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Abstract

In this work, we consider the problem of existence of global solu-
tions for a scalar wave equation with dissipation. We also study the
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s based in nonlinear techniques.
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1. Introduction

We will study the following evolution problem

(1.1) uy — Au+a(x)uy = 0in Q x R,
v = 0Oon,0QxRT,
u(0) = u, us (0) = ul.

where Q is an open bounded domain in RY with smooth boundary 92 and
a is a suitable, smooth and should not identically zero on €2; besides, a can
vanish in some part of ().

We define by

1
(1.4) B(t) = 5/ e + |Vul? de
Q

the energy associated to the system (1.1)-(1.3). By Lemma 5.1 E is non
increasing. Thus, we are interested in finding out what happens to E(t) as
t goes to infinity and what is its rate of decay.

In this work, we study the existence of global solution and the asymp-
totic behaviour of the wave equation with dissipation, where the initial
conditions satisfy the mth-order compatibility condition, with allows us to
obtain a more regular solution.

We use the semigroup theory [17], [6] to prove the existence and unique-
ness of solution to the problem (1.1)-(1.3), as well as its continuous depen-
dency of initial data. Likewise, we study the regularity of this solution.

In section 4 we make a complete study of certain integral inequalities
[15]. Also we prove that

G
(1+1)7

/ () %7dr < CF(t) implies f(t) <
t

and we use it in the proof of Lemma 4.2. Besides, in this section we
introduce Lemma 4.4 which is an analogous version of Lemma 4.3.

Making use of the multiplicative techniques [13], we obtain important
estimations like (5.12), (5.16), (5.23). And by adapting the Conrad and
Rao methods [1], we obtain the estimation (5.44) which allow us to prove
Lemma 5.3 and then the hypothesis of the Lemma 4.4.

Another study can be seen in Nakao [16]. We are strongly motive by
the most challenging mathematical results have already been obtained in
related topics, see for instance [9, 10, 11, 12], [7, 8] [18], [19], [20], [21] and
[14, 22], among others.
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2. Main Results
We state the result for existence of solution to the problem (1.1)-(1.3).

Theorem 2.1. Given (ug,u1) € (H?(2) N H(Q)) x H(Q), there is only
one solution u(z,t) of (1.1)- (1.3) in C?([0, 00), L*(2)) N C1([0, 00), HE(Q)) N
C([0,00), H*(Q) N Hg ().

Also, we will need the following result for regularity of the solution, for
which we cite Kesavan [6] and Ikawa [5]. We introduce the following defi-
nition

Definition 2.1. The initial condition (u®,u') € H™*! x H™ satisfies the
mth - order compatibility condition associated to (1.1)-(1.3) if

(2.1) uF e Hm“_kﬂH& for k=0,1,...,m and v € L?,

where the sequence (u*); is defined by induction from (u®,u') by the
formula

(2.2) uFt? = Auk — a(z)uF L

Proposition 2.1. Let m > 1 be an integer. Let us suppose that a €
C™ Q) and (u°,u') satisfies the mth- order compatibility condition as-
sociated to (1.1)- (1.3). Then, there is only one solution u(t) of the problem
(1.1)-(1.3) such that

m
(23)  weXn,=()C'RTH™ " nH))NCTTHRT, L?),
k=0

and the linear application

(2.4) (u®,ut) € H™HQ) x H™(Q) — u € X,

i’erclontinuous. That is exists C > 0 such that

S [ DRu(t)]|2, < C||(u®, uh)||%/ms1y gym » where D¥ denotes any kth order
gzgtia] differentiation with respect to t and x.

Let us suppose that € is the open ball in RY centered on 0 and the

radius R. Let us also assume that V |z| > £, a(z) := a(|z]), where
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a:[%, R] — R* is a strictly decreasing function which satisfies a(R) = 0.
(Note that % could be replaced by any R — ¢ with € > 0). Set

(2.5) Vre 0 R

,5] , b(r):=a(R—r)and B(r) :=rb(r).

