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Abstract
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1. Introduction

We will study the following evolution problem

utt −∆u+ a(x)ut = 0 in Ω×R+ ,(1.1)

u = 0 on , ∂Ω×R+ ,(1.2)

u(0) = u0 , ut(0) = u1.(1.3)

where Ω is an open bounded domain in RN with smooth boundary ∂Ω and
a is a suitable, smooth and should not identically zero on Ω; besides, a can
vanish in some part of Ω.

We define by

E(t) =
1

2

Z
Ω
|ut|2 + |∇u|2 dx(1.4)

the energy associated to the system (1.1)-(1.3). By Lemma 5.1 E is non
increasing. Thus, we are interested in finding out what happens to E(t) as
t goes to infinity and what is its rate of decay.

In this work, we study the existence of global solution and the asymp-
totic behaviour of the wave equation with dissipation, where the initial
conditions satisfy the mth-order compatibility condition, with allows us to
obtain a more regular solution.

We use the semigroup theory [17], [6] to prove the existence and unique-
ness of solution to the problem (1.1)-(1.3), as well as its continuous depen-
dency of initial data. Likewise, we study the regularity of this solution.

In section 4 we make a complete study of certain integral inequalities
[15]. Also we prove thatZ ∞

t
f(τ)1+τdτ ≤ CF (t) implies f(t) ≤ C

(1 + t)
1
σ

and we use it in the proof of Lemma 4.2. Besides, in this section we
introduce Lemma 4.4 which is an analogous version of Lemma 4.3.

Making use of the multiplicative techniques [13], we obtain important
estimations like (5.12), (5.16), (5.23). And by adapting the Conrad and
Rao methods [1], we obtain the estimation (5.44) which allow us to prove
Lemma 5.3 and then the hypothesis of the Lemma 4.4.

Another study can be seen in Nakao [16]. We are strongly motive by
the most challenging mathematical results have already been obtained in
related topics, see for instance [9, 10, 11, 12], [7, 8] [18], [19], [20], [21] and
[14, 22], among others.



About decay of solution of the wave equation with dissipation 39

2. Main Results

We state the result for existence of solution to the problem (1.1)-(1.3).

Theorem 2.1. Given (u0, u1) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω), there is only
one solution u(x, t) of (1.1)- (1.3) in C2([0,∞), L2(Ω))∩C1([0,∞),H1

0 (Ω))∩
C([0,∞),H2(Ω) ∩H1

0 (Ω)).

Also, we will need the following result for regularity of the solution, for
which we cite Kesavan [6] and Ikawa [5]. We introduce the following defi-
nition

Definition 2.1. The initial condition (u0, u1) ∈ Hm+1 ×Hm satisfies the
mth - order compatibility condition associated to (1.1)-(1.3) if

uk ∈ Hm+1−k ∩H1
0 for k = 0, 1, . . . ,m and um+1 ∈ L2 ,(2.1)

where the sequence (uk)k is defined by induction from (u0, u1) by the
formula

uk+2 = ∆uk − a(x)uk+1.(2.2)

Proposition 2.1. Let m ≥ 1 be an integer. Let us suppose that a ∈
Cm−1(Ω) and (u0, u1) satisfies the mth- order compatibility condition as-
sociated to (1.1)- (1.3). Then, there is only one solution u(t) of the problem
(1.1)-(1.3) such that

u ∈ Xm =
m\
k=0

Ck(R+,Hm+1−k ∩H1
0 ) ∩ Cm+1(R+, L2) ,(2.3)

and the linear application

(u0, u1) ∈ Hm+1(Ω)×Hm(Ω) −→ u ∈ Xm(2.4)

is continuous. That is exists C > 0 such that
m+1P
k=0

||Dku(t)||2L2 ≤ C||(u0, u1)||2Hm+1×Hm , where Dk denotes any kth order

partial differentiation with respect to t and x.

Let us suppose that Ω is the open ball in RN centered on 0 and the
radius R. Let us also assume that ∀ |x| ≥ R

2 , a(x) := ã(|x|), where
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ã:[R2 , R] → R+ is a strictly decreasing function which satisfies ã(R) = 0.
(Note that R

2 could be replaced by any R− � with � > 0). Set

∀r ∈ [0, R
2
] , b(r) := ã(R− r) and B(r) := rb(r).(2.5)

We observe that B is continuous and strictly increasing on [0, R2 ] and
that B(0) = 0. Also,

b(r)→ 0 = ã(R) as r → 0

That is
a(x)→ 0 as x→ ∂Ω .

We will use the Lemma 4.4 in the proof the following Main Theorem.

Theorem 2.2 (Main result). Let us suppose that a goes to zero at the
boundary quickly enough so that there exist p > 0 and C > 0 such that

∀ρ ∈ (0, R
2
),

Z R
2

ρ

1

b(r)p
dr ≤ C

ρ

b(ρ)p
.(2.6)

Set m > N
2 . Then, if (u

0, u1) satisfies the mth-order compatibility condi-
tion; there exists C > 0 which depends on the norm of the initial condition
on Hm+1(Ω)×Hm(Ω) such that the solution u of (1.1)-(1.3) verifies

E(t) ≤ C

µ
B−1

µ
1

t

¶¶ 2m
N

,(2.7)

where B−1 denotes the inverse function of B.

2.1. Remarks of Theorem

Remark 2.1. If exists n in N such that n ≥ 2 and exists p > 0 such that
b(r) ≤ nr

1
p b(nr), for all r ∈ [0, R

2n ], then (2.6) holds.

Remark 2.2. If b(r) = rk with k > 0 and pk > 1, then (2.6) holds.
Therefore, by the main theorem we obtain

E(t) ≤ C

t
1

(k+1)θ

.

Remark 2.3. If b(r) = 1
|Lnr| then (2.6) is not true.
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Remark 2.4. If b(r) = rqe
− 1

rk with k > 0 then, we can apply remark 2.1.
Therefore, by the main theorem we get

E(t) ≤ C

[(Ln t)
1
k ]

2m
N

.

3. Existence of solution

From the equation (1.1) writing v = ut we get:Ã
u
v

!
t

=

Ã
ut
utt

!
=

Ã
ut

∆u− aut

!
=

Ã
v

∆u− av

!
=

Ã
0 I
∆ −aI

!Ã
u
v

!

we define the Operator A : D(A) ⊂ H −→ H ,

A =

Ã
0 I
∆ −aI

!

where H = H1
0 (Ω)× L2(Ω) and D(A) = H2(Ω) ∩H1

0 (Ω)×H1
0 (Ω).

Thus (1.1)-(1.3) is equivalent to

I.V.P

⎧⎪⎨⎪⎩
Ut(t) = AU(t)

U(0) = U0 :=

Ã
u0
u1

!
∈ D(A).

(3.1)

Theorem 3.1. The Operator A defined above generates a contraction
semigroup S(t) on the Hilbert Space H.

Proof.- Observe that D(A) is dense in H. We will prove that A is dissi-
pative. Let U = (u, v)T ∈ D(A) then

< AU,U > =
NX
i=1

Z
Ω

∂v

∂xi

∂u

∂xi
dx+

Z
Ω
(∆u− a(x)v)vdx

=
NX
i=1

Z
Ω

∂v

∂xi

∂u

∂xi
dx+

Z
Ω
∆uv − a(x)|v|2dx

=
NX
i=1

Z
Ω

∂v

∂xi

∂u

∂xi
− ∂u

∂xi

∂v

∂xi
dx−

Z
Ω
a(x)|v|2dx

= −
NX
i=1

Z
Ω
2iIm(

∂u

∂xi

∂v

∂xi
)dx−

Z
Ω
a(x)|v|2dx,(3.2)
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where Im(z) is the imaginary part of z ∈ C. Taking the real part of the
equality (3.2), we have

Re(< AU,U >H1
0 (Ω)×L2(Ω)) = −

Z
Ω
a(x)|v|2dx ≤ 0

Now, we will prove that 0 ∈ ρ(A). In fact, let F = (f, g)T ∈ H1
0 (Ω) ×

L2(Ω) = H, we will prove that there is U = (u, v)T ∈ D(A), such that
AU = F . Let us consider the equations

v = f ∈ H1
0 (Ω)(3.3)

∆u− a(x)v = g ∈ L2(Ω) .(3.4)

Replacing (3.3) in (3.4), we have

∆u = a(x)f + g ∈ L2(Ω) .(3.5)

By standard results on Elliptic linear equations, we have that (3.5) has
only one solution u ∈ H2(Ω) ∩H1

0 (Ω). From (3.3) we obtain v = f . That
is, A is an onto map.

