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Abstract

This work explores what other mathematical possibilities were avail-
able to Maxwell for formulating his electromagnetic field model, by
characterizing the family of mathematical models induced by the an-
alytical equations describing electromagnetic phenomena prevailing at
that time.

The need for this research stems from the article “Inertial Relativ-
ity — A Functional Analysis Review”, recently published in “Proyec-
ciones”, which claims and demonstrates the existence of an axiomatic
conflict between the special and general theories of relativity on one
side, and functional analysis on the other, making the reformulation
of the relativistic theories, mandatory. As will be shown herein, such
reformulation calls for a revision of Maxwell’s electromagnetic field
model.

The conclusion is reached that —given the set of equations con-
sidered by Maxwell— not a unique, but an infinite number of mathe-
matically correct reformulations to Ampère’s law exists, resulting in
an equally abundant number of potential models for the electromag-
netic phenomena (including Maxwell’s). Further experimentation is
required in order to determine which is the physically correct model.
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1. INTRODUCTION AND PRESENTATION OUTLINE

1.1. Introduction

The article “Inertial Relativity — A Functional Analysis Review” [1], re-
cently published in “Proyecciones”, claims and demonstrates the existence
of an axiomatic conflict between the special and general theories of rela-
tivity (STR and GTR) on one side, and functional analysis on the other.
Due to the fundamental nature of this conflict —the cited article concludes—
in order to perform legitimate analytical operations in spacetime, its tra-
ditional relativistic topologies must be abandoned and both theories, the
STR and GTR, must be reformulated.

It is well-known, however, that there was no room for options in the for-
mulation of the relativistic theories. Einstein was inexorably led —first into
the STR, then into the GTR— by his insightful and univocal combination of
the then-prevailing-model for the propagation of light, in conjunction with
two well-established physical principles:

• The principle of relativity1.

• The principle of universal covariance2.

The implication of such univocity is that, for as long as functional anal-
ysis stands valid, either an electromagnetic model alternative to Maxwell’s
exists, or at least one of the physical principles supporting Einstein’s work
must be dropped.

But dropping any of the well-established physical principles would lead
to extreme consequences of epistemological and philosophical nature, not
to mention the implications on Einstein’s remarkable contribution. So the
least traumatic way to proceed is to look for alternatives to the then-
prevailing (and still current) electromagnetic field model formulated in 1864
- 1865 by Maxwell [5].

One such alternative was proposed by Hertz in his paper, “Über die
Grundgleichungen der Elektrodynamik für bewegte Körper” published in
1890 in Annalen der Physik, [6]. This model is based in postulating that

1In [2] Einstein makes use of the principle of relativity to establish that Lorentzian
transformations must apply between inertial reference frames and in [3] he demonstrates
the Maxwell equations’ covariance upon a Lorentzian reference frame transformation.

2In [4] Einstein uses the principle of equivalence (an extension of the principle of rela-
tivity to accelerated frames) in conjunction with what he calls the principle of universal
covariance upon a (Lorentzian) frame transformation to establish the applicable metric.



Maxwell revisited 107

Faraday’s and Ampère’s relations be expressed in terms of total (instead
of partial) time derivatives by means of the incorporation of three velocity-
type parameters, which Hertz named α, β, γ and associated to the velocity
coordinates of the later questioned æther, relative to the laboratory frame.
Though not proved in his paper, under certain modern assumptions respect
of the physical meaning of the velocity-type parameters, Hertz’ formulation
may be considered invariant before Galilean reference frame transforma-
tions and therefore, from the point of view of the conflict herein addressed,
may be argued to provide with one working alternative. However, because
Hertz’ model is well-known, and its merits and demerits have been thor-
oughly considered and debated, this work does not pursue further along
this line of thought.

Instead, this paper contributes by exploring what other mathematical
possibilities were available to Maxwell when formulating his well-known
electromagnetic field model, which resulted in a modification to Ampère’s
law3. It does so by characterizing the family of mathematical models in-
duced by the analytical equations describing electromagnetic phenomena
prevailing at that time. The conclusion is reached, that a family of math-
ematically correct reformulations to Ampère’s law exists, resulting in an
infinite number of candidate (or potential) models for the propagation of
light, including Maxwell’s electromagnetic field model. Further experimen-
tation is required in order to determine which is the physically correct
model.

Because Maxwell detected no alternatives in his work, the question of
identifying the physically correct model out of the family of mathemati-

3It can hardly be said that Maxwell modified Ampère’s law when in fact he never
considered it during the development of his electromagnetic field model. If he mentioned
once Ampère’s name and contribution during said process in his 1865 paper [7], it was
only to say that:

“If, therefore, the phenomena described by Faraday in the Ninth Series of
his Experimental Researches were the only known facts about electric cur-
rents, the laws of Ampère relating to the attraction of conductors carrying
currents, as well as those of Faraday about the mutual induction of currents,
might be deduced by mechanical reasoning.”

Notwithstanding, because one important consequence of Maxwell’s work was the ad-
dition of the displacement current to the Equation of Electric Currents —which derives
directly from Ampère’s law and today carries Ampère’s name as a member of the Maxwell
equations— and because such addition is by far better discussed in Maxwell’s 1873 Trea-
tise [8] than in his 1865 paper (though some may argue that this is a matter of taste),
the Treatise and its line of thought will be used in this work, declaring for simplicity that
Maxwell modified Ampère’s equation.
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cally correct candidates was never posed, so ways to an answer were never
proposed, and therefore the missing experiment is long overdue.

1.2. Presentation Outline

The family of mathematical models induced by the analytical equations
describing electromagnetic phenomena prevailing at the time of Maxwell is
herein characterized by means of a “gedanken”, or “thought” -experiment,
detailed in §2.

Thought-experiments depend on the existence of some well-established
model that enables describing, in a consensually accepted manner, the way
in which the thought-experiment should unfold. In this manner, if proper
logical and mathematical operations are applied on the accepted model,
acceptable conclusions result.

Since the prevailing electromagnetic field model is herein under scrutiny,
it cannot be used as the required, well-established model. The research
must delve back into such foundations of electricity and magnetism that
generate no questions regarding their applicability, coherence and mathe-
matical correctness. Considering that circa 1865, competing opinions and
formulations existed for fundamental concepts and expressions of the emer-
gent electromagnetic theory4, and given the fact that this work aims to con-
tribute with a mathematical (as opposed to a physical) review of Maxwell’s
conclusions, the concepts and equations selected by Maxwell as the fun-
daments of his theory (or mathematically coherent with Maxwell’s model)
have been selected as a starting point.

Modern terminology is used when referring to said concepts, and mod-
ern notation is used for writing said equations, even though the 19th cen-
tury physicists whose work is herein considered never employed either of
them. In a similar manner, the differential forms of the mathematical ex-
pressions are herein used, due consideration given to the work of Heaviside,
Lorentz and others, who formulated what is now called microscopic electro-

4While Ampère [9] believed that the element of force between two sections of current-
carrying circuit was directed along their connecting radius, Neumann [10], [11] and Weber
[12], [13] led to competing differential expressions (which rendered equivalent results
upon integration along closed circuits) for the elemental force and other concepts (such
as Faraday’s induction and energy between elements of current).
In 1870 Helmholtz [14] demonstrated that Weber’s model, while allowing the deduction

of correct forces between closed circuits, led to predict non-physical behavior of charges
in motion and today, Neumann’s expression for the elemental force is most widely used.
Weber is now recognized amongst other contributions, for his focus on charged particles
instead of fluids to model electric currents.
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magnetism and showed its equivalence with Maxwell’s macroscopic theory,
enabling the alternative formulation and usage of either. The combined
name (i.e., Maxwell-Faraday, Maxwell-Gauss) will be used in §3 and §4
when referring to these modern terminology differential forms, in order to
distinguish them from —honoring at the same time— their authors’ original
contributions.