We observe that B is continuous and strictly increasing on [0, g] and

that B(0) = 0. Also,
b(r) = 0=a(R)asr — 0

That is
a(r) — 0as z — 0.
We will use the Lemma 4.4 in the proof the following Main Theorem.

Theorem 2.2 (Main result). Let us suppose that a goes to zero at the
boundary quickly enough so that there exist p > 0 and C > 0 such that

R 701 )
(2.6) vpe (0,5), /p o < Cr

Set m > % Then, if (u®,u') satisfies the mth-order compatibility condi-
tion; there exists C > 0 which depends on the norm of the initial condition
on H™1(Q) x H™(Q) such that the solution u of (1.1)-(1.3) verifies

2m

(2.7) E(t)<C (Bl (%)) A

where B~! denotes the inverse function of B.

2.1. Remarks of Theorem

Remark 2.1. If exists n in N such that n > 2 and exists p > 0 such that
1
b(r) < nreb(nr), for all r € [0, £], then (2.6) holds.

) 2n

Remark 2.2. Ifb(r) = r* with k > 0 and pk > 1, then (2.6) holds.
Therefore, by the main theorem we obtain

C
E(t) < ——.
t&+Do

Remark 2.3. Ifb(r) = \L71w| then (2.6) is not true.
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_ L
k

Remark 2.4. Ifb(r) = r%e % with k > 0 then, we can apply remark 2.1.
Therefore, by the main theorem we get

C
Et) < —72x -
g [(Lnt)*]™

3. Existence of solution

From the equation (1.1) writing v = u; we get:

() ()= (o) = (s ) = (8 20 (1)

we define the Operator A: D(A) C H — H ,

0 I
A(A —aI)

where H = H(Q) x L3(Q) and D(A) = H2(Q) N H(Q) x H(Q).
Thus (1.1)-(1.3) is equivalent to

Ut) = AU(t)

(3.1) LV.P ( ug

v = U= { ) € D(A).

Theorem 3.1. The Operator A defined above generates a contraction

semigroup S(t) on the Hilbert Space H.

Proof.- Observe that D(A) is dense in H. We will prove that A is dissi-
pative. Let U = (u,v)T € D(A) then

N —
ov Ou _
<AUU > = El/ani &Bidz—i-/Q(Au—a(x)v)vdx

— o (2T [ Aol
— 2 anz axz X 0 uv a\xr)|v X

- -
B Oov Ju  Ou OV 9
= Z/a—m—xi‘a—m—xidm‘/ga(@'”' da

(3.2) =— Z/ 2iIm 88;2 6_)d —/Qa(x)]v\2d:r,
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where I'm(z) is the imaginary part of z € C. Taking the real part of the
equality (3.2), we have

Re(< AU,U > 1 (ayxr2()) = —/ a(z)|v]*dz <0
0 Q

Now, we will prove that 0 € p(A4). In fact, let F = (f,9)7 € H}(Q) x
L?(Q) = H, we will prove that there is U = (u,v)T € D(A), such that
AU = F'. Let us consider the equations

(3.3) v = feHQ)
(3.4) Au—a(z)v = geL*Q).

Replacing (3.3) in (3.4), we have
(3.5) Au=a(z)f +g € L*(Q).

By standard results on Elliptic linear equations, we have that (3.5) has
only one solution u € H?(2) N H (). From (3.3) we obtain v = f. That
is, A is an onto map.

We claim that A is one to one. In fact, let AU = 0 then

(3.6) v
(3.7) Au—a(z)v =

Replacing (3.6) in (3.7) we have Au = 0 and using the Green’s Identity
we have

’uﬁfé(ﬂ) :/Q\Vu|2dx = /QAuﬂdw =0

hence u = 0 in H(2). From (3.6) we have that v = 0. Therefore U = 0.
i.e. A is one to one.

