We use both ' $\exp(\cdot)$ ' and ' e^{\cdot} ' to denote the exponential function.

2. Existence and Uniqueness of the Fixed Point

Theorem 3. Minimum Modulus Principle ([3], p. 313)

Let U be a bounded open set in \mathbf{C} , and let f be analytic on U and continuous on the closure \overline{U} . Assume that f never vanishes on \overline{U} . Then the minimum value of |f| on \overline{U} occurs on the boundary, ∂U .

Theorem 4.

Let $\lambda \in \mathbf{R}$ be one of the values $0.1, 0.2, 0.3, \ldots, 1.8, 1.9, 1.95$, or 1.96. Let \mathcal{Q} be the intersection of the first quadrant $\Re z \ge 0$, $\Im z \ge 0$, with the closed disk $|z| \le 1/\lambda$. Then there exists a fixed point z in the interior \mathcal{Q}^o of \mathcal{Q} for the map $f(z) = \exp(i\lambda z)$.

Proof. Our calculations using MATLAB show that

$$[\min\{z \in \mathcal{Q} : |z - f(z)|\} < 10^{-6}.$$

The idea of the proof is to show |z - f(z)| is bounded below along the boundary of \mathcal{Q} by some constant which is greater than 10^{-6} . Theorem would then assert the existence of a fixed point for f in \mathcal{Q} . Writing z = x + iy, for $x, y \in \mathbf{R}$ we have

$$\begin{aligned} |f(z) - z|^2 &= |exp(i\lambda z) - z|^2 \\ &= |e^{-\lambda y}e^{i\lambda x} - (x + iy)|^2 \\ &= |e^{-\lambda y}(\cos(\lambda x) + i\sin(\lambda x)) - (x + iy)|^2 \\ &= e^{-2\lambda y} + x^2 + y^2 - 2e^{-\lambda y}(x\cos(\lambda x) + y\sin(\lambda x)). \end{aligned}$$

Denote the right hand side of the above by g(x, y). We now have to check the values of g(x, y) along the boundaries of \mathcal{Q} . We will start with y = 0. Then for $0 \le x \le 1/\lambda$

$$g(x,0) = x^2 + 1 - 2x\cos(\lambda x).$$

Thus

$$g(x,0) = (x-1)^2 + 2x(1-\cos(\lambda x)).$$

Since $0 < \lambda < e$ we have $g(x,0) \ge (1-e^{-1})^2$ on $0 \le x \le e^{-1}$ and by $2e^{-1}(1-\cos(\frac{\lambda}{e})) \ge 2e^{-1}(1-\cos(1))$ on $e^{-1} \le x \le \lambda^{-1}$.

Next we check the boundary $x = 0, 0 \le y \le 1/\lambda$:

$$g(0,y) = y^2 + e^{-2\lambda y} \ge e^{-2\lambda y} \ge \frac{1}{e^2}.$$

Finally we need to check the boundary on the quarter circle; it is convenient to convert to polar coordinates

$$x = (1/\lambda)\cos\theta, \quad y = (1/\lambda)\sin\theta, \text{ for } 0 \le \theta \le \pi/2.$$

Then,

$$g\left(\frac{1}{\lambda}\cos\theta, \frac{1}{\lambda}\sin\theta\right) = \left(\frac{1}{\lambda}\right)^2 + e^{-2\sin\theta} - e^{-\sin\theta} \left(\frac{2}{\lambda}\cos\theta\,\cos\left(\cos\theta\right) - \frac{2}{\lambda}\sin\theta\,\sin\left(\cos\theta\right)\right)$$

and using the identity $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ we see that

$$g(\frac{1}{\lambda}\cos\theta, \frac{1}{\lambda}\sin\theta) = (\frac{1}{\lambda})^2 + e^{-2\sin\theta} - e^{-\sin\theta}(\frac{2}{\lambda}\cos(\theta - \cos\theta)) \\ = (\lambda^{-1} - e^{-\sin\theta})^2 + \frac{2}{\lambda}e^{-\sin\theta}(1 - \cos(\theta - \cos\theta)).$$

Since both $(\lambda^{-1} - e^{-\sin\theta})^2$ and $\frac{2}{\lambda}e^{-\sin\theta}(1 - \cos(\theta - \cos\theta))$ are nonnegative, we must see where both terms are zero: the second expression is zero only when $\cos\theta = \theta$. Call this θ_0 ; so θ_0 is approximately .739085. Putting $\theta = \theta_0$ into the first term and setting it to zero yields $\lambda = \lambda_0 := e^{\sqrt{1-\theta_0^2}}$, or approximately 1.96131.