We claim that A is one to one. In fact, let AU = 0 then

v = 0(3.6)

∆u− a(x)v = 0 .(3.7)

Replacing (3.6) in (3.7) we have ∆u = 0 and using the Green’s Identity
we have

|u|2H1
0 (Ω)

=

Z
Ω
|∇u|2dx =

Z
Ω
∆uudx = 0

hence u = 0 in H1
0 (Ω). From (3.6) we have that v = 0. Therefore U = 0.

i.e. A is one to one.
Thus, there is A−1 : H −→ D(A) because A is one to one and H is

the image of A. Now, we will prove that A−1 is bounded. Multiplying the
equation (3.5) by u and integrating on Ω, we haveZ

Ω
∆uudx =

Z
Ω
(af + g)udx

but since
R
Ω |∇u|2dx =

R
Ω∆uudx, using the Holder and Poincaré inequali-

ties, we obtainZ
Ω
|∇u|2dx =

Z
Ω
(af + g)udx ≤ |u|L2 |af + g|L2
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≤ �

Z
Ω
|u|2dx+ C(�)

Z
Ω
|af + g|2dx

≤ �Cp

Z
Ω
|∇u|2dx+ C(�)

Z
Ω
|af + g|2dx .

Then, taking � > 0 such that 1− �Cp > 0 we have

(1− �Cp)

Z
Ω
|∇u|2dx ≤ C(�)

Z
Ω
|af + g|2dx ,

that is q
1− �Cp |∇u|L2 ≤

q
C(�) |af + g|L2 .

Hence we have

|∇u|L2 ≤
p
C(�)p
1− �Cp

|af + g|L2 ≤
p
C(�)p
1− �Cp

{|a|∞|f |L2 + |g|L2} .(3.8)

Thus, using (3.8), v = f , and the Holder and Poincaré inequalities we get

|U |H = |∇u|L2 + |v|L2 = |∇u|L2 + |f |L2 ≤ Ĉ{|f |L2 + |g|L2}

≤ ˆ̂
C{|∇f |L2 + |g|L2} .

Then,

|U |H ≤ ˆ̂
C |AU |H ,

that is
|A−1F |H ≤ ˆ̂C |F |H ,

which allow us to say that A−1 is bounded. Now, by the Lummer-Phillips
theorem, we have that A is the infinitesimal generator of a C0 semigroup
of contraction on H : S(t).

Remark 3.1. By Theorem 4.3.2 in [6], if D(A) 3 U then
S(t)U ∈ C1([0,∞),H) ∩ C([0,∞),D(A)).

Remark 3.2. By Remark 4.3.3 in [6], U(t) := S(t)U0 is the solution of
IVP (3.1) and it is the unique.

From these two remarks, we get the following result.

Proposition 3.1. There exists only one solution of (3.1),
U(t) ∈ C1([0,∞),H1

0 (Ω)×L2(Ω))
T

C([0,∞), (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)).
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Now, we will finish the proof of Theorem 2.1
Since U0 = (u0, u1) ∈ D(A), by Proposition 3.1 we obtain that there

exists U(t) ∈ C1([0,∞),H1
0 (Ω) × L2(Ω))

T
C([0,∞), (H2(Ω) ∩ H1

0 (Ω)) ×
H1
0 (Ω)) solution of (3.1) such that U(0) = U0, U(t) ∈ D(A) ,∀t ∈ R+.
Since U satisfies (3.1) we have ut = v and vt = ∆u − av. By one

hand, we have ut ∈ C0(IR+,H1
0 (Ω)), but since u ∈ C0(R+,H1

0 (Ω)) then
u ∈ C1(R+,H1

0 (Ω)). Also, utt = vt = ∆u − aut ∈ C(R+, L2(Ω)), but ut
and u belong to C(R+, L2(Ω)) then u ∈ C2(R+, L2(Ω)). We also obtain
that u ∈ C(R+,H2(Ω) ∩H1

0 (Ω)).

Remark 3.3. By the Hille-Yosida Theorem (Theorem 4.4.3 in [6] ), since A
is the infinitesimal generator of contraction semigroup, A is closed, D(A) is
dense in H and ∀λ > 0, ∃(λI−A)−1 bounded, moreover ||(λI−A)−1|| ≤ 1

λ .

Remark 3.4. Since A is closed and there exists A−1 (It was proved in
0 ∈ ρ(A)), then A−1 is also closed.

4. Integral Inequalities

Lemma 4.1. Let E : R+ → R+ be a no increasing function and φ : R+ →
R+ be an strictly increasing C1 function such that

φ(0) = 0 and φ(t) −→ +∞ as t→ +∞.(4.1)

Let us suppose that there are σ ≥ 0, and w > 0 such that

∀s ≥ 0 ,
Z +∞

s
E(t)1+σφ0(t)dt ≤ 1

w
E(0)σE(s).(4.2)

Then, E satisfies the following estimates:

If σ = 0, then E(t) ≤ E(0)e1−wφ(t) , for all t ≥ 0.(4.3)

If σ > 0, then E(t) ≤ E(0)

µ
1 + σ

1 + wσφ(t)

¶ 1
σ

, ∀t ≥ 0.(4.4)

Proof.- Is enough to prove the case E(0) = 1, because if 1 6= E(0) = d > 0,

we define F (t) := E(t)
E(0) , then F (0) = 1 and applying (4.2) to E(t) we haveZ ∞

s
F (t)(1+σ)φ0(t)dt =

1

E(0)1+σ

Z +∞

s
E(t)(1+σ)φ0(t)dt

≤ 1

w
E(0)σE(s)

1

E(0)(1+σ)

=
1

w

E(s)

E(0)
=

1

w
F (s) ,
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i.e. (4.2) holds for F (s). Then

If σ = 0 , then F (t) ≤ e1−wφ(t) , ∀t ≥ 0,
i.e. E(t) ≤ E(0)e1−wφ(t) , ∀t ≥ 0 .

If σ > 0 , then F (t) ≤
µ

1 + σ

1 + wσφ(t)

¶ 1
σ

, ∀t ≥ 0,

i.e. E(t) ≤ E(0)

µ
1 + σ

1 + wσφ(t)

¶ 1
σ

, ∀t ≥ 0 .

Now, we prove for E(0) = 1.
We introduce the following function f : IR+ −→ IR+ defined by

f(τ) := E(φ−1(τ)),

then f is no increasing. Making a change of variable and using (4.2) with
E(0) = 1, we obtain the following: ∀ 0 < S < T <∞ ,Z φ(T )

φ(S)
f(τ)(1+σ)dτ =

Z φ(T )

φ(S)
E(φ−1(τ))(1+σ)dτ

=

Z T

S
E(t)(1+σ)φ0(t)dt

≤ 1

w
E(S) =

1

w
f(φ(S)) .

Since limT→∞ φ(T ) = +∞, then f satisfies:

∀S ≥ 0 ,
Z +∞

S
f(τ)1+σdτ ≤ 1

w
f(S) .(4.5)

Let us denote h : R+ −→ R+, h(t) :=
R+∞
t f(τ)(1+σ)dτ . So, h is well

defined, no increasing, no negative and satisfies the following differential
inequality.