In this manner, nine physical relations —detalied in §1.3— have been
selected as the cornerstones of this analysis. The first three describe the
electromagnetic behavior of materials; the second three describe the rela-
tion between time-varying electromagnetic fields and charge distributions,
while the last three apply to static fields, currents and charge distributions.

Conjectures will be raised respect the extension of the last three static
relations (under 7, 8 and 9 of §1.3) to time-varying fields, and the stated
logic (that valid logical and mathematical operations, applied to well-
established models, yield acceptable results) will be used to confirm or
reject such conjectures.

In order to make a full characterization of the fields generated in the
thought-experiment —which are functions of time and space— their diver-
gence and curl will be calculated, showing that the analytical expressions
for the effects of these operators on the electromagnetic fields may be de-
fined only up to a set of parameters, herein labeled λ1 and λ2. Maxwell
implicitly assumed a specific value for these parameters: λ1 = λ2 = 1, lead-
ing way to his well-known equations. Vector calculus concepts introduced
by Heaviside years later show, notwithstanding, that other values of λ1 and
λ2 may be applicable

5.
As a result, the following conclusions are obtained:

1. Maxwell was right in detecting that the equations describing the elec-
tromagnetic phenomena prevailing at that time were mathematically
inconsistent and required a revision.

2. Maxwell’s proposition, which resulted in a modification of Ampère’s
original equation for the case of time-varying fields, was incomplete.
A complete, mathematically consistent revision of the prevailing set
of equations describing the electromagnetic phenomena includes two
scalar parameters.

5It was not evident at the time Maxwell formulated his electromagnetic field equa-
tions, that —except for a trivial term— continuously differentiable 3-D vector fields are
well-defined by their divergence and curl. The discovery of this feature of continuously
differentiable 3-D fields (owed to the work of Heaviside and others) will prove to con-
tribute —with substantial knowledge— to this ex-post analysis.



110 Norberto Sáinz

3. These two scalar parameters generate a family of candidate electro-
magnetic field models, all the members of which are mathematically
consistent with the originating set of assumptions and therefore, from
a mathematical point of view, undistinguishable.

4. Not all the members of the above family are physically adequate elec-
tromagnetic field models, as neither are all values of the scalar param-
eters. The physically correct models, jointly with the corresponding
set of proper parameter values, are to be experimentally determined.

1.3. Assumptions

1. Ohm’s equation of resistance is assumed valid in its differential form
for time-invariant and time-varying fields6.

2. The equation of electric permeability is assumed valid in its differen-
tial form for time-invariant and time-varying fields7.

3. The equation of electric elasticity (the concept evolved into today’s
permittivity) is assumed valid in its differential form for time-invariant
and time-varying fields8.

4. The equation of continuity for electric charges in its differential form
is assumed valid for time-invariant and time-varying fields9.

5. Gauss’ equation in its differential form is assumed valid for time-
invariant and time-varying fields10.

6. Faraday’s equation in its differential form is assumed valid for time-
invariant and time-varying fields11.

7. Ampère’s original equation in its differential form is assumed valid
for time-invariant fields12.

8. Biot-Savart’s equation is assumed valid for time-invariant fields13.

6Gave rise to Eqn. (F) in [5], Eqn. (G) in [8].
7Defined in Par. (60), gave rise to Eqn. (B) in [5], Eqn. (L) in [8].
8Gave rise to Eqn. (E) in [5], Eqn. (F) in [8].
9Gave rise to Eqn. (H) in [5].
10Gave rise to Eqn. (G) in [5], Eqn. (J) in [8].
11Gave rise, jointly with Eqn. (B), to Eqn. (D) in [5], Eqn. (B) in [8].
12Coherent with prevailing model for time-invariant fields.
13Coherent with prevailing model for time-invariant fields. Evolves into Ampère’s law.
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9. Coulomb’s equation is assumed valid for time-invariant fields14.

Conjectures will be raised respect the extension of the assumptions under
7, 8 and 9 above to time-varying fields.

14Coherent with prevailing model for time-invariant fields. Evolves into Gauss’ law.
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2. THE EXPERIMENT

2.1. General description and setup

This is an elementary thought-experiment, consisting of two stages:

• In the first stage of the experiment, a conducting wire circuit will be
submitted to an external time-varying magnetic field.

• In the second stage, the same driving magnetic field will be used, but
the wire will be cut and a segment of it will be withdrawn.

The fields generated in both stages of the experiment will be modeled,
based on the assumptions of §1.3.

2.1.1. First stage

Consider a wire loop through which an externally generated magnetic field
of time-varying intensity, B(t,x) is applied. As usual, t and x refer to
the temporal and spatial coordinates of an event in the traditional 1 + 3D
coordinate system, fixed in the observer’s reference frame.

This external magnetic field induces an electric field in its surroundings,
which integrates along the conducting circuit to an emf , driving a current
i(t) around the wire, as shown in figure 1.

Figure 1 : Magnetic induction in closed loop

The field E(t,x) represented in figure 1 is considered to exist not only
where the conductor is present, but also in the void surroundings wherever
the field B(t,x) varies in time.

Jubitza
Imagen colocada
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2.1.2. Second stage

In the second stage, a piece of the wire is cut, interrupting the circuit. This
forces electrical charges to concentrate at the wire ends, as in figure 2.

Figure 2 : Magnetic induction in open loop

Before the wire was cut, the electric field was exclusively inductive.
After the wire is cut, the electric field close to the wire ends changes, as
in figure 2, due to the charge buildup at the discontinuity points. Within
the conductor, these charges generate an electric field that opposes and
tends to compensate the electric field induced by the external magnetic
field. Externally to the conductor, the field generated by the charges tends
to contribute to the electric field induced by the magnetic field. The field
generated by the charges is conservative, as opposed to the non-conservative
field generated by magnetic induction.

Jubitza
Imagen colocada
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3. ANALYSIS OF THE RESULTS

Assumptions numbers 1, 2 and 3 of §1.3 allow declaring that this analysis is
performed for a wire of conductivity σ immersed in a medium of permeabil-
ity µ0 and permittivity ε0. These electromagnetic properties of materials
and media are assumed homogeneous and isotropic. The mks physical unit
system is used.

3.1. The Electric Field

3.1.1. First stage of the experiment.

Because Maxwell-Gauss’ and Maxwell-Faraday’s equations hold (they are
assumed valid in 5 and 6 of §1.3, respectively), if the local electric and mag-
netic fields were to be measured, any observer could readily verify that the
electric field induced in the first part of this experiment is non-conservative
and, within the agreed accuracy, satisfies both: the Maxwell-Faraday in-
duction equation,

∇×ETOT (t,x) = −∂B
TOT (t,x)

∂t
(3.1)

and a null Maxwell-Gauss condition,

∇ ·ETOT (t,x) = 0(3.2)

The latter results may be explained by the electrically neutral conductor
used in the experiment. The lack of isolated electrical particles precludes
all attempts to enclose unbalanced electric charges in neighborhoods of any
relevant15 size. Hence, Maxwell-Gauss’ law which states:

∇ ·ETOT (t,x) =
ρ(t,x)

ε0
(3.3)

is reduced to (3.2). Furthermore, since there are no isolated electrical
charges, there is no field of a conservative type, i.e., no field generated by
electrical charge distributions.