From this we can conclude: suppose λ is in the interval $0 < \lambda \leq 1.96$. Then for $0 \leq \theta \leq .741$,

$$\lambda^{-1} - e^{-\sin\theta} \ge 1.96^{-1} - e^{-\sin.741} > 10^{-3}.$$

And for $.741 \le \theta \le \frac{\pi}{2}$,

$$\frac{\frac{2}{\lambda}e^{-\sin\theta}(1-\cos(\theta-\cos\theta))}{\geq\frac{2}{1.96}e^{-\sin..741}(1-\cos(.741-\cos..741))>(2.67)10^{-6}}$$

We conclude that $|g(x,y)|^{\frac{1}{2}} > 10^{-3}$ on the boundary of Q. Since

$$\min_{z \in \mathcal{Q}} \{ |z - f(z)| \} = \min_{(x,y) \in \mathcal{Q}} \{ g(x,y)^{\frac{1}{2}} \} < 10^{-6}$$

for any λ in the Table, it follows from the Minimun Modulus Principle that the function $f(z) = \exp(i\lambda z)$ has a fixed point. \Box

Corollary 5. From Fact 1, any fixed point for f inside the circle $|z| < \frac{1}{\lambda}$ is attracting, so that Theorem 4 establishes the existence of an attracting fixed point in \mathcal{Q}° . By Fact 2, the fixed point lies in the intersection $\mathcal{Q}^{\circ} \cap \mathbf{R}$.

Below are the approximate fixed points for different values of λ . For each λ the program terminated when $|f(z) - z| < 10^{-8}$.

Table of Fixed Points

λ	Fixed Point	λ	Fixed point
.1	0.9854986 + 0.0974364i	1.1	0.5463106 + 0.3745068i
.2	0.9470891 + 0.1815722i	1.2	0.5191342 + 0.3729401i
.3	0.8954147 + 0.2464877i	1.3	0.4945130 + 0.3703950i
.4	0.8396697 + 0.2931240i	1.4	0.4721254 + 0.3671575i
.5	0.7852571 + 0.3251993i	1.5	0.4516947 + 0.3634355i
.6	0.7346292 + 0.3465471i	1.6	0.4329840 + 0.3593815i
.7	0.6885773 + 0.3602367i	1.7	0.4157904 + 0.3551080i
.8	0.6470987 + 0.3685124i	1.8	0.3999401 + 0.3506985i
.9	0.6098583 + 0.3729619i	1.9	0.3852840 + 0.3462151i
1.0	0.5764127 + 0.3746990i	1.95	0.3783627 + 0.3439606i
		1.96	0.3770090 + 0.3435093i

One might infer from our results that f_{λ} has a attracting fixed point for all values of λ , $0 < \lambda < \lambda_0$. But our method of proof can only be applied to finitely many λ .

Remark 6. For θ_0 , λ_0 as in the proof of the theorem, the proof shows that the function $f_0(z) = \exp(i\lambda_0 z)$ has a fixed point at $z = z_0 := \lambda_0^{-1} e^{i\theta_0}$. Since z_0 lies on the circle $|z| = 1/\lambda_0$, it follows $|f'_0(z_0)| = 1$. Such a point is called a nonhyperbolic, or neutral fixed point.

Remark 7. It is possible to express the fixed point z of f_{λ} as an analytic function of λ . Solving $z = f_{\lambda}(z)$ for λ yields $\lambda = -i \log(z)/z$. The inverse function is given by $z = g(\lambda) := iW(-i\lambda)/\lambda$ where W is the Lambert W-function, or the principal branch of the inverse of $w \to we^w$. Since the values of W are not easy to calculate, this does not simplify the question of deciding when the fixed point $z = g(\lambda)$ is attracting, i.e., when it satisfies $|g(\lambda)| < \frac{1}{|\lambda|}$. (Cf [1].)

Our MATLAB computation indicates the fixed point is unique. That is indeed the case, as we now prove.

Theorem 8. Let λ be one of the values in the Table. Then the map $f(z) = \exp(i\lambda z)$ has a unique attracting fixed point.

Proof.

Let **R** be the region in C determined by the two inequalities $x^2 + y^2 < 1/\lambda^2$ and $y > \frac{1}{\lambda}\log(\lambda)$. The region **R** is convex, and by Facts 1, 2, and 3 it is nonempty, and contains all attracting fixed points of the map f.