∀t ≥ 0 − h0 ≥ (wh)1+σ .(4.6)

In fact, from h(t) = −
R t
+∞ f(τ)(1+σ)dτ > 0 we have h0(t) = −f(t)(1+σ) < 0.

And so, using (4.5) we have that −h0(t) = f(t)(1+σ) ≥ (wh(t))(1+σ).
Let us define T0 := sup {t : h(t)> 0}. Then, if σ = 0, h satisfies:

∀ 0 ≤ t < T0 , h(t) ≤ h(0)e−wt ≤ 1

w
e−wt .(4.7)
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In fact, from (4.6) with σ = 0 we have −h0 ≥ wh, that is h0 + wh ≤ 0,
then [e−wth]0 ≤ 0, from where ewth(t) ≤ h(0) holds.

By other hand, from (4.5) and f(0) = E(0) = 1, we have that h(0)w ≤
f(0) = 1, that is h(0) ≤ 1

w . Therefore, h(t) ≤
1
we
−wt. We observe that the

estimate (4.7) holds if t ≥ T0. In fact, if t ≥ T0 then h(t) ≤ 0 < 1
we
−wt.

Let � > 0. Since f is no increasing, we have that

∀t ≥ � , f(t) ≤ 1
�

Z t

t−�
f(τ)dτ ≤ 1

�
h(t− �) ≤ 1

w�
ew�e−wt .(4.8)

In fact, in the last inequality of (4.8) it is used (4.7).
On the other hand, since f is no increasing, we have that f(t).� ≤R t

t−� f(τ)dτ . Also
R t
t−� f(τ)dτ ≤

R+∞
t−� f(τ)dτ = h(t− �).

If we take � = 1
w in (4.8), we get

∀t ≥ 1

w
, f(t) ≤ e1−wt .(4.9)

Since E(t) = f(φ(t)), by using (4.9), we get (4.3).
If σ > 0, h satisfies:

for allt ∈ [0, T0[ , (h−σ)0 ≥ σw(1+σ) .(4.10)

In fact, (h−σ)0 = −σh−(1+σ).h0 = −σh−(1+σ).(−f1+σ) = σh−(1+σ)f1+σ =
σ(fh)

1+σ. But from (4.5) we have that w ≤ f
h , from here w1+σ ≤ (fh)1+σ

then the result holds.
Integrating the inequality (4.10) from 0 to t , we obtain

[h(t)]−σ − [h(0]−σ ≥ σw1+σt ∀ 0 ≤ t < T0,

Thus
h(t) ≤ (h(0)−σ + σw1+σt)−

1
σ , ∀0 ≤ t < T0.(4.11)

Since f is no increasing, we have for all s ≥ 0

(
1

w
+ σs) f(

1

w
+ (σ + 1)s)σ+1 ≤

Z 1
w
+(σ+1)s

s
f(τ)σ+1dτ ≤ h(s) .(4.12)

By the other hand, from (4.5) we have that h(0) ≤ 1
wf(0) =

1
wE(0) =

1
w ,

that is wσ ≤ 1
h(0)σ , then³

h(0)−σ + σw1+σt
´− 1

σ ≤
³
wσ + σw1+σt

´− 1
σ =

1

w[1 + σws]
1
σ

.(4.13)
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Using (4.11), (4.12) and (4.13) we haveµ
1 + wσs

w

¶
f(
1

w
+ (σ + 1)s)σ+1 ≤ 1

w[1 + σws]
1
σ

,

hence

∀s ≥ 0, f(
1

w
+ (σ + 1)s) ≤ 1

(1 + wσs)
1
σ

.(4.14)

Putting t = 1
w + (σ + 1)s on (4.14), we get

f(t) ≤
µ
1 + σ

1 + wσt

¶ 1
σ

,∀t ≥ 0.(4.15)

Finally, since E(t) = f(φ(t)), using (4.15) we get (4.4).
From (4.4) we deduce the following result:

Corollary 4.1. Let f : R+ → R+ be a no increasing and continuous
function. Let us assume that there are σ > 0, σ0 > 0, and c > 0 such that

∀t ≥ 0 ,
Z +∞

t
f(τ)1+σdτ ≤ c

f(0)σf(t)

(1 + t)σ0
.(4.16)

Then, there exists C > 0 such that,

∀t > 0 , f(t) ≤ f(0)
C

(1 + t)
(1+σ0)

σ

.(4.17)

Proof.- Is enough to prove the case f(0) = 1, because if 1 6= f(0) = d > 0

we define g(s) := f(s)
f(0) , then g(0) = 1 and

Z +∞

t
g(s)1+σds =

1

f(0)(1+σ)

Z +∞

t
f(s)(1+σ)ds

≤ 1

f(0)σ f(0)
c
f(0)σ f(t)

(1 + t)σ0

= cg(0)σ
g(t)

(1 + t)σ0
,

that is (4.16) holds. Using (4.17) for g(0) = 1 we have

g(t) ≤ g(0)
C

(1 + t)
(1+σ0)

σ

,



48 Luis Cortés and Yolanda Santiago

that is,

f(t) ≤ Cf(0)

(1 + t)
(1+σ0)

σ

.

Now, we prove for f(0) = 1.
If t ≥ 0, let us define

g(t) =
f(t)

(1 + t)σ0

then g is no increasing. Since g(τ)1+σ(1 + τ)σ
0(1+σ) = f(τ)1+σ and using

(4.16) we get

∀t ≥ 0 ,
Z +∞

t
g(τ)1+σ(1 + τ)σ

0(1+σ)dτ ≤ c g(t) .(4.18)

Define φ(t) = (1+t)σ
0(1+σ)+1−1 then φ(0) = 0, φ(t)→ +∞ as t→ +∞

and φ0(t) = (σ0(1 + σ) + 1)(1 + t)σ
0(1+σ). Replacing φ0 on (4.18) we obtainZ ∞

t
g(τ)1+σφ0(τ)dτ ≤ c[σ0(1 + σ) + 1]| {z }

= 1
w

g(t)

and since g(0) = f(0) = 1, we can apply Lemma 4.1, to get

g(t) ≤ g(0)

µ
1 + σ

1 + wσφ(t)

¶ 1
σ

=

Ã
1 + σ

1 +wσ{(1 + t)
1
wc − 1}

! 1
σ

.

Define r = min {1, wσ} then 1+wσ{(1+t)
1
wc −1} > r{1+(1+t)

1
wc −1} =

r(1+ t)
1
wc , that is 1

r(1+t)
1
wc

> 1

1+wσ{(1+t) 1wc−1}
, from where we can deduce

that g decays like

g(t) ≤ C

(1 + t)
(σ0(1+σ)+1)

σ

=
C

(1 + t)σ0(1 + t)
1+σ0
σ

.

Thus, (4.17) holds.
ut

Lemma 4.2. Let f : IR+ → IR+ be a continuous and no increasing func-
tion. Let us assume that there are σ > 0 , σ0 > 0 and c > 0 such that

∀t > 0 ,
Z ∞
t

f(τ)1+σdτ ≤ cf(t)1+σ +
cf(0)σf(t)

(1 + t)σ0
.(4.19)
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Then, there exists C > 0 such that

∀t > 0 , f(t) ≤ f(0)
C

(1 + t)
(1+σ0)

σ

.(4.20)

Proof.- Is enough to prove the case f(0) = 1, because if 1 6= f(0) = d > 0,

we define g(t) = f(t)
f(0) , then g(0) = 1 and

Z ∞
t

g(τ)1+σdτ =
1

f(0)1+σ

Z +∞

t
f(τ)1+σdτ

≤ 1

f(0)1+σ

½
cf(t)1+σ +

cf(0)σf(t)

(1 + t)σ0

¾
= cg(t)1+σ + c

g(t)

(1 + t)σ0
.