Thus, there is A™! : H — D(A) because A is one to one and H is
the image of A. Now, we will prove that A~! is bounded. Multiplying the
equation (3.5) by 7 and integrating on €2, we have

/QAuUd:U = /Q(af + g)udx

but since [q |Vu|?dz = [, Autidz, using the Holder and Poincaré inequali-
ties, we obtain

/Q\Vu]2dx = /Q(af—i—g)ﬂd:p < ulpz |laf + g|r2
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< o[ uPde+C(©) [ Jaf +gPdo
[¢) Q
< eCp/ ]Vu]2dx+0(€)/ laf + g|*dx.
9] Q

Then, taking € > 0 such that 1 — eC), > 0 we have

(1-— eCp)/ |Vu|?dz < C(e)/ laf + g|*dz,
Q Q

\/1—€Cp|Vu|r2 < \/C(e) laf + g2 -

that is

Hence we have

C(e)

C
(3.8) [Vulys € Doy 4 g1, < YLD

V1—=e€C)

Thus, using (3.8), v = f, and the Holder and Poincaré inequalities we get

{lalool flz2 +lglr2} -

Ulg = |Vaulge + vl = |Vulge +|flze < C{fle +9lz2}
C{IV S|z + 9|2} -

IN

Then,
’U|H §C|AU|H,

that is R
‘A_lF’H < C‘F‘H,

which allow us to say that A~! is bounded. Now, by the Lummer-Phillips
theorem, we have that A is the infinitesimal generator of a Cy semigroup
of contraction on H : S(t).

Remark 3.1. By Theorem 4.3.2 in [6], if D(A) 3 U then
SHU € C1([0,00), H) N C([0, 00), D(A)).

Remark 3.2. By Remark 4.3.3 in [6], U(t) := S(t)Up is the solution of
IVP (3.1) and it is the unique.

From these two remarks, we get the following result.

Proposition 3.1. There exists only one solution of (3.1),
U(t) € C'([0,00), Hy () x L*(2)) N C([0,00), (H?(Q) N Hy(Q)) x Hy(2))-



44 Luis Cortés and Yolanda Santiago

Now, we will finish the proof of Theorem 2.1

Since Uy = (u®,u') € D(A), by Proposition 3.1 we obtain that there
exists U(t) € C([0,00), H}(2) x L2(Q)) N C([0,00), (H?(Q2) N HE(Q)) x
H()) solution of (3.1) such that U(0) = Uy, U(t) € D(A),Vt € R*.

Since U satisfies (3.1) we have vy = v and v, = Au — av. By one
hand, we have u; € C°(IR*, H}(2)), but since u € CO(R*, H}(Q)) then
u € CYRT, HY(Q)). Also, uy = vy = Au — auy € C(RF, L%(Q)), but uy
and u belong to C(RT,L?(2)) then v € C?(R*, L3()). We also obtain
that v € C(R*, H2(Q) N H}(Q)).

Remark 3.3. By the Hille-Yosida Theorem (Theorem 4.4.3 in [6] ), since A
is the infinitesimal generator of contraction semigroup, A is closed, D(A) is
dense in H and VA > 0, 3(AI — A)~! bounded, moreover ||(A —A)71|| < 1.

Remark 3.4. Since A is closed and there exists A~! (It was proved in

0 € p(A)), then A~ is also closed.

4. Integral Inequalities

Lemma 4.1. Let E: RT™ — R™ be a no increasing function and ¢ : Rt —
R be an strictly increasing C* function such that

(4.1) $(0)=0 and ¢(t) — +oo ast — +oo.
Let us suppose that there are o > 0, and w > 0 such that

(4.2) Vs >0, / o E)™o¢ (t)dt < %E(O)"E(s).

Then, E satisfies the following estimates:

(4.3) If 0 =0, then E(t) < E(0)e™"®)  forall t > 0.