15It is assumed that atomic scale analysis, where individual charges may indeed be
found and isolated, is not essential for explaining these microscopic electrodynamic
phenomena.
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3.1.2. Second stage of the experiment. A new split for ETOT .

If the experiment is repeated with the same driving external magnetic field,
but using an open circuit, the equation of continuity of electric charges,
assumed valid in 4 of §1.3, allows predicting that charges will accumulate
at the wire ends. As said, these will generate a conservative electric field,
which:

• opposes to the induced nonconservative electric field inside the con-
ductor, and

• contributes to the nonconservative electric field outside the conductor.

These two kinds of electric fields (conservative and nonconservative)
will be defined and quantified separately before any further experimental
results are modeled.

For this purpose, consider Coulomb’s law, assumed valid in 9 of §1.3,
which states that time-invariant charge distributions ρ(x) generate conser-
vative electrostatic fields ESTAT (x) of the form:

ESTAT (x) =
1

4πε0

Z
V 0

ρ(x0)
x− x0

|x− x0|3
dV 0(3.4)

where V 0 is a spatial region large enough to contain all the charges that
exert a measurable electric influence on a test particle located at x, within
experimental accuracy.

No assumption has been made that (3.4) would hold for time-varying
fields.

Acknowledging the above, arbitrarily make a hypothetical extension of
Coulomb’s electrostatic law to time-varying fields and define Eρ(t,x) as16:

16 Some may object to this definition ofEρ(t,x), in the sense that it would not represent
a real physical field.
The integral in (3.5) requires the instantaneous contribution to the field at x, of par-

ticles lying at x0, this is, located arbitrarily far from x. How could any electric charge
instantaneously transmit its influence through space? If the speed of light is limited, how
could its constituent fields be expected to propagate with infinite speed? The concept of
retarded potential, which proposes an answer to the above questions, renders equation
(3.5) as describing a non-physical entity.
Should that be the case, the usage of non-physical fields for calculation purposes has

been recommended by other authors (Faddeev-Popov, Schoenmaker et al.). On the other
hand, it may be argued that such scope and usage is of a totally different nature and
purpose as the one resulting from (3.5). (The Faddeev-Popov ghost fields are fictitious
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Eρ(t,x) =
1

4πε0

Z
V 0

ρ(t,x0)
x− x0

|x− x0|3
dV 0(3.5)

where V 0 is a spatial region large enough to contain all the charges that, if
kept constant through time and equal to the largest value that they would
exhibit throughout the experiment, would exert a measurable influence on
a test particle located at x, within experimental accuracy.

Call —as in the first stage of this experiment— ETOT (t,x) the total elec-
tric field and define ∆E(t,x) as:

ETOT (t,x) = Eρ(t,x) +∆E(t,x)(3.6)

As defined above, ∆E(t,x) is the balance electric field.
In order to obtain the curl of ETOT (t,x) and of its component fields,

Eρ(t,x) and ∆E(t,x), first note that it is desirable that, —as in the static
case— equation (3.5) defines Eρ(t,x) as a gradient, by writing (3.5) as:

Eρ(t,x) = − 1

4πε0

Z
V 0

ρ(t,x0)∇
µ

1

|x− x0|

¶
dV 0(3.7)

or

Eρ(t,x) = −∇

⎡⎣ 1

4πε0

Z
V 0

ρ(t,x0)
µ

1

|x− x0|

¶
dV 0

⎤⎦ = −∇φρ(t,x)(3.8)

If Eρ(t,x) is continuously differentiable in the region under analysis,
then a necessary and sufficient condition for deriving (3.8) out of (3.7) is
that Eρ(t,x) be irrotational. So, let:

∇×Eρ(t,x) = 0(3.9)

In this manner, due to (3.6), the Maxwell-Faraday induction equation
(3.1) predicts that:

anti-commuting complex scalar fields, introduced by their authors in the mid 70’s for
the quantization of non-Abelian gauge theories in order to formulate them as consistent
quantum field theories [15]. Schoenmaker, Magnus and Meuris extended the concept for
solving the classical field equations of a gauge theory in 2002 [16]).
It is not the intention of this work to enter into such controversy at this time, therefore

momentaneously consider Eρ(t,x) to be a mere mathematical construct, the proposition
being that any differences between Eρ(t,x) and the “physical electric field” should be
taken into account in a complement field, ∆E(t,x), as defined in equation (3.6).
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∇×ETOT (t,x) = ∇× (Eρ(t,x) +∆E(t,x)) = −∂B
TOT (t,x)

∂t
(3.10)

where, applying (3.9),

∇×∆E(t,x) = −∂B
TOT (t,x)

∂t
(3.11)

Having analyzed the curl of the electric field components Eρ(t,x) and
∆E(t,x), their divergence will be now studied.

From (3.5), the divergence of Eρ(t,x) is:

∇ ·Eρ(t,x) = − 1

4πε0

Z
V 0

ρ(t,x0)∇2
µ

1

|x− x0|

¶
dV 0(3.12)

or

∇ ·Eρ(t,x) =
1

ε0

Z
V 0

ρ(t,x0)δ(x− x0)dV 0 = 1

ε0
ρ(t,x)(3.13)

Calculating the divergence of both sides in (3.6) and considering the
Maxwell-Gauss equation (3.3) yields:

∇ ·ETOT (t,x) = ∇ ·Eρ(t,x) +∇ ·∆E(t,x) = ρ(t,x)

ε0
(3.14)

where, applying (3.13),

∇ ·ETOT (t,x) =
ρ(t,x)

ε0
+∇ ·∆E(t,x) = ρ(t,x)

ε0
(3.15)

implying that:

∇ ·∆E(t,x) = 0(3.16)

Based on the conjecture that Coulomb’s law may be mathematically ex-
tendable to time-varying fields, the total electrodynamic field ETOT locally
existing at any point (event) in spacetime has been mathematically parti-
tioned into two theoretical component vector fields, Eρ and ∆E. Unique,
well defined, local and measurable attributes have been determined for these
fields. As a consequence of this, each of these fields satisfies one Maxwell
null condition, respectively bearing the full compliance owed by the total
field with the other Maxwell condition, as shown in table 1 below:
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Eρ(t,x) ∆E(t,x) ETOT (t,x)

Divergence
ρ(t,x)
ε0

0
ρ(t,x)
ε0

Curl 0 −∂BTOT (t,x)
∂t −∂BTOT (t,x)

∂t
Energetic
behavior

Conservative Non
conservative

Combination

Table 1: Local Features of Eρ and ∆E

Table 3.1: Local Features of Eρ and ∆E

In this manner, given an electric field ETOT (t,x) defined in all of space-
time, its divergence and curl (both unique, well defined, local and measur-
able physical attributes) could in principle be locally measured anywhere
in its domain, and thereafter locally associated with the (local, as well) at-
tributes of its component fields, Eρ and ∆E respectively. The everywhere
local definition of these attributes is sufficient to uniquely define in turn
the fields Eρ and ∆E throughout all spacetime.