Thus, (4.19) holds for g with g(0) = 1. Then (4.20) holds for g:

g(t) ≤ g(0)
C

(1 + t)
(1+σ0)

σ

,

Hence we obtain

f(t) ≤ f(0)
C

(1 + t)
(1+σ0)

σ

.

Now, we prove for f(0) = 1.
We will prove (4.20) by induction. Next, we denote por C every con-

stant. First, let us bound the right hand of (4.19),

cf(t)1+σ +
cf(0)σf(t)

(1 + t)σ0
≤ cf(t)

½
f(t)σ +

f(0)σ

(1 + t)σ0

¾
≤ cf(t)

½
f(0)σ +

f(0)σ

(1 + t)σ0

¾

= cf(0)f(0)σ

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 +
1

(1 + t)σ0| {z }
<1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
< 2cf(0)1+σ ,

and so we have Z ∞
t

f(τ)1+σdτ ≤ Cf(t) .(4.21)
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Now, we prove that
R∞
t f(τ)1+σdτ ≤ Cf(t) imply f(t) ≤ C

(1+t)
1
σ
.

In fact, considering f(t) instead of E(t), φ(t) = t (i.e. φ0(t) = 1,
φ(0) = 0, φ(t) −→ +∞ as t → +∞ ), σ > 0, and using (4.21) we deduce
from Lemma 4.1 that

f(t) ≤
Ã
1 + σ

1 + σ
C t

! 1
σ

.

Taking r := min {1, σC } then r(1 + t) ≤ 1 + σ
C t, that is

1
1+ σ

C
t ≤

1
r(1+t) ,

from where we get

f(t) ≤ C

(1 + t)
1
σ

.

That is f(t)σ ≤ Cσ

1+t . Then, using this estimate in (4.19) we obtainZ +∞

t
f(τ)1+σdτ ≤ C

f(t)

1 + t
+ C

f(t)

(1 + t)σ0
.

Taking σ1 := inf {1, σ0}, we haveZ +∞

t
f(τ)1+σdτ ≤ C

f(t)

(1 + t)σ1
,

and using Corollary 4.1 we arrive at

f(t) ≤ C

(1 + t)
(1+σ1)

σ

.

If σ0 ≤ 1 then σ1 = σ0, from where we get the inequality (4.20). If σ0 > 1
then

f(t) ≤ C

(1 + t)
2
σ

,

that is f(t)σ ≤ Cσ

(1+t)2 . Then, using this estimate on (4.19) we haveZ +∞

t
f(τ)1+σdτ ≤ C

f(t)

(1 + t)2
+ C

f(t)

(1 + t)σ0
.

Taking σ2 := inf {2, σ0}, we haveZ +∞

t
f(τ)1+σdτ ≤ C

f(t)

(1 + t)σ2
,
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and using Corollary 4.1 we arrive at

f(t) ≤ C

(1 + t)
(1+σ2)

σ

.

If σ0 ≤ 2 then σ2 = σ0, from where we get the inequality (4.20). If σ0 > 2
then

f(t) ≤ C

(1 + t)
3
σ

,

that is f(t)σ ≤ Cσ

(1+t)3 , and so on. Then, the conclusion holds by induction.

Lemma 4.3. Let E : IR+ → IR+ be a no increasing function and φ :
IR+ → IR+ an strictly increasing C1 function such that,

φ(0) = 0 and φ(t) −→ +∞ as t→ +∞.(4.22)

Let us assume that there are σ > 0, σ0 > 0 and c > 0 such that

∀s ≥ 0 ,
Z +∞

s
E(t)1+σφ0(t)dt ≤ cE(s)1+σ + c

E(s)

(1 + φ(s))σ0
.(4.23)

Then, there exists C > 0 depending continuously on E(0), satisfying

∀t > 0 , E(t) ≤ C

(1 + φ(t))
(1+σ0)

σ

.(4.24)

Proof.- Is enough to define f(τ) = E(φ−1(τ)) and use Lemma 4.2.
In analogy to this Lemma, we have the next version.

Lemma 4.4. Let E : IR+ → IR+ be a no increasing function and φ :
IR+ → IR+ an strictly increasing C1 function such that

φ(t) −→ +∞ as t→ +∞.(4.25)

Let us assume that there are σ > 0, σ0 > 0 and c > 0 such that

∀s ≥ 1 ,
Z +∞

s
E(t)1+σφ0(t)dt ≤ cE(s)1+σ + c

E(s)

φ(s)σ0
.(4.26)

Then there exists C > 0 depending continuously on E(1) satisfying

∀t ≥ 1 , E(t) ≤ C

φ(t)
(1+σ0)

σ

.(4.27)
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5. Using the multiplier method

Let (u0, u1) ∈ Hm+1(Ω)×Hm(Ω) satisfying the mth - order compatibility
condition. Then, the regularity given by (2.3) justifies the calculus we are
going to do.

We know that problem (1.1)-(1.3) is dissipative.

Lemma 5.1.

E0(t) = −
Z
Ω
a(x)|ut|2dx , ∀t > 0.(5.1)

Proof.- Multiplying the equation (1.1) by ut and integrating on Ω,
and using the Green Identity, we have

0 =

Z
Ω
(utt −∆u+ a(x)ut)ut dx

=
∂

∂t
{1
2

Z
Ω
(ut)

2 dx}−
Z
Ω
(∆u)ut dx+

Z
Ω
a(x)(ut)

2 dx

=
∂

∂t
{1
2

Z
Ω
(ut)

2 dx}+
Z
Ω
(∇u)∇ut dx+

Z
Ω
a(x)(ut)

2 dx

=
∂

∂t
{1
2

Z
Ω
(ut)

2 dx}+ ∂

∂t
{1
2

Z
Ω
|∇u|2 dx}+

Z
Ω
a(x)(ut)

2 , dx

then the result holds.
Let σ ≥ 0, and φ : R+ → R+ be a concave and increasing C2 function.

Let w be a neighborhood of the boundary ∂Ω.

Lemma 5.2. Let h : Ω −→ IRN be a C1 vector field, σ ≥ 0 and 0 ≤ S ≤
T < +∞. Then we have,Z T

S
Eσφ0

Z
∂Ω
2∂νuh.∇u+ (h · ν)(|ut|2 − |∇u|2)

= [Eσφ0
Z
Ω
qut h ·∇u]TS −

Z T

S
(σE0Eσ−1φ0 +Eσφ00)

Z
Ω
2ut h ·∇u

+

Z T

S
Eσφ0

Z
Ω
(div h)(|ut|2 − |∇u|2) + 2

X
i,j

∂hk
∂xi

∂u

∂xi

∂u

∂xk
+ 2aut h ·∇u .

(5.2)

Proof.- Multiplying the equation (1.1) by Eσφ0 2h · ∇u and integrating
on [S, T ]×Ω we have

0 =

Z T

S
Eσφ0

Z
Ω
2h ·∇u(utt −∆u+ a(x)ut) dx dt
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=

Z T

S
Eσφ0

Z
Ω
2h · (∇u)utt dx dt| {z }
I1:=

−
Z T

S
Eσφ0

Z
Ω
2h ·∇u(∆u) dx dt| {z }
I2:=

+

Z T

S
Eσφ0

Z
Ω
2h ·∇u(a(x)ut) dx .dt(5.3)

Since ∂
∂t (

R
Ω 2h(∇u)ut dx) =

R
Ω 2h(∇ut)ut dx+

R
Ω 2h(∇u)utt dx and in-

tegrating by parts we obtain

I1 =

Z T

S
Eσφ0

∂

∂t

µZ
Ω
2h(∇u)ut dx

¶
dt−

Z T

S
Eσφ0

Z
Ω
2h(∇ut)ut dx dt

= −
Z T

S
Eσφ0

Z
Ω
2h(∇u)ut dxdt+ [Eσφ0

Z
Ω
2h(∇u)ut dx]TS

−
Z T

S
Eσφ0

Z
Ω
2h(∇ut)ut dxdt .