(44)  If o >0, then E(t) < E(0) (H—”)_ V>0,
1+ wop(t)

Proof.- Is enough to prove the case E(0) = 1, because if 1 # E(0) = d > 0,
we define F(t) := %, then F'(0) = 1 and applying (4.2) to E(t) we have

(e} —+oc0o
RO ROT ﬁ | B0 s 0

1

)
E(0)7E(s) E0) @)

E(s

~
—_
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i.e. (4.2) holds for F(s). Then

If 0 =0, then F(t) < ™0 vt>0,
ie. BE(t) < E(0)e!w*® vt >0.
If 0 >0, then F(t) < <1+70>l vt >0
’ - \l+wop(t)) ~’ -

ie. B(t) < B(0) (Hl%;;(t)y , Vt>0.

Now, we prove for E(0) = 1.
We introduce the following function f : IRT — IR™ defined by

then f is no increasing. Making a change of variable and using (4.2) with
E(0) = 1, we obtain the following: V0 < S < T < o0,

/d)(T)f(T)(H")dT = /¢(T)E(¢1(T))(1+g)dr

#(5)
_ /9TE(t)(1+”)¢’(t)dt
< =B = —f00S).

Since lim7_,o ¢(T) = 400, then f satisfies:

(4.5) VS >0, /:’O F(r)Fodr < %f(S) .

Let us denote h : Rt — R*, h(t) := [T f(1)1+9)dr. So, h is well
defined, no increasing, no negative and satisfies the following differential

inequality.
(4.6) Vt>0 —h > (wh)!t7.
In fact, from h(t) = f+ F(7)3+9)dr > 0 we have I/(t) = — f(t)1+9) < 0.

h( ))(1+a)

And so, using (4.5) we have that —h/(t) = f(t)1*) > (w
=0, h satisfies:

Let us define Ty := sup {¢ : h(t)> 0}. Then, if o

1
(4.7) VO <t<Ty, h(t)<h0)e ™ < —e

—wt
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In fact, from (4.6) with 0 = 0 we have —h' > wh, that is K’ + wh < 0,
then [e”*th]’ < 0, from where e“*h(t) < h(0) holds.

By other hand, from (4.5) and f(0) = E(0) = 1, we have that h(0)w <
f(0) =1, that is h(0) < L. Therefore, h(t) < Le~!. We observe that the
estimate (4.7) holds if ¢ > Tp. In fact, if ¢ > Tj then h(t) <0 < Ze vt

Let € > 0. Since f is no increasing, we have that

48) Vize, ()< 1/t F(r)dr < %h(t C o) < eweeut,
t

€ Ji—e wWe

In fact, in the last inequality of (4.8) it is used (4.7).
On the other hand, since f is no increasing, we have that f(t).e <

ft'i6 f(r)dr. Also ftt;ﬁ f(r)dr < j;iio f(r)dr = h(t —¢).
If we take € = % in (4.8), we get

| —

(4.9) VE> —,  f(t) <elTvh.

—~ &

Since E(t) = f(¢(t)), by using
If o > 0, h satisfies:

4.9), we get (4.3).

(4.10) for allt € [0, Ty[, (A7) > ow o),

In fact, (h™7) = —oh~ )0 = —gh=(F0) (= f140) = gp~(+0) plto —
a(%)HU. But from (4.5) we have that w < %, from here w!T? < (%)H"
then the result holds.