This principle of operational calculus —that the local definition of a
field induces in turn its global definition— was used by Lorentz [17] in the
formulation of his microscopic version of Maxwell’s electromagnetic field
theory. Though Lorentz believed in retarded action17, the observations
that motivated footnote 16 should —with this— be satisfactorily addressed
and the conjecture, mathematically validated18.

Other partitions of the electric field have been historically used. For
example, ETOT has been split into its electrostatic and electrodynamic
components, into its near, midrange and far-field components, or into its
frequency spectrum, etc. The partition for ETOT shown in table 1 above
has the merit of being coherently aligned with the Maxwell equations. In
effect: because continuously differentiable 3-D vector fields are uniquely de-
fined (except for a trivial term) by their curl and divergence, both Maxwell
equations, (3.1) and (3.3), are needed in order to completely define ETOT .
If only one equation is used, certain attributes of the electric field remain
undefined. Given one Maxwell equation, (either (3.1) or (3.3)) the proposed
partition assigns all the well-defined attributes to one field, (either ∆E or

17In chapter IV of [17] Lorentz stresses —perhaps following a concept introduced by
Gauss in 1845— that the action of one charged particle on another is propagated at the
speed of light.
18Those still uneasy with this mathematical split of ETOT into Eρ and ∆E may wish

to refer to section 4.2 Discussion, part 1.
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Eρ respectively), reserving all uncertainties for the other, and vice versa.

This is: due to (3.9),

∇×∆E(t,x) = ∇× (∆E(t,x) + λ1E
ρ(t,x)) ∀λ1 ∈ R(3.17)

The above, when replaced in (3.10) yields:

∇× (∆E(t,x) + λ1E
ρ(t,x)) = −∂B

TOT (t,x)

∂t
∀λ1 ∈ R(3.18)

Similarly, due to (3.16),

∇ ·Eρ(t,x) = ∇ · (Eρ(t,x) + λ2∆E(t,x)) ∀λ2 ∈ R(3.19)

which, when replaced in (3.13) yields:

∇ · (Eρ(t,x) + λ2∆E(t,x)) =
ρ(t,x)

ε0
∀λ2 ∈ R(3.20)

The infinite selection of values that λ1 and λ2 may adopt without al-
tering the physical validity of equations (3.18) and (3.20) clearly represent
the uncertainty contained in this formulation. Attention is drawn to the
following facts:

1. This uncertainty —though detectable due to the way in which the
ETOT field was split— is not a consequence of such a split, but of the
insufficient number of analytical equations under consideration.

2. Though in some ways similar to the gauges existing in the vector and
scalar electrodynamic potentials, the uncertainty highlighted herein
is of an essentially different nature. While the gauges alter the poten-
tials in nonmensurable ways (and so are innocuous to the measurable
electric and magnetic fields and their mutual physical relation), the
span of mathematical options that λ2 represents points directly to
the slack present in the definition of measurable phenomena, calling
—as will be seen in §3.3.1— for an experiment in order to determine
the physically correct values and relations.

The acknowledgement of these facts will be essential in later stages of
this work.
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3.2. Currents

3.2.1. An expression for the divergence of j.

Having split ETOT into its component fields, the current density j may now
be analyzed. This step is necessary before deriving an expression for the
magnetic field.

Equation (3.20) may be written as:

ρ(t,x) = ε0∇ · (Eρ(t,x) + λ2∆E(t,x)) ∀λ2 ∈ R(3.21)

in such a way that the equation of continuity for electric charges (really an
equation for the continuity of j), assumed valid in 4 of §1.3,

∇ · j(t,x) + ∂ρ(t,x)

∂t
= 0(3.22)

may, in turn be written as:

∇ · j(t,x) + ∂

∂t
[ε0∇ · (Eρ(t,x) + λ2∆E(t,x))] = 0 ∀λ2 ∈ R(3.23)

or, swapping the spatial and temporal differential operators,

∇ · j(t,x) +∇ ·
∙
ε0

∂

∂t
(Eρ(t,x) + λ2∆E(t,x))

¸
= 0 ∀λ2 ∈ R(3.24)

this is, a mathematically complete equation for the continuity of the vector
field j(t,x) reads:

∇ ·
∙
j(t,x) + ε0

∂

∂t
(Eρ(t,x) + λ2∆E(t,x))

¸
= 0 ∀λ2 ∈ R(3.25)

3.2.2. In search for a solenoidal current.

Maxwell realized that, when non-solenoidal currents were considered, the
relation known to exist between (conduction) currents and magnetic fields
(i.e., Ampère’s relation, which Maxwell calls “Equations of Electric Cur-
rents” and labels (E) in [18]) did not resist mathematical analysis. In his
work [18], he says:

“By differentiating the equations (E) with respect to x, y and
z, respectively and adding the results we obtain the equation
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du

dx
+

dv

dy
+

dw

dz
= 0 19

which indicates that the current whose components are u, v, w
is subject to the condition of motion of an incompressible fluid,
and that it must necessarily flow in closed circuits.”

And, referring to the above described solenoidal feature of the current whose
components are u, v, w, Maxwell concludes:

“This equation is true only if we take u, v and w as the
components of that electric flow which is due to the variation of
electric displacement as well as true conduction.”

Formally declaring, a few paragraphs later in his work [19]:

“[610] One of the chief peculiarities of this treatise is the doc-
trine which it asserts, that the true electric current C , that on
which the electromagnetic phenomena depend, is not the same
thing as K, the current of conduction, but that the time varia-
tion of D, the electric displacement must be taken into account
in estimating the total movement of electricity, so that we must
write,

C = K+
·
D (Equation of True Currents) (H)”

It is clear from the above, that Maxwell modified what is now called
Ampère’s relation. It is also clear that he did so because he was in search
for a solenoidal current term for it. This is, Maxwell was not concerned
about correcting the expression in order to match a new experimental value
or behavior recently reported by some respectable observer.

Maxwell himself declared not having modified Ampère’s relation due to
experimental, but theoretical reasons. In fact, only a few paragraphs before
his above mentioned conclusions, he states in [20]:

“[606] Up to this point in our investigation, we have de-
ducted everything from purely dynamical considerations, with-
out any reference to quantitative experiments in electricity or

19Maxwell employs the sign reserved today for total derivatives, though he refers to
partial derivatives. As Einstein says in his introduction to [5], these were the first uses
of partial derivatives in the area of physics.
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magnetism. The only use we have made of experimental knowl-
edge is to recognize, in the abstract quantities deduced from the
theory, the concrete quantities discovered by experiment, and to
denote them by names which indicate their physical relations
rather that their mathematical generation.”. . . “We have not,
however, obtained any data for determining either A or B from
the distribution of currents in the field. For this purpose we
must find the mathematical connexion (sic) between these quan-
tities and the currents.”

The theoretical drive and lack of experimental verification in Maxwell’s
approach to this aspect of his electromagnetic field model will become an
essential argument in this work, so one more evidence that Ampère’s rela-
tion was subject to a theoretical (as opposed to experimental) modification
is hereby offered: As Maxwell himself declared [18], the amount of experi-
mental evidence available at the time, made any experimental corrections
difficult or unfeasible:

“We have very little experimental evidence relating to the
direct electromagnetic action of currents due to the variation of
electric displacement in dielectrics, but the extreme difficulty of
reconciling the laws of electromagnetism with the existence of
currents which are not closed is one reason among many why
we must admit the existence of transient currents due to the
variation of displacement. Their importance will be seen when
we come to the electromagnetic theory of light.”