Using the Green Identity we have

I2 = −
Z T

S
Eσφ0

Z
Ω
2h ·∇u∆udxdt

=

Z T

S
Eσφ0

Z
Ω
∇u ·∇(2h ·∇u)dx dt−

Z T

S
Eσφ0

Z
∂Ω

∂u

∂ν
(2h ·∇u)dt .

Replacing I1 and I2 on the equality (5.3) we obtain

0 = −
Z T

S
Eσφ0

Z
Ω
2h(∇u)ut dxdt+ [Eσφ0

Z
Ω
2h(∇u)ut dx]TS

−
Z T

S
Eσφ0

Z
Ω
2h(∇ut)ut dxdt| {z }

I3:=

+

Z T

S
Eσφ0

Z
Ω
∇u ·∇(2h ·∇u)dx dt| {z }

I4:=

−
Z T

S
Eσφ0

Z
∂Ω

∂u

∂ν
(2h ·∇u)dt+

Z T

S
Eσφ0

Z
Ω
2h ·∇u(a(x)ut) dx .dt

(5.4)

Using the fact that h∇(u2t ) = div(hu2t )− (div h)u2t and the Divergence
Theorem

R
∂Ω hu

2
t · ν =

R
Ω div(hu

2
t )dx, we have

I3 = −
Z T

S
Eσφ0

Z
Ω
h ·∇(u2t )dxdt

= −
Z T

S
Eσφ0

Z
Ω
div (hu2t )dxdt+

Z T

S
Eσφ0

Z
Ω
(div h)u2tdxdt

= −
Z T

S
Eσφ0

Z
∂Ω
(hu2t ) · νdxdt+

Z T

S
Eσφ0

Z
Ω
(div h)u2tdxdt .
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By other hand, we have

∇u ·∇(2h ·∇u) = 2∂iu∂ihk∂ku+ h ·∇(|∇u|2) .(5.5)

And since div(h|∇u|2) = (divh)|∇u|2+h∇(|∇u|2) and using the Divergence
Theorem, we haveZ

Ω
(div h)|∇u|2 dx+

Z
Ω
h∇(|∇u|2) dx =

Z
Ω
div(h|∇u|2) dx

=

Z
∂Ω

h|∇u|2·ν dx(5.6)

Using (5.5) and (5.6) we obtain

I4 = 2

Z T

S
Eσφ0

Z
Ω
∂iu∂ihk∂kudxdt+

Z T

S
Eσφ0

Z
Ω
h ·∇(|∇u|2)dxdt

= 2

Z T

S
Eσφ0

Z
Ω
∂iu∂ihk∂kudxdt+

Z T

S
Eσφ0

Z
∂Ω

h|∇u|2 · νdxdt

−
Z T

S
Eσφ0

Z
Ω
(div h)|∇u|2dxdt .

Replacing I3 and I4 in the equality (5.4), we will have the result.

Lemma 5.3. There exists a constant C > 0 such that ∀ 0 ≤ S < T <∞Z T

S
E(t)1+σφ0(t)dt ≤ CE(S)1+σ + C

Z T

S
E(t)σφ0(t)

µZ
w
|ut|2dx

¶
dt .(5.7)

holds.

Proof.- Let K1 be a compact of Ω such that Ω−K1 be a compact set on
w.

Define h(x) := β(x)m(x), where m(x) = x−x0 and β is a C
∞ function

whoose support is compactly in Ω and equal to 1 on K1. Since φ
0 is no

increasing and positive then φ0 is bounded on IR+ (i.e. |φ0(t)| ≤M).
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Now, we apply (5.2) to this h and get

0 ≥ [Eσφ0
Z
Ω
2ut h ·∇udx]TS −

Z T

S
(σE0Eσ−1φ0 +Eσφ00)(

Z
Ω
2uth ·∇udx)dt

+
R T
S Eσφ0

R
Ω div h (u

2
t − |∇u|2)+2

P
i,j

∂hk
∂xi

∂u
∂xi

∂u
∂xk

+ 2a(x)uth ·∇u .

(5.8)

By other hand, using that
R
Ω 2h · ∇uutdx ≤ cE(t) and E(t)σ+1 <

E(S)σ+1 para S < T , we have

|
Z T

S
(σE0Eσ−1φ0 +Eσφ00)(

Z
Ω
2h ·∇uutdx)dt|

≤
Z T

S
|(σE0Eσ−1φ0 +Eσφ00)(

Z
Ω
2h ·∇uutdx)|dt

≤
Z T

S
|σE0Eσ−1φ0 +Eσφ00|cEdt

=

Z T

S
{−σE0Eσ−1φ0 −Eσφ00}cEdt

≤ cM

Z T

S
−σE0Eσdt+ cE(S)σ+1

Z T

S
−φ00dt

= cM [
σ

σ + 1
E(t)σ+1]ST + cE(S)σ+1 [φ0]ST| {z }

≤2M

≤ cM
σ

σ + 1
E(S)σ+1 + c2ME(S)σ+1

≤ c0E(S)σ+1 .(5.9)

And, since E(T ) < E(S) and by Holder
R
Ω ut h ·∇udx ≤ ||ut|| ||∇u|| ≤

E(t), we obtain

−[Eσφ0
Z
Ω
2ut h ·∇udx]TS ≤ −Eσ(T )φ0(T )

Z
Ω
2ut(T )h(T ) ·∇u(T )dx

+Eσ(S)φ0(S)
Z
Ω
2ut(S)h(S) ·∇u(S)dx

≤ Eσ(S)C{E(S) +E(T )} ≤ CEσ+1(S) .(5.10)
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Here we need to make the following estimate

−
Z T

S
Eσφ0

Z
Ω
2
X
i,j

∂hk
∂xi

∂u

∂xi

∂u

∂xk
dxdt ≤

Z T

S
Eσφ0c||∇u|| ||∇u||L2(Ω−K1)dt

≤
Z T

S
Eσφ0{�E(t) +C(�)||∇u||2L2(Ω−K1)

}dt ,

(5.11)

where � will be considered little enough.
Using the inequalities (5.9), (5.10) and (5.11) on (5.8) we have that

there exists C > 0 such that

Z T

S
Eσφ0

Z
Ω
Nu2t + (2−N)|∇u|2dx dt

≤ C
R T
S Eσφ0

R
Ω−K1

{u2t + |∇u|2}dxdt+ CE(S)1+σ + �
R T
S E1+σφ0dt ,

(5.12)

with � little enough.
Integrating by parts the expression:

0 = (N − 1)
Z T

S
Eσφ0

Z
Ω
u(utt −∆u+ a(x)ut)dxdt ,

we have

(N − 1)
Z T

S
Eσφ0

Z
Ω
|∇u|2dxdt− (N − 1)

Z T

S
Eσφ0

Z
Ω
|ut|2dxdt

= −(N − 1)[Eσφ0
Z
Ω
uutdx]

T
S − (N − 1)

Z T

S
Eσφ0

Z
Ω
uautdxdt

+(N − 1)
Z T

S
(σEσ−1E0φ0 +Eσφ00)

Z
Ω
uutdxdt .(5.13)
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By the Poincaré inequality we have
R
Ω uutdx ≤ ||u|| ||ut|| ≤ Cp||∇u|| ||ut|| ≤

CE(t). Using this in (5.9) we obtain

|(N − 1)
Z T

S
(σEσ−1E0φ0 +Eσφ00)

Z
Ω
uutdxdt| ≤ CE(S)σ+1 .(5.14)

With a similar proof to (5.10), we also obtain

− (N − 1)[Eσφ0
Z
Ω
uutdx]

T
S ≤ CE(S)σ+1 .(5.15)

Adding (5.12) and (5.13), taking � < 1 and using (5.14) and (5.15) we
have

Z T

S
E1+σφ0dt ≤

Z T

S
Eσφ0

Z
Ω
u2t + |∇u|2dxdt

≤ CE(S)1+σ +C

Z T

S
Eσφ0

Z
Ω−K1

{u2t + |∇u|2}dxdt .(5.16)

We want to eliminate the last term of (5.16). To do this, we construct
a function ξ ∈ C∞(Ω) such that ξ = 1 in Ω−K1 and ξ = 0 outside w.