Integrating the inequality (4.10) from 0 to ¢, we obtain

[h()]77 — [R(0]77 > ow' Tt V0 <t < Ty,

Thus )
(4.11) h(t) < (h(0)™° +ow™ )77 | VO <t < Ty

Since f is no increasing, we have for all s > 0
1 1 Li(o+1)s
(412)(=- +05) f( + (0 +1)5)7+ < / £ dr < h(s).
S

By the other hand, from (4.5) we have that h(0) < £ f(0) = £ E(0) = 2,
that is w? < W, then

1
o

1
< (w" + awH"t) 7 =

(4.13) (h(O)"’ +ow“"t)_ ! T

w(l + ows]
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Using (4.11), (4.12) and (4.13) we have

1 1 1
(F) s oD s ———
w w w[l + ows|~
hence 1 1
(4.14) V520, f(m4(0+1)8) <
w (14 wos)=

Putting t = 2 + (0 + 1)s on (4.14), we get

140 \s

g o

4.15 t) < Vi > 0.
(115) 10 < (1) Ve

Finally, since E(t) = f(¢(t)), using (4.15) we get (4.4).
From (4.4) we deduce the following result:

Corollary 4.1. Let f : Rt — R be a no increasing and continuous
function. Let us assume that there are o > 0, ¢’ > 0, and ¢ > 0 such that

oo f0)71(t)
4.16 vt >0, / oar < 2.
(116) A R
Then, there exists C > 0 such that,

C

+oh)

(1+6)"7

Proof.- Is enough to prove the case f(0) =1, because if 1 # f(0) =d > 0

we define g(s) := ;—8%, then ¢g(0) = 1 and

(4.17) VE>0, f(t) < £(0)

/tJroo g(S)1+UdS _ W /t+00 f(s)(lJrU)ds
_ 1 0r s
= f0) f(0) (1+1)”

s 9(t)
cg(0) D

that is (4.16) holds. Using (4.17) for g(0) = 1 we have

9(t) < (0 ———.
(1+1)"%
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that is,
Cf(0
f(t) — f( 110-/
(1 I )( )
Now, we prove for f(0) = 1.
If t > 0, let us define
f(@)
t) = ——t
9(t) (1+1¢)°

then ¢ is no increasing. Since g(7)'7(1 + 7)7 149 = £(7)14% and using
(4.16) we get

+o00 ,
(4.18) vVt >0, / g(M 1+ 7))V dr < cg(t).
¢

Define ¢(t) = (14t)7 1T+ _1 then $(0) = 0, (t) — +oo as t — 400

and ¢/(t) = (¢/(1 4+ o) +1)(1 4+ t)7 119, Replacing ¢’ on (4.18) we obtain
| o e (ar < o'+ ) + (0
N —
-1

and since ¢g(0) = f(0) = 1, we can apply Lemma 4.1, to get

l+o \# l+o g
g(t)sg(o)(Hwaqﬁ(t)) _<1+wo{(1+t)i—1}> |

Define r= min {1, wo} then l—i-wa{(l—i—t)i -1} > r{14+(1 —i—t)i -1} =
r(1 +t) , that is L > LI , from where we can deduce
r(14t)we 1+wo{(1+t)we -1}
that g decays like

C C
g(t) < Oto)+1) . Tt
1+t = (A+t)7(1+1t) >

Thus, (4.17) holds.
O

Lemma 4.2. Let f : IRt — IR" be a continuous and no increasing func-
tion. Let us assume that there are o > 0, ¢’ > 0 and ¢ > 0 such that

(4.19) VYt > 0, /too f(T)1+O'd7_ < Cf(t)1+a 0{1( —l)_:;c( ) )
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Then, there exists C > 0 such that
C

(1 + t) (1-‘;0' )
Proof.- Is enough to prove the case f(0) = 1, because if 1 # f(0) =d > 0,

we define g(t) = f(()) then g(0) =1 and

(4.20) VE>0, f(t)< f(0)

\/toog(’r)l-&-ad,r _ 0;‘1+U/ f 1+ad7_
1 o ¢f(0)7f(t)
< F (O

_ o g(t)
— (t)l+ +C(1+t)‘7'

Thus, (4.19) holds for g with g(0) = 1. Then (4.20) holds for g:

g(t) < g<0>% ,
1+6"

Hence we obtain

£ < 10—
(1+t)

Now, we prove for f(0) = 1.
We will prove (4.20) by induction. Next, we denote por C' every con-
stant. First, let us bound the right hand of (4.19),

esy+ LX< ero{ o + L9

and so we have

(4.21) / T rE)dr < CF().
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Now, we prove that [ f(r)!**dr < Cf(t) imply f(t) < —C-r.