3.3. The Magnetic Field

3.3.1. Exploring Maxwell’s options.

If Maxwell was merely looking for a solenoidal term for the Equation of
Electric Currents by writing:

V∇H = 4π(K+ Ḋ)(3.26)

where, expressing (3.26) in contemporaneous notation as Maxwell-Ampère’s
equation20:

∇×BTOT = µ0

µ
j+

∂

∂t
ε0E

TOT
¶

(3.27)

20Remember that this analysis is for a medium with µ0, ε0.
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then, (3.25) shows that he could have obtained infinitely many more solenoidal
terms for Maxwell-Ampère’s expression by writing, instead of the expres-
sion in parenthesis of (3.27):

j(t,x) +
∂

∂t
ε0 (E

ρ(t,x) + λ2∆E(t,x)) ∀λ2 ∈ R(3.28)

Though every value of λ2 ∈ R makes (3.28) satisfy a solenoidal re-
quirement, only one instance of (3.28) is physically equal to the curl of
BTOT (t,x). This is so because, being BTOT (t,x) a unique, well-behaved
field21, its curl is unique.

In order to determine which value of λ2 produces the physically ade-
quate instance of (3.28) and defines the exact form of Maxwell-Ampère’s
relation, experimental work is needed. This, because Faraday’s, Ampère’s,
Biot-Savart’s and Coulomb’s equations summarize the results of experimen-
tal observations. As with all physical theories, they may be mathematically
challenged, but must be experimentally formulated. This feature distin-
guishes the present work from traditional gauge theories, as anticipated in
§3.1.2.

As documented in the references above, Maxwell did not perform the
necessary experiments and, by postulating (3.26) (this is, (3.27)), he inad-
vertently assumed the equivalent of an equation (3.28) in which λ2 = 1.

Two facts probably led Maxwell to formulate (3.26):

1. Maxwell conceived the total current as composed of two parts: the
conduction current K, and the displacement current, due to the time
variation of D. He never conceived a naturally solenoidal term (such
as ε0∆̇E) to be a constituent of the total current. Therefore, he had
no null term to add to his proposition.

2. Given the historical development of the electromagnetic field model,
equation (3.26) is a more “natural” choice than (3.28).

3.3.2. The mathematical options for BTOT .

Consider the formula due to Biot and Savart, assumed valid in 8 of §1.3,
which states that time-invariant currents j(x) generate magnetostatic fields
BSTAT (x) of the form:

BSTAT (x) =
µ0
4π

Z
V 0

j(x0)× x− x0

|x− x0|3
dV 0(3.29)

21I.e., continuously differentiable.
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where V 0 is a spatial region large enough to contain all the currents that ex-
ert a measurable magnetic influence on a test circuit located at x, within ex-
perimental accuracy. The Biot-Savart expression is equivalent to Ampère’s
original expression, assumed valid in 7 of §1.322.

No assumption has been made that (3.29) would apply to time-varying
fields. So, in a manner totally equivalent to that used for the electric field
case, arbitrarily23 define, for time-varying currents, the following magnetic
field:

Bj(t,x) =
µ0
4π

Z
V 0

j(t,x0)× x− x0

|x− x0|3
dV 0(3.30)

where V 0 is a spatial region large enough to contain all the currents that, if
kept constant through time and equal to the largest value that they would
exhibit throughout the experiment, would exert a measurable influence on
a test circuit located at x within experimental accuracy. Call BTOT (t,x)
the total magnetic field and further define∆B(t,x) as the balance magnetic
field:

BTOT (t,x) = Bj(t,x) +∆B(t,x)(3.31)

In order to analyze the divergence and curl of BTOT and its component
fields, first note that it is desirable to express Bj as a rotor, by writing
(3.30) as follows:

Bj(t,x) = −µ0
4π

Z
V 0

j(t,x0)×∇
µ

1

|x− x0|

¶
dV 0(3.32)

or

Bj(t,x) =
µ0
4π
∇×

Z
V 0

j(t,x0)

|x− x0|dV
0 = ∇×Aj(t,x)(3.33)

Assuming that Bj is continuously differentiable in the region under
analysis,

∇ ·Bj(t,x) = ∇ ·∇×Aj(t,x) = 0(3.34)

22In fact, the question of their suspected equivalence was finally and positively settled
in arbitration by Laplace. The story says that in order to decide, Laplace required
from Ampère to prove that, upon integration of his expression, Biot expression results.
Succeeding in his demonstration, Ampère sent it —unpublished— to Laplace... and the
interaction law was thereafter named “Law of Laplace”! [21].
23Comments equivalent to those for Eρ in footnote 16 apply.
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On the other hand, respectable observers consistently report that mag-
netic monopoles have not yet been detected. So, until the existence of
magnetic monopoles is in fact reported, a null Maxwell-Gauss assump-
tion on BTOT (t,x) allows predicting that ∇ · BTOT (t,x) = 0, leading to
∇ ·∆B(t,x) = 0.

In order to determine the curl ofBTOT , first consider the curl ofBj(t,x),
by applying the curl operator to (3.30) (or better, to (3.33)):24

∇×Bj (t,x) =
µ0
4π
∇×

⎛⎝∇× Z
V 0

j (t,x0)

|x− x0|dV
0

⎞⎠ =

=
µ0
4π

⎡⎣− Z
V 0

j
¡
t,x0

¢
∇2

µ
1

|x− x0|

¶
dV 0 +

Z
V 0

¡
j
¡
t,x0

¢
·∇0

¢
∇0
µ

1

|x− x0|

¶
dV 0

⎤⎦
(3.35)

The first integral in the right hand side of (3.35) contains a Dirac delta.
The second may be integrated by parts into:Z
V 0

¡
j
¡
t,x0

¢
·∇0

¢
∇0
µ

1

|x− x0|

¶
dV 0 =

= bxk Z
V 0

∇0 ·
(
j
¡
t,x0

¢ " ∂

∂x0k

µ
1

|x− x0|

¶#)
dV 0 −

Z
V 0

£
∇0 · j

¡
t,x0

¢¤
∇0
µ

1

|x− x0|

¶
dV 0

(3.36)

this is:

Z
V 0

¡
j
¡
t,x0

¢
·∇0

¢
∇0
µ

1

|x− x0|

¶
dV 0 =

= bxk Z
S0

"
j
¡
t,x0

¢ ∂

∂x0k

µ
1

|x− x0|

¶#
· dS0 −

Z
V 0

£
∇0 · j

¡
t,x0

¢¤
∇0
µ

1

|x− x0|

¶
dV 0

(3.37)

24The mathematics in (3.35) through (3.38) were obtained from Bo Thidé’s book “Elec-
tromagnetic Field Theory”, Upsilon Books, 1997, Uppsala University, Sweden [22].
There are differences though, between [22] and the work presented here. While Thidé

assigns the results of these operations to the curl of BTOT , in this work they are equated
to the curl of Bj .
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The first integral in the right hand side of (3.37) vanishes when inte-
grated over a large sphere S0 far from x. The second integral combines with
the equation of continuity for electric charges (3.22) to yield:

Z
V 0

¡
∇0 · j(t,x0)

¢
∇0
µ

1

|x− x0|

¶
dV 0 =

= −
Z
V 0

∂ρ(t,x0)