We multiply the equation (1.1) by ξu and integrate it on Ω; then we
multiply this expression by Eσφ0, and integrate on [S, T ], and integrating
by parts we get

Z T

S
Eσφ0

Z
Ω
−ξua(x)utdxdt

=

Z T

S
Eσφ0

Z
Ω
ξu(utt −∆u)dxdt

=

Z T

S
Eσφ0

Z
Ω
ξuuttdxdt−

Z T

S
Eσφ0

Z
Ω
ξu∆udxdt

= −
Z T

S
(σEσ−1E0φ0 +Eσφ00)

Z
Ω
ξuutdxdt

−
Z T

S
Eσφ0

Z
Ω
ξu2tdxdt+ [E

σφ0
Z
Ω
uutdx]

T
S

−
Z T

S
Eσφ0

Z
Ω
ξu∆udxdt| {z }

I:=

.(5.17)
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Using the Green Identity and ∇(u2) = (∇u)u+ u∇u we have

I =

Z T

S
Eσφ0

Z
Ω
∇(ξu) ·∇udxdt

=

Z T

S
Eσφ0

Z
Ω
{∇(ξ)u ·∇u+ ξ∇u ·∇u}dx dt

=

Z T

S
Eσφ0

Z
Ω
{1
2
∇(ξ) ·∇(u2) + ξ|∇u|2}dx dt

=

Z T

S
Eσφ0

Z
Ω
{−1
2
(∆ξ)u2 + ξ|∇u|2}dx .dt(5.18)

Replacing (5.18) on (5.17) we obtainZ T

S
Eσφ0

Z
Ω
−ξua(x)utdxdt = −

Z T

S
(σEσ−1E0φ0 +Eσφ00)

Z
Ω
ξuutdxdt

+

Z T

S
Eσφ0

Z
Ω
ξ|∇u|2dxdt+ [Eσφ0

Z
Ω
uutdx]

T
S

−
Z T

S
Eσφ0

Z
Ω
{1
2
(∆ξ)u2 + ξu2t }dx dt ,(5.19)

from where

Z T

S
Eσφ0

Z
Ω−K1

1 · |∇u|2dxdt ≤
Z T

S
Eσφ0

Z
Ω
ξ|∇u|2dxdt

=

Z T

S
(σEσ−1E0φ0 +Eσφ00)

Z
Ω
ξuutdxdt

−[Eσφ0
Z
Ω
uutdx]

T
S

+

Z T

S
Eσφ0

Z
Ω
−ξua(x)utdxdt

+

Z T

S
Eσφ0

Z
Ω
{1
2
(∆ξ)u2 + ξu2t }dx dt .(5.20)

Since ξ is bounded, in a similar way to (5.9), we obtain

|
Z T

S
(σEσ−1E0φ0 +Eσφ00)

Z
Ω
ξuutdxdt| ≤ CE1+σ .(5.21)

Also, using the fact of ξ is bounded, similarly to (5.10) we get

− [Eσφ0
Z
Ω
uutdx]

T
S ≤ CE1+σ.(5.22)
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And, using (5.21) and (5.22) in (5.20) we obtain

Z T

S
Eσφ0

Z
Ω−K1

|∇u|2dxdt ≤ CE(S)1+σ +C

Z T

S
Eσφ0

Z
w
(u2t + u2)dxdt .

(5.23)

Now, to eliminate the last term of (5), we will adapt the Conrad and
Rao [1] method.

We start with an arbitrary function β ∈ C∞(RN) be such that 0 ≤ β ≤
1, β = 1 on w and β = 0 outside a neighborhood of w (see [4], Theorem
1.2.2, or [2] p.p 3489).

Now, fix t and consider the solution z to the elliptic problem:

∆z = β(x)u in Ω(5.24)

z|∂Ω = 0 .(5.25)

Multiplying the equation (5.24) by z, integrating on Ω and using the
Green Identity, we have:Z

Ω
β(x)u zdx =

Z
Ω
(∆z)zdx = −

Z
Ω
|∇z|2dx ,

hence, using the Holder and Poincaré inequalities, we obtain

|z|2L2 ≤ C

Z
Ω
|∇z|2dx = −C

Z
Ω
β(x)u zdx ≤ c|u|L2(Ω)|z|L2(Ω) ;(5.26)

then,

|z|L2 ≤ C|u|L2(Ω) .(5.27)

Similarly to (5.26) we have

|z|2L2 ≤ C

Z
Ω
|∇z|2dx = −C

Z
Ω
β(x)u zdx ≤ c|β u|L2(Ω)|z|L2(Ω)

≤ c|u|L2(w)|z|L2(Ω) ,(5.28)

then,

|z|L2 ≤ C|u|L2(w) .(5.29)
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Differentiating with respect to t to the equation (5.24) we have the
problem

∆zt = β(x)ut in Ω(5.30)

zt|∂Ω = 0 .(5.31)

Multiplying (5.30) by zt, integrating on Ω and using the Green Identity
we obtain Z

Ω
β(x)ut ztdx =

Z
Ω
(∆zt)ztdx = −

Z
Ω
|∇zt|2dx ,

hence, using the Holder and Poincaré inequalities, we obtain

|zt|2L2 ≤ C

Z
Ω
|∇zt|2dx = −C

Z
Ω
β(x)ut ztdx ≤ c|ut|L2(Ω)|zt|L2(Ω)(5.32)

then
|zt|L2 ≤ C|ut|L2(Ω) .(5.33)

Also

|zt|2L2 ≤ C

Z
Ω
|∇zt|2dx = −C

Z
Ω
β(x)ut ztdx ≤ c|β ut|L2(Ω)|zt|L2(Ω)

≤ c|ut|L2(w)|zt|L2(Ω)(5.34)

then
|zt|L2 ≤ C|ut|L2(w) .(5.35)

By other hand,

0 =

Z T

S
Eσφ0

Z
Ω
z(utt −∆u+ aut)dx dt

= [Eσφ0
Z
Ω
zutdx]

T
S −

Z T

S
(σE0Eσ−1φ0 +Eσφ00)

Z
Ω
zutdx dt

+

Z T

S
Eσφ0

Z
Ω
(−z∆u+ azut − ztut)dx dt .(5.36)

Using the Green Identity and the fact that z is solution of (5.24)-(5.25)
we obtain Z T

S
Eσφ0

Z
Ω
z∆udxdt =

Z T

S
Eσφ0

Z
Ω
(∆z)udxdt

=

Z T

S
Eσφ0

Z
Ω
(β(x)u)udxdt

=

Z T

S
Eσφ0

Z
w
u2dx dt .(5.37)
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Using (5.37) on (5.36) we haveZ T

S
Eσφ0

Z
w
u2dx dt =

Z T

S
Eσφ0

Z
Ω
z∆u dx dt

= [Eσφ0
Z
Ω
zutdx]

T
S −

Z T

S
(σE0Eσ−1φ0 +Eσφ00)

Z
Ω
zutdx dt

+

Z T

S
Eσφ0

Z
Ω
(azut − ztut)dx dt .(5.38)

We can observe that the following inequality holds

|[Eσφ0
Z
Ω
zutdx]

T
S −

Z T

S
(σE0Eσ−1φ0 +Eσφ00)

Z
Ω
zutdx dt| ≤ CE(S)1+σ.