Suppose now that z_1 , z_2 are two distinct fixed points of f. Then z_1 , z_2 lie in **R**, and if C is a contour joining z_1 and z_2 ,

$$\begin{aligned} |z_1 - z_2| &= |f(z_1) - f(z_2)| = |\int_{\mathcal{C}} f'(z) \, dx | f'(z) \, dx| \\ &\leq \int_{\mathcal{C}} |f'(z)| \, d|z| \leq \max_{z \in \mathcal{C}} \{|f'(z)|\} length(\mathcal{C}). \end{aligned}$$

If C is the straight line contour joining z_1 and z_2 , then $C \subset \mathbf{R}$ so that |f'(z)| < 1 for $z \in C$, and since C is compact, $\max_{z \in C} \{|f'(z)|\} < 1$. Since length $(C) = |z_1 - z_2|$ the calculation above implies $|z_1 - z_2| < |z_1 - z_2|$, which is absurd. Thus the fixed point is unique. \Box

Remark 9. An alternative, more conventional approach to the existence of a fixed point may be possible using a standard fixed point theorem, such as the Brouwer Theorem. Assume that z_0 satisfies $|f(z_0) - z_0| < 10^{-6}$, and $|f'(z_0)| < 1$.Let $\epsilon = 1 - |f'(z_0)|$.There is a $\delta > 0$ such that $|f'(z)| < 1 - \epsilon/2$ for $|z - z_0| < \delta$. So for $|z - z_0| \le \delta$,

$$\begin{aligned} |f(z) - z_0| &\leq |f(z) - f(z_0)| + |f(z_0) - z_0| \\ &< \max \left\{ |f'(z)| : z \in \mathcal{C} \right\} \delta + 10^{-6} \\ &< (1 - \epsilon/2)\delta + 10^{-6} \\ &< \delta \end{aligned}$$

(where C is the line segment joining z and z_0) is valid as long as $10^{-6} < \frac{\epsilon}{2}\delta$. A tolerance finer than 10^{-6} may be required. We have not carried out these calculations. However, we do not see how the critical value λ_0 could be obtained through this approach.

3. Attracting Orbits

If $z_0, z_1, \ldots, z_{n-1}$ is a set of points satisfying

Remark 1.

$$z_1 = f(z_0), \ z_2 = f(z_1), \dots, z_0 = f(z_{n-1})$$

then $z_0, z_1, \ldots, z_{n-1}$ is called an *orbit of period* n.

Definition 10. Let $z_0, z_1, \ldots, z_{n-1}$ be an orbit of period n. It is said to be an *attracting* orbit if $|f'(z_k)| < 1, 0 \le k \le n-1$.

Let $f(z) = \exp(i\lambda z)$, $\lambda > 0$, and $z_0, z_1, \ldots, z_{n-1}$ a period *n* orbit, and assume the orbit is attracting. Observe

$$|f'(z_0)| = |i\lambda \exp(i\lambda z_0)| = \lambda |z_1| < 1.$$

Similarly, z_2, \ldots, z_{n-1} , z_0 lie in the circle $|z| < 1/\lambda$.

Furthermore, it follows from Fact 2 that z_k satisfy $y_k > \frac{1}{\lambda} \log(\lambda)$, where $z_k = x_k + iy_k$. Thus, $z_0, z_1, \ldots, z_{n-1}$ lie in the region **R** in the complex plane determined by the two inequalities $x^2 + y^2 < 1/\lambda^2$ and $y > \frac{1}{\lambda} \log(\lambda)$.

Theorem 11. Let $0 \neq \lambda \in \mathbf{R}$. Then the map $f(z) = \exp(i\lambda z)$ does not have any attracting periodic orbit of period n, for $n \geq 2$.

Proof. As noted above (cf Remark 2) it is enough to prove the assertion for $\lambda > 0$. The proof is in the spirit of the uniqueness proof (Theorem 8).

Note our definition of attracting orbit is stronger than the standard definition ([2]): $|(f^n)'(z_0)| < 1$, or equivalently that $|f'(z_0) f'(z_1) \cdots f'(z_{n-1})| < 1$.

Remark 12. Recall that the Julia set of a map f is the closure of the repelling periodic points. It's interesting to note the difference between the maps f_{λ} and the exponential map, $z \to e^z$. For the exponential map, it is shown in [2] that the Julia set is all of **C**. But for the maps f_{λ} (at least for the values of λ in the table), the Julia set is a proper subset: indeed, there is an open neighborhood U of the attracting fixed point, which is invariant under f_{λ} , not containing any other periodic points. Thus, the Julia set of f_{λ} is a proper subset of **C**.

Of course each f_{λ} has a Julia set which is unbounded, and hence f_{λ} has infinitely many repelling periodic points.

References

- Borwein, Jonathan M, and Corless, Robert M., *Emerging Tools for Experimental Mathematics*, Amer. Math. Monthly **106**, No. 10, pp. 899–909, (1999).
- [2] Devaney, Robert L., An Introduction to Chaotic Dynamical Systems, Addison-Wesley, (1989).

[3] Rubenfeld, Lester A., A First Course in Applied Complex Variables, John Wiley & Sons, (1985).

Eric M. Blabac Department of Mathematics Iowa State University Ames, IA 50011 U. S. A. e-mail : ebikeman@iastate.edu

and

Justin R. Peters Department of Mathematics Iowa State University Ames, IA 50011 e-mail : peters@iastate.edu