∂t
∇0
µ

1

|x− x0|

¶
dV 0 = − ∂

∂t

Z
V 0

ρ(t,x0)∇0
µ

1

|x− x0|

¶
dV 0

(3.38)

The definition of Eρ(t,x) in (5) allows writing25:Z
V 0

¡
∇0 · j(t,x0)

¢
∇0
µ

1

|x− x0|

¶
dV 0 = −4πε0

∂

∂t
Eρ(t,x)(3.39)

In this manner, the curl of Bj(t,x) is uniquely given by:

∇×Bj (t,x) =

= µ0

Z
V 0

j
¡
t,x0

¢
δ
¡
x− x0

¢
dV 0 + µ0ε0

∂Eρ (t,x)

∂t
= µ0

µ
j (t,x) + ε0

∂Eρ (t,x)

∂t

¶
(3.40)

It is interesting to verify that Bj(t,x) and its curl are both well defined
in (3.30) and (3.40), irrespective of whether j(t,x) is solenoidal or not. In
effect; if Bj(t,x) is defined in (3.30) as the application of Biot-Savart on
the solenoidal current

j(t,x) + ε0
∂Eρ(t,x)

∂t

instead of the current j(t,x) alone, expression (3.40) for the curl of Bj(t,x)
remains unaltered26. In this respect, the Biot-Savart equation seems to
be more powerful than Ampère’s relation, since the former is directly ex-
tensible to non-solenoidal currents, mathematically calling for the need to
introduce the time variation of an electric field, as envisioned by Maxwell.

25Bo Thidé makes the assumption that the last integral of (3.38) equates to
−4πε0ETOT instead of −4πε0Eρ. This gives ∆E a ”free ride” into the traditional ex-
pression for the curl of B.
26In such case, the factor of the Dirac delta in (3.35) is j+ε0

∂Eρ

∂t , while the divergence
in the second integral of the right-hand-side of (3.37) is null.
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Having obtained an expression for the curl of Bj(t,x), the curl of
∆B(t,x) should now follow. Noting that Maxwell-Ampère’s equation is
a statement about the curl of BTOT (t,x), (which includes the curl of
∆B(t,x)), Maxwell-Ampère’s equation will be analyzed.

For this, three aspects must be considered:

1. The first aspect to consider is that Maxwell’s argument on non-
solenoidal conduction currents and their effects on the magnetic field
is addressed —and totally satisfied— by (3.40).

2. A second aspect to consider is that∇·∆B = 0, so unless null∆B fields
are acceptable (which means accepting that the extension of Biot-
Savart to time-varying fields is not only a mathematical construct
but a physical relation), ∆B must exhibit a nonzero curl.

3. The third aspect to consider is Maxwell’s model development strat-
egy:

As already seen, Maxwell modified the Equation of Electric Currents

∇×BTOT (t,x) = µ0j(t,x)

to read

∇×BTOT (t,x) = µ0j(t,x) + µ0ε0
∂ETOT (t,x)

∂t

in order to satisfy the mathematical requirement that rotors of con-
tinuously derivable fields must be solenoidal.

But, equations (3.26) through (3.28) show that Maxwell had more math-
ematical options than those he used to fit the purpose when introducing
the modification described in 3 above. Exploring these options will reveal
to be of paramount importance.

So —following Maxwell’s development strategy indicated in 3 above— the
curl of BTOT (t,x) will be assumed to equate to some solenoidal combina-
tion of fields satisfying the established assumptions, of which j(t,x) is a
component. The infinite options for such solenoidal combinations of fields
are given by equation (3.28), so that a complete mathematical reformula-
tion of Maxwell’s proposal should be given by:
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∇×BTOT (t,x) =(3.41)

= µ0

∙
j(t,x) + ε0

∂

∂t
(Eρ(t,x) + λ2∆E(t,x))

¸
∀λ2 ∈ R

Equation (3.41) makes it evident that Maxwell’s solenoidal requirement,
though sufficient for determining the unsuitability of Ampère’s original
equation, is not sufficient for determining its final form. As anticipated
in section 3.3.1, from a physical standpoint there should be one and only
one value of λ2 and instance of (3.41) that agree with experimental data.
Acknowledging this, Maxwell’s proposition should have been:

∇×BTOT (t,x) =(3.42)

= µ0

∙
j (t,x) + ε0

∂

∂t
(Eρ (t,x) + λ2∆E (t,x))

¸
for someλ2 ∈ R

As said, exactly which value of λ2 gives Maxwell-Ampère’s equation its
definite form must be experimentally determined27.

An expression for the curl of ∆B(t,x) may now be obtained, by intro-
ducing (3.31) and (3.40) into (3.42) and simplifying terms:

∇×∆B(t,x) = λ2µ0ε0
∂∆E(t,x)

∂t
for some λ2 ∈ R(3.43)

Table 2 below summarizes the results obtained so far: the proposed
split for BTOT (t,x), and the features of each term:

Bj(t,x) ∆B(t,x) BTOT (t,x)

Div. 0 0 0

Curl µ0j+ µ0ε0
∂Eρ(t,x)

∂t λ2µ0ε0
∂∆E(t,x)

∂t
for some λ2 to
be experimen-
tally
determined

To be experi-
mentally
determined

Table 2: Local Features of Bj and ∆B

These results, in conjunction with those of table 1, constitute the find-
ings of this work.

27As of today, no reports are known to the author on experiments aimed at determining
such value of λ2.
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4. EPILOGUE

4.1. Conclusions.

1. Maxwell was right in detecting that the equations describing the elec-
tromagnetic phenomena prevailing at that time were mathematically
inconsistent and required a revision.

2. Maxwell’s proposition, which resulted in a modification of Ampère’s
original equation for the case of time-varying fields, was incomplete.
A complete, mathematically consistent revision of the prevailing set
of equations describing the electromagnetic phenomena is:

From (3.18):

∇× (λ1Eρ +∆E) = −∂B
TOT

∂t
∀λ1 ∈ R

From (3.20):

∇ · (Eρ + λ2∆E) =
ρ

ε0
∀λ2 ∈ R (a)

From experimental observations:

∇ ·BTOT = 0

From (3.41):

∇×BTOT = µ0

∙
j+ ε0

∂

∂t
(Eρ + λ2∆E)

¸
∀λ2 ∈ R

3. The scalar parameters λ1 and λ2 generate a family of candidate elec-
tromagnetic field models, all the members of which are mathemati-
cally consistent with the originating set of assumptions and therefore,
from a mathematical point of view, undistinguishable.