(5.39)

By other hand, let η > 0, using (5.35) we obtain

|
Z T

S
Eσφ0

Z
Ω
ztutdx dt| ≤

Z T

S
Eσφ0C|zt|L2 |ut|L2 dt

≤
Z T

S
Eσφ0C|ut|L2(w)|ut|L2 dt

≤ C

2η

Z T

S
Eσφ0

Z
w
u2tdx dt+

η

2

Z T

S
Eσφ0

Z
Ω
u2tdx dt

≤ C

2η

Z T

S
Eσφ0

Z
w
u2tdx dt+ η

Z T

S
Eσ+1φ0 dt ,(5.40)

where η will be taken little enough.
Also, we have

|
Z T

S
Eσφ0

Z
Ω
zautdx dt| ≤

Z T

S
Eσφ0|

Z
Ω
zautdx| dt

≤
Z T

S
Eσφ0|z|L2(Ω)|aut|L2 dt

≤
Z T

S
Eσφ0C|u|L2(w)|

√
aut|L2 dt

≤ γ

Z T

S
Eσφ0

Z
w
u2dx dt+C(γ)

Z T

S
Eσφ0

Z
Ω
au2tdx dt

= γ

Z T

S
Eσφ0

Z
w
u2dx dt+C(γ)

Z T

S
Eσφ0(−E0) dt

≤ γ

Z T

S
Eσφ0

Z
w
u2dx dt−C(γ)

Z T

S
Eσ(E0) dt ,(5.41)
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where γ will be taken very little.
Since

−
Z T

S
EσE0dt = − 1

σ + 1
[E(t)σ+1]TS =

1

σ + 1
{E(S)σ+1 −E(T )σ+1}

≤ 1

σ + 1
{E(S)σ+1}

then (5.41) becomes

|
Z T

S
Eσφ0

Z
Ω
zautdx dt| ≤ γ

Z T

S
Eσφ0

Z
w
u2dx dt+ C(γ)E(S)σ+1 .

(5.42)

Using (5.39), (5.40) and (5.42) in (5.38), we have

(1− γ)

Z T

S
Eσφ0

Z
w
u2dx dt ≤ C

η

Z T

S
Eσφ0

Z
w
u2tdx dt

+CE(S)1+σ + η

Z T

S
E1+σφ0dt .(5.43)

Taking γ < 1, from (5.43) we have that there exists C > 0 such that
∀η > 0

Z T

S
Eσφ0

Z
w
u2dx dt ≤ C

η

Z T

S
Eσφ0

Z
w
u2tdx dt

+CE(S)1+σ + η

Z T

S
E1+σφ0dt(5.44)

holds, where η is little enough.
Replacing (5.44) in (5.23) we getZ T

S
Eσφ0

Z
Ω−K1

|∇u|2dxdt

≤ CE(S)1+σ + (C +
C

η
)

Z T

S
Eσφ0

Z
w
u2tdxdt+ η

Z T

S
E1+σφ0dt .(5.45)

Replacing (5.45) in (5.16) we have

(1− η)

Z T

S
E1+σφ0dt ≤ CE(S)1+σ + (C +

C

η
)

Z T

S
Eσφ0

Z
w
u2tdxdt
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and taking η < 1 we obtainZ T

S
E1+σφ0dt ≤ CE(S)1+σ + C

Z T

S
Eσφ0

Z
w
u2tdxdt .

6. Finishing the proof of the Theorem

Let ρ : t −→ ρ(t) a decreasing function which goes to zero as t goes to the
infinite. Later on, we choose ρ.

Let us define the function α̃ by

α̃(r, t) := ã(r) if
R

2
≤ r ≤ R− ρ(t)

α̃(r, t) := ã(R− ρ(t)) if r ≥ R− ρ(t)(6.1)

and the function α on w ×R+ by

α(x, t) := α̃(|x|, t), ∀|x| ≥ R

2
.(6.2)

Lemma 6.1 (Gagliardo-Niremberg). Ifm > N
2 , there exists c > 0 such

that for every v ∈ Hm(Ω)

||v||L∞(Ω) ≤ c||v||θHm(Ω)||v||1−θL2(Ω) with θ =
N

2m
.(6.3)

Now, using (2.3) and (2.4) it is possible to apply (6.3) and deduce

||ut||2L∞(Ω) ≤ c||ut||2Hm(Ω) ||ut||
2(1−θ)
L2(Ω)| {z }

≤E(t)1−θ

≤ Cm||(u0, u1)||2θHm+1×Hm E(t)1−θ(6.4)

Let p > 0 such that (2.6) holds. Then, using the Jensen Inequality and
(6.4) we will estimate the last term of (5.7).Z T

S
E(t)σφ0(t)(

Z
w
u2tdx) dt

=

Z T

S
E(t)σφ0(t)(

Z
w

1

α(x, t)
u2t α(x, t)dx) dt

≤
Z T

S
E(t)σφ0(t) ||u2tα

p
p+1 ||

L
p+1
p
||α−

p
p+1 ||Lp+1dt
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=

Z T

S
E(t)σφ0(t) (

Z
w

1

α(x, t)p
dx)

1
p+1 (

Z
w
u
2(p+1)

p

t α(x, t)dx)
p

p+1dt

=

Z T

S
E(t)σφ0(t)

1
(p+1) (φ0(t)p

Z
w

1

α(x, t)p
dx)

1
p+1 (

Z
w
u
2+ 2

p

t α(x, t)dx)
p

p+1dt

≤
Z T

S
E(t)σφ0(t)

1
(p+1) (φ0(t)p

Z
w

1

α(x, t)p
dx)

1
p+1

·(
Z
w
u2tα(x, t)dx)

p
p+1 ||ut(t)||

2
p+1

L∞(Ω)dt

≤ Cm

Z T

S
E(t)

σ+
(1−σ)
(p+1) φ0(t)

1
(p+1) (φ0(t)p

Z
w

1

α(x, t)p
dx)

1
p+1

·(
Z
w
u2tα(x, t)dx)

p
p+1dt .(6.5)

To simplify notations, we introduce

ε(t) = φ0(t)(
Z
w

1

α(x, t)p
dx)

1
p .(6.6)

Let � > 0. Applying the Young inequality we get the following estimationZ T

S
E(t)σφ0(t)(

Z
w

1

α(x, t)p
dx)dt

≤ Cm

Z T

S
E(t)

σ+
(1−θ)
(p+1)φ0(t)

1
(p+1) ε(t)

p
p+1 (

Z
w
u2tα(x, t)dx)

p
p+1dt

≤ Cm

Z T

S
E(t)

σ+
(1−θ)
(p+1)φ0(t)

1
(p+1)| {z } ∈Lp+1 (ε(t)

Z
w
u2tα(x, t)dx)

p
p+1| {z } ∈Lp+1

p
dt

≤ Cm(

Z T

S
E(t)σ(p+1)+(1−θ)φ0(t)dt)

1
(p+1) · (

Z T

S
ε(t)

Z
w
u2tα(x, t)dx dt)

p
p+1

≤ Cm
�

p+ 1

Z T

S
E(t)σ(p+1)+(1−θ)φ0(t)dt+ Cm

p

(p+ 1)�

Z T

S
ε(t)

Z
w
u2tα(x, t)dx dt .

(6.7)

σ is defined such that

σ(p+ 1) + (1− θ) = σ + 1 , that is σ =
θ

p
=

N

2mp
.(6.8)

From (5.7) and (6.7) we can deduce: if � is little enough, there exists a
positive constant C such thatZ T

S
E(t)1+σφ0(t)dt ≤ CE(S)σ+1 + C

Z T

S
ε(t)

Z
w
u2tα(x, t)dxdt .(6.9)
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Now, choosing ρ and φ carefully, we will estimate the last term of (6.9).

The Choice of the function ρ.