In fact, considering f(t) instead of E(t), ¢(t) = t (ie. ¢'(¢t) = 1,
$(0) =0, ¢(t) — +o0 as t — 400 ), 0 > 0, and using (4.21) we deduce

from Lemma 4.1 that )

140 \°
YOS <1+%t> ’

Taking 7 := min {1, &} then r(1 +1¢) < 1+ &t, that is ﬁ < r(l—l+t)’
C

from where we get

C
f@) < T
(1+1t)>
That is f(¢)7 < % Then, using this estimate in (4.19) we obtain

0, o 10

+oo
1+O’ <
/t fr) dT—Clth (1+t)

Taking o7 := inf {1,0’}, we have

oo - f(®)
/t fr)Hodr < 07(1 e

and using Corollary 4.1 we arrive at

fit) < —<

— (toy) *

(1+1) -

If o' <1 then o1 = ¢/, from where we get the inequality (4.20). If o/ > 1

then o
t < 2
1) < (1+1t)s

that is f(¢)7 < (1?;—(;)2 Then, using this estimate on (4.19) we have

f(t)
(1+1)

f(t)
(1+t)7 "

+o0
/t frFear <o ¢

Taking o9 := inf {2, o'}, we have

oo - f(®)
/t ()it dTSC’m,
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and using Corollary 4.1 we arrive at

) S —mg -
(1+t)

If o/ < 2 then oy = ¢/, from where we get the inequality (4.20). If o' > 2

then
C

ft) £ —=,
(1+1t)
that is f(¢)7 < (li—;)g, and so on. Then, the conclusion holds by induction.

Lemma 4.3. Let E : IRY — IR" be a no increasing function and ¢ :
IRt — IRT an strictly increasing C' function such that,

(4.22) $(0)=0 and ¢(t) — +oo ast — +oo.

Let us assume that there are o > 0, 0/ > 0 and ¢ > 0 such that

+oco E(S)
14.23) Vs >0, / B¢ (1)dt < cE(s)H 4 e\
(4.23) i (t) (t) (s) 05 o(s))7
Then, there exists C' > 0 depending continuously on E(0), satisfying
< C
(4.24) Vi>0, E(t)< ——y
(L+o(t)

Proof.- Is enough to define f(7) = E(¢ (7)) and use Lemma 4.2.
In analogy to this Lemma, we have the next version.

Lemma 4.4. Let E : IRY — IR" be a no increasing function and ¢ :
IRt — IR™ an strictly increasing C' function such that

(4.25) (t) — +o0 as t — +o0.

Let us assume that there are o > 0, 0’ > 0 and c¢ > 0 such that

+o0 E
(4.26)  Vs>1, / Et)Y ¢ (t)dt < cE(s)17 + cﬁ.
Then there exists C' > 0 depending continuously on E(1) satisfying
C
(4.27) Wi>1, E(t) < —r
o(t)
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5. Using the multiplier method

Let (u%,u!) € H™(Q) x H™(Q) satisfying the mth - order compatibility
condition. Then, the regularity given by (2.3) justifies the calculus we are
going to do.

We know that problem (1.1)-(1.3) is dissipative.

Lemma 5.1.
(5.1) B (t) = —/ a(2)ugl?de, Vit > 0.
Q

Proof.- Multiplying the equation (1.1) by w; and integrating on €2,
and using the Green Identity, we have

0 = / (utt — Au+ a(aj)ut)ut dx
Q

= (‘(;)t ; (ug)? dx} — /Au utdx+/ dx
_ % 1 [ (wr)? do} + / (V) Vg dae + / a(@)(ur)? de

= & 2/ w e} + oy [ IVuP e} + [ at@))?,do

then the result holds.
Let 0 >0, and ¢ : Rt — R* be a concave and increasing C? function.
Let w be a neighborhood of the boundary 0f2.