4. Not all the members of the above family are physically adequate elec-
tromagnetic field models, as neither are all values of the scalar param-
eters. The physically correct models, jointly with the corresponding
set of proper parameter values, are to be experimentally determined,
leaving the last equation above as:
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From (3.42):

∇×BTOT = µ0

∙
j+ ε0

∂

∂t
(Eρ + λ2∆E)

¸
for some λ2 ∈ R (b)

4.2. Discussion.

1. Those still unsatisfied with the definitions of Eρ and Bj , and the
splitting that these definitions induce in the total electromagnetic
fields ETOT and BTOT , may wish to consider the following argument:

Let L be the family of all real valued scalar fields defined in spacetime
which are Lebesgue integrable, and C1 the family of all real valued
differentiable vector fields defined in spacetime. Let G be the subset
of all gradient vector fields in C1.
Equation (3.5) defines an operator from L to G. This operator univo-
cally assigns to every ρ(t,x)/ε0 in L, an irrotational (gradient) vector
field Eρ(t,x), in G. Call this operator Coul, for Coulomb.
Reciprocally, given a vector field E(t,x) in G, the div operator uni-
vocally assigns to it, its divergence ∇ ·E(t,x), which is in L.
Between L and G, the Coul and div operators form a mutually inverse
couple. In effect, equation (3.13) shows that:

div

∙
Coul

µ
ρ(t,x)

ε0

¶¸
=

ρ(t,x)

ε0
(c)

Applying Coul to both sides of (c):

Coul

½
div

∙
Coul

µ
ρ (t,x)

ε0

¶¸¾
= Coul

µ
ρ (t,x)

ε0

¶
But, Coul (ρ (t,x) /ε0) = E

ρ (t,x), so :

Coul {div [Eρ (t,x)]} = Eρ (t,x) (d)

Therefore, (c) and (d) above imply that:

Coul ≡ div−1
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The reciprocally inverse relation existing between div and Coul guar-
antees that, for every local (microscopic, or differential) definition of
Eρ (in terms of its divergence), a unique global (macroscopic, or in-
tegral) definition (in terms of Coul) exists, and vice versa. In other
words, if a local definition of a field Eρ is feasible, then a global defi-
nition of Eρ is feasible as well. The global definition for the field Eρ

(locally defined in table 1) is given in (3.5).

A similar analysis may be made for Bj and j+ ε0Ė
ρ.

These properties validate the differential formulation of integral fields,
i.e., in the form of the well-known differential Maxwell field equations.

2. The value λ1 appearing in equations (3.17) and (3.18), is not men-
tioned in table 1 or table 2 because the fields Eρ and ∆E are being
treated there in a separate manner. The parameter λ1 gains impor-
tance when both electric fields combine into one physical entity, as
follows:

From (3.18) :

∇×
µ
Eρ +

1

λ1
∆E

¶
= − 1

λ1

∂BTOT

∂t
∀λ1 6= 0 ∈ R (e)

So, if λ1 is defined as λ1 = λ−12 λ1, λ2 6= 028

and a new electric field Ξ is defined, as

Ξ(t,x) = Eρ(t,x) + λ2∆E(t,x) for some λ2 6= 0 ∈ R

then, for such value λ2, equations (a) above read:

∇×Ξ = −λ2
∂BTOT

∂t
∇ ·Ξ =

ρ

ε0
∇ ·BTOT = 0

∇×BTOT = µ0

µ
j+ ε0

∂Ξ

∂t

¶ (f)

The field equations (f) describe the dynamic behavior of Ξ.

28The case λ2 = 0 will be tretaed in point 3 of this §4.2
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3. One trivial possibility for equation (3.42) is given by λ2 = 0. How-
ever, since this makes ∇ × ∆B(t,x) = 0 (and on the other hand,
it is mathematically inferable from experimental observations that
∇ ·∆B(t,x) = 0), this solution would force null ∆B(t,x) fields, de-
stroying the mutual coupling known to exist between electric and
magnetic fields in free space29.

Another possibility is the traditional value λ2 = 1 —implicitly assumed
by Maxwell, as described herein— which makes Ξ(t,x) ≡ ETOT (t,x)
and turns the reformulated field equations into the classical Maxwell
field equations, leading to TSR, TGR and the claimed axiomatic con-
flict.

A third interesting possibility is the value λ2 = −1, which makes the
reformulated equations invariant before Euclidean frame transforma-
tions, and gives the field Ξ the following physical interpretation:

Consider a microscopic analysis of the experiment in §2. An enlarged
view of the setup in figure 2, close to one of the discontinuity points
(where the wire has been cut), reveals an accumulation of charges due
to the action of the induced nonconservative field ∆E(t,x). This ac-
cumulation of charges generates the conservative field Eρ(t,x), which
opposes the nonconservative field (tending to neutralize it) inside the
conductor, while contributing to it in the exterior, increasing its ef-
fect. Figure 3 below schematizes this setup, where the origin of the
x-axis has been set at the selected discontinuity point, (where the
conductor has been cut), with negative x-values and the conduct-
ing medium being represented to the left, while positive x-values and
vacuum, to the right:

29Said coupling would be limited exclusively to that provided by Ohm’s law and the
equation of continuity for electric charges (both relations operate only in the presence of
matter).
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Figure 3 : Details of fields at the circuit discontinuity points

Symmetry considerations in the modelling ofEρ lead to the conclusion
that:

Eρ ¡t,0−¢ = −Eρ ¡t,0+¢ (g)

while the solenoidal feature of ∆E allows writing:

∆E(t,0−) = ∆E(t,0+) (h)

Adding equations (g) and (h) above leads to

ETOT (t,0−) = −Ξ(t,0+) (i)

while subtracting (h) from (g) leads to

Ξ(t,0−) = −ETOT (t,0+) (j)

Equations (i) and (j) provide the boundary conditions for equations
(f) when λ2 = −1.

4. The proposed field partition gives a new twist to one of the methods
traditionally used for solving the electromagnetic field equations.

The electromagnetic field equations, together with the appropriate
constitutive relations linking ρ, j and the fields, plus the initial and
boundary conditions pertinent to the physical phenomenon under de-
scription, form a well-posed system of partial differential equations

Jubitza
Imagen colocada
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which completely determine E and B. Notwithstanding, when gen-
erating solutions for the Maxwell field equations, the employment of
a scalar potential φ and a vector potential A have been frequently
preferred. As will be discussed herein, the method of electromag-
netic potentials maps the solution space of the well-posed system of
electromagnetic field equations into a new solution space (the space
of potentials) that has the merit of exhibiting additional degrees of
freedom respect the space of physical fields, freedom which is later
used to the method’s advantage by means of the introduction of the
well-known electromagnetic gauges.

The method of electromagnetic potentials begins by noting that
∇ ·B = 0, which allows inferring that some real, differentiable vector
field A(t,x) should exist, such that:

B(t,x) = ∇×A(t,x) (k)

If the above expression for the magnetic field B is introduced in the
Maxwell-Faraday field equation, a definition for the electric field E,
in terms of the electromagnetic potentials, is obtained:

E(t,x) = −∇φ(t,x)− Ȧ(t,x) (l)

But equations (k) and (l) can also be considered as “partial defini-
tions” for the vector potential A and scalar potential φ, respectively.
They are said to be partial because:

(a) a value for ∇ ·A(t,x) is missing in (k), and
(b) since the missing divergence of A is a function of time, the time

dependence of A has not been fully defined. This means that the
gradient of φ has not been fully defined either in (l), and therefore
both potentials allow a certain freedom or “slack” in their definition,
with the proviso that said slack be canceled when the potentials are
related as in (k) and (l)30

30Giving rise to the concept of “gauge function” Γ which, given one suitable pair of
potentials φ and A, enables spanning the complete set of suitable scalar and vector
potentials by respectively setting, for any real, differentiable scalar field Γ:

φ0 = φ+
∂Γ

∂t
A0 = A−∇Γ.
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In this work, the above potentials will be called “TOTAL” potentials,
and will be partitioned into two components each (adopting for the
potentials the nomenclature used in previous sections for the fields),
so that:

φTOT (t,x) = φρ(t,x) +∆φ(t,x)

and

ATOT (t,x) = Aj(t,x) +∆A(t,x)