Let us assume that φ is a concave and strictly increasing C2 function
such that

φ(t) −→ +∞ and φ0(t) −→ 0 as t→ +∞ .(6.10)

Lemma 6.2. If b satisfies (2.6), then there exists C > 0 such that

Z R

R
2

1

α̃(r, t)p
dr ≤ C

ρ(t)

b(ρ(t))p
.(6.11)

Proof.- If b satisfies (2.6), then

Z R

R
2

1

α̃(r, t)p
dr =

Z R−ρ(t)

R
2

1

α̃(r, t)p
dr +

Z R

R−ρ(t)

1

α̃(r, t)p
dr

=

Z R−ρ(t)

R
2

1

ã(r)p
dr +

Z R

R−ρ(t)

1

ã(R− ρ(t))p
dr

=

Z R
2

ρ(t)

1

ã(R− r)p
dr +

Z R

R−ρ(t)

1

ã(R− ρ(t))p
dr

=

Z R
2

ρ(t)

1

b(r)p
dr +

Z R

R−ρ(t)

1

b(ρ(t))p
dr

≤ C
ρ(t)

b(ρ(t))p
+

ρ(t)

b(ρ(t))p
.

Using (6.11) we obtain the following estimation for ε.

ε(t) ≤ φ0(t)
ρ(t)

1
p

b(ρ(t))
.(6.12)

Since b is strictly increasing near to 0, we define ρ:

ρ(t) := b−1(φ0(t)) .(6.13)

We observe that ρ is decreasing, since b is increasing and φ0 is decreasing.
From definition of ρ and (6.12) we have

ε(t) ≤ Cρ(t)
1
p .(6.14)



66 Luis Cortés and Yolanda Santiago

Also, we obtainZ
w
α(x, t)u2tdx =

Z
R
2
≤|x|≤R−ρ(t)

α(x, t)u2tdx+

Z
|x|>R−ρ(t)

α(x, t)u2tdx

≤
Z
Ω
a(x)u2tdx+

Z
|x|>R−ρ(t)

ã(R− ρ(t))u2tdx

≤ −E0(t) + b(ρ(t))E(t)

= −E0(t) + φ0(t)E(t) .(6.15)

From (6.9), using (6.15) , (6.14), ρ(t)
1
p ≤ ρ(S)

1
p and the fact that E de-

creases, we haveZ T

S
E(t)σ+1φ0(t)dt

≤ CE(S)1+σ + C

Z T

S
ε(t)(−E0(t) + φ0(t)E(t))dt

≤ CE(S)1+σ + C

Z T

S
ρ(S)

1
p (−E0(t))dt+ C

Z T

S
ρ(t)

1
pφ0(t)E(S)dt

≤ CE(S)1+σ + Cρ(S)
1
p {E(S)−E(T )}+ CE(S)

Z T

S
ρ(t)

1
pφ0(t)dt

≤ CE(S)1+σ + Cρ(S)
1
pE(S) + CE(S)

Z T

S
ρ(t)

1
pφ0(t)dt .(6.16)

The choice of the function φ.

Here, we will show how to define φ such that
R+∞
1 ρ(t)

1
pφ0(t)dt is finite.

Let p0 > 1 + p and define

ψ(t) := 1 +

Z t

1

1

b( 1
rp0
)
dr , ∀t > 1 .(6.17)

Then, ψ is an strictly increasing, convex and C2 function, which satisfies

ψ(t) −→ +∞ and ψ 0(t) =
1

b( 1
tp0
)
−→ +∞ as t→ +∞ .

Define
φ(t) := ψ−1(t) , ∀t ≥ 1 .(6.18)

Then φ is a strictly increasing, concave and C2 function, satisfying

φ(t) −→ +∞ and φ 0(ψ(t)) =
1

ψ 0(t)
→ 0 as t→ +∞.(6.19)
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Thus φ has all the properties that we use to get (5.7) and (6.16). Using
ρ(t) = b−1(φ0(t)) and making a change of variable t = ψ(τ), using (6.19)
and making another change of variable τ = φ(t), and using b−1( 1

ψ0(τ)) =

b−1(b( 1
τp0
)) = b−1 ◦ b( 1

τp0
) = τ−p

0
we obtainZ +∞

1
ρ(t)

1
pφ0(t)dt =

Z +∞

1
[b−1(φ0(t))]

1
pφ0(t)dt

=

Z +∞

1
[b−1(φ0(ψ(τ)))]

1
pdτ

=

Z +∞

1
[b−1(

1

ψ0(τ)
)]
1
pdτ

=

Z +∞

1

1

τ
p0
p

dτ

= lim
M→+∞

1

−p0

p + 1
{M−p0

p
+1 − 1} and since − p0

p
+ 1 < 0

=
1

p0

p − 1
> 0 .

Estimation depending on φ.
Since ψ ◦ φ = I then ψ0(φ(t))φ0(t) = 1, and then φ0(t) = 1

ψ0(φ(t)) =

b( 1
φ(t)p0

), from which we deduce

ρ(t) = b−1(φ0(t)) = b−1 ◦ b( 1

φ(t)p0
) =

1

φ(t)p0
.(6.20)

By other hand, using (6.20), we obtainZ T

S
ρ(t)

1
pφ0(t)dt =

Z T

S

1

φ(t)
p0
p

dt

=
1

1− p0

p

[φ(t)1−
p0
p ]TS

=
1

1− p0

p

{φ(T )1−
p0
p − φ(S)1−

p0
p }

=
1

p0

p − 1
{φ(S)1−

p0
p − φ(T )1−

p0
p }

≤ 1
p0

p − 1
{φ(S)1−

p0
p } since φ = ψ−1 > 0 .(6.21)
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Using (6.20) and (6.21) in (6.16) we haveZ T

S
E(t)σ+1φ0(t)dt ≤ CE(S)1+σ +E(S)

C

φ(S)
p0
p

+E(S)
C

φ(S)
p0
p
−1

≤ CE(S)1+σ +E(S)
C

φ(S)
p0
p
−1

.(6.22)

Then apply Lemma 4.4 since (4.26) holds with σ0 = p0

p − 1 > 0, and deduce
that exists a constant C depending continuously on E(1), such that

E(t) ≤ C

φ(t)
p0
pσ

=
C

φ(t)
p0
θ

, ∀t ≥ 1 .(6.23)

Growth of φ.
Estimate the growth of φ is equivalent to bound the function φ−1 = ψ.
Let T0 such that b(

1
τp0
) ≤ 1 , ∀τ ≥ T0.

If s < τ and since b is increasing we have b( 1
τp0
) ≤ b( 1

sp0
), i.e. 1

b( 1

sp
0 )
≤

1
b( 1

τp
0 )
.

On other hand, we have that: if p0 ≥ 1, 1 + (τ − 1)z ≤ τp
0
z holds for

z ≥ 1 and τ ≥ 1. In fact, we only have to prove that 1 ≤ (1− τ + τp
0
)z. If

τ ≥ 1 then τp
0 − τ ≥ 0 and so 1 + τp

0 − τ ≥ 1; then multiplying by z ≥ 1
we have (1− τ + τp

0
)z ≥ 1. Using these remarks we obtain

ψ(τ) = 1 +

Z τ

1

1

b( 1
sp0
)
ds ≤ 1 + 1

b( 1
τp0
)

Z τ

1
ds ≤ 1 + (τ − 1) 1

b( 1
τp0
)

≤ τp
0 · 1

b( 1
τp0
)
=

1

B( 1
τp0
)
.(6.24)

Then, letting t = 1
B( 1

τp
0 )
( that is 1

τp0
= B−1(1t )) and using (6.24) we have

ψ(τ) ≤ t, from which τ ≤ ψ−1(t) = φ(t), that is

1

φ(t)
≤ 1

τ
.(6.25)

Thus, using (6.25) in (6.23) we obtain

E(t) ≤ C

φ(t)
p0
θ

≤ 1

τ
p0
θ

=

µ
B−1(

1

t
)

¶ 1
θ

,(6.26)

where θ = N
2m .
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