As above defined, ∆φ and ∆A will be respectively called the balance
scalar potential and the balance vector potential. Then:

From equation (3.8):

Eρ(t,x) = −∇φρ(t,x)

so that the balance conditions to be satisfied in order to comply with
(l) become:

∆E(t,x) = −∇∆φ(t,x)− ∂Aj(t,x)

∂t
− ∂∆A(t,x)

∂t
(m)

Likewise, from equation (3.33):

Bj(t,x) = ∇×Aj(t,x)

so that the balance conditions to be satisfied in order to comply with
(k) become:

∆B(t,x) = ∇×∆A(t,x) (n)

By using equations (3.8) and (3.33) as definitions for φρ and Aj re-
spectively, these components of the electromagnetic potentials be-
come totally defined, and any slack existing in the definition of the
total electromagnetic potentials is transferred to the balance compo-
nents ∆φ and ∆A. The concept of gauge, which has given rise to
an entire branch of modern physics31 may then be associated in a
more precise manner, not with the total electromagnetic potentials

31The origin of the standard model may be traced back to 1926, when V. Fock applied
the gauge concept to the quantum mechanics of charged particles that interact with
electromagnetic fields.[23], [24].
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and fields, but with with specific components of them: the balance
vector and balance scalar potentials, which generate the balance elec-
tromagnetic fields.

So, applying the findings of table 1 to the divergence of (m),

∇ ·∆E(t,x) = −∇2∆φ(t,x)−∇ · ∂A
j(t,x)

∂t
−∇ · ∂∆A(t,x)

∂t
= 0

where, adding and subtracting λ2µ0ε0∆φ̈(t,x) and rearranging terms,

∇2∆φ (t,x) −λ2µ0ε0
∂2∆φ (t,x)

∂t2

+
∂

∂t

µ
λ2µ0ε0

∂∆φ (t,x)

∂t
+∇ ·∆A (t,x)

¶
(o)

= −∇ · ∂
∂t
Aj (t,x) for some λ2 ∈ R

On the other hand, applying the findings of table 2 to the curl of (n),

∇×∆B(t,x) ≡

≡ ∇×∇×∆A(t,x)

≡ ∇ (∇ ·∆A(t,x))−∇2∆A(t,x)

= λ2µ0ε0
∂∆E(t,x)

∂t
for some λ2 ∈ R

or

∇2∆A(t,x)+λ2µ0ε0
∂∆E(t,x)

∂t
−∇ (∇ ·∆A(t,x)) = 0 for some λ2 ∈ R

where, applying (m) and rearranging terms,
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∇2∆A (t,x) − λ2µ0ε0
∂2∆A (t,x)

∂t2

− ∇
µ
λ2µ0ε0

∂∆φ (t,x)

∂t
+∇ ·∆A (t,x)

¶
(p)

= λ2µ0ε0
∂2Aj (t,x)

∂t2
for some λ2 ∈ R

The traditional solution procedure works similarly with φTOT , ATOT

and the Maxwell field equations, to arrive to relations equivalent to (o)
and (p), but posed for the total fields instead of the balance fields. At
this stage, the traditional procedure makes use of the fact that ∇ ·ATOT

has not been defined, in order to simplify and uncouple the said equations
into the Helmholtz wave equations by introducing the condition known as
Lorentz gauge, which nullifies the terms between parentheses in the classical
equivalents of (o) and (p)32.

On the other hand, the balance potentials ∆φ and ∆A (and their re-
spective physical fields ∆E and ∆B) are not constrained in any way by
the equation of continuity of electric charges. In this manner, the slack in
the definition of ATOT and φTOT fully translates into a slack in the defini-
tions of ∆φ and ∆A, which may be used at will. For example, by means
of the introduction of electromagnetic gauges. Some gauges which can be
incorporated in this analysis are33:

• The temporal, or Hamilton gauge: ∆φ = 0.
• The radiation or transverse gauge: ∇ ·∆A = 0.

• The Coulomb gauge: ∆φ = 0 and ∇ ·∆A = 0.

• The axial gauge: ∆A3 = 0.
32The Lorentz gauge (discovered by the Danish Physicist Ludwig Lorenz in 1867,

decades before Lorentz demonstrated the covariance of Maxwell’s equations) is no other
than a different way of expressing the equation of continuity of electric charges and is
furthermore, totally satisfied by the potentials φρ and Aj —completely and uniquely de-
fined by (3.8) and (3.33)— in such a way that, when incorporated into the traditional
method of electromagnetic potentials, it turns the equations of the traditional method
into (o) and (p).
33The names used above correspond to an informal extension of the original nomen-

clature, as they have been borrowed from the classical gauge definitions, in terms of the
total fields, φTOT and ATOT .
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One way of using the available slack is by arbitrarily extending34 the
application of the Lorentz gauge to the balance potentials, so that the terms
between parentheses in equations (o) and (p) are nullified. In this manner,
the Helmholtz equations for the balance potentials become:

∇2∆φ(t,x)− λ2µ0ε0
∂2∆φ(t,x)

∂t2

= −∇ ·
Ã
∂Aj(t,x)

∂t

!
for some λ2 ∈ R (q)

and

∇2∆A(t,x)− λ2µ0ε0
∂2∆A(t,x)

∂t2

= λ2µ0ε0
∂

∂t

Ã
∂Aj(t,x)

∂t

!
for some λ2 ∈ R (r)

Equations (q) and (r) make it evident that, while Eρ and Bj are inex-
tricably linked to their material (and therefore, localized) driving sources
through the instantaneous analytical definitions of first order in the spatial
coordinates (3.8) and (3.33), their balance counterparts ∆E and ∆B are
related to potentials the behavior of which is described by second order an-
alytical relations in space and time driven by an ubiquitous driving source
(related to Aj). This feature may provide an explanation for the ability
of the balance fields to “travel” far, free from localized charges (ρ) and
currents (j).

5. As a final statement supporting the definitions of Eρ and Bj proposed
herein (and the splitting that these definitions induce in the total
electromagnetic fields ETOT and BTOT ), those still favoring the tra-
ditional option of retarded potentials are hereby challenged to derive
the local (differential, or microscopic) Maxwell-Gauss and Maxwell-
Ampère field equations for electric and magnetic fields emerging from
the retarded potentials:

34The extension is arbitrary in the sense that —contrary to the application of the Lorentz
gauge to φρ and Aj , which fully satisfies the equation of continuity of electric charges—
there appears to be no argument of a physical nature justifying its application to ∆φ
and ∆A.
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φ(t,x) =
1

4πε0

Z
V 0

ρ(t0ret,x
0)

|x− x0| dV
0

and

A(t,x) =
µ0
4π

Z
V 0

j(t0ret,x
0)

|x− x0| dV
0

where

t0ret = t− |x− x
0|

c

instead of deriving them for fields that emerge from the potentials
defined by equations (3.8) and (3.33) respectively.

6. The exact point where Maxwell’s error lies, is in his declaration:

“This equation is true only if we take u, v and w as the
components of that electric flow which is due to the variation
of electric displacement as well as true conduction.”

Adding the time-derivative of the electric displacement is not the only
way, but just one of the many possible ways, to make a conduction
current solenoidal. By restricting his analysis to this solution —and this
solution only— Maxwell assumed λ1 = λ2 = 1 and closed unforeseen
doors.



140 Norberto Sáinz
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