Lemma 5.2. Let h: Q — IRY be a C! vector field, c >0 and 0 < § <
T < 4+o00. Then we have,

T
/ E%’/ 20, uh.Vu + (h - v)(|ug]? — [Vul?)
S oN
T
= [EU¢’/ quth‘Vu]g—/ (JE’E‘Pl(]ﬁ’—i-EU(b")/ 2uth - Vu
Q S
T Ohy, Ou Ou
P . 2 2 k e
+/S E%¢ /Q(dwh)(|ut| |Vl )+2iz Dz, Oz, Day + 2aus h - Vu.

(5.2)

Proof.- Multiplying the equation (1.1) by E%¢'2h - Vu and integrating
on [S,T] x Q we have

T
0 = / E%ﬁ'/ 2h - Vu(uy — Au + a(x)u) dedt
S Q
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T T
- / By / oh - (Vg da dit — / ol / oh - Vu(Au) da di +
S Q S Q
]112 IQZ:
T
(5.3) / E"qﬁ'/ 2h - Vu(a(z)ut) dz .dt
S Q

Since % (Jo2h(Vu)uy dx) = [o 2h(Vug)ug dx + [o 2h(Vu)uy do and in-
tegrating by parts we obtain

T T
I = / Byl ( / 2h(Vu)utda:> dt — / E°¢ / (Vg Jug d dt
S ot Q S Q
T
= —/ E"gzﬁ// Qh(Vu)utdxdt—i—[qub’/ 2h(Vu)us dz)s
S Q Q

T
—/ E"(b’/ 2h(Vug)ug dadt .
S Q

Using the Green Identity we have

T /
I = — / E°? / 2h - VuAudz dt
s Q
T T ou
_ / E"(b’/ vu-V(zh-vu)dxdt—/ o [ 2 @n. vu)d.
s Q S a0 Ov
Replacing I; and Iz on the equality (5.3) we obtain
T
0 = —/ E"(ﬁ'/ 2h(Vu)utda7dt+[E"¢’/ 2h(Vu)us dz)s
s Q Q

T T
—/ E"(b'/ 2h(Vug)uy dwdt+/ E%ﬁ'/ Vu -V (2h - Vu)dz dt
S Q S Q

Igi= Iy=

( / fod ,/5981/ (2h - V) dt+/ E0¢/2h Vu(a(z)u) do dt
5.4)

Using the fact that hV(u?) = div(hu?) — (div h)u? and the Divergence
Theorem [y, hu? - v = [, div(hu?)dz, we have

T
I = —/ EU¢’/h-V(uf)dxdt

S Q
T T

= - / E°¢ / div (hu?)dzdt + / E°¢ / (div h)u?dxdt
S Q S Q
T T

= —/ anb’/ (huf)'ud:pdt—i—/ E"qb'/(div h)uZdzdt .
S onN S Q
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By other hand, we have
(5.5) Vu - V(2h - Vu) = 20;ud;h0pu + h - V(|Vul?).

And since div(h|Vu|?) = (divh)|Vu|?+hV(]Vu|?) and using the Divergence
Theorem, we have

/(dz’vh)]Vu\zdx—i—/ WY (|Vul?)de = /dz’v(h\Vu]Q)dx

Q Q Q

(5.6) — / BVl da
0N

Using (5.5) and (5.6) we obtain

T T
I, = 2/ anb'/ 8iu8ihk8kudxdt+/ E"qb’/ h'V(]Vu\Q)dwdt
S Q S Q

T T
= 2/ E"(;S// 8iu8ihk8kudxdt+/ E"(;S// h|Vul|? - vdzdt
S Q S o)

T
—/ quﬁ’/(divh)Wu]dedt.
S Q

Replacing I3 and Iy in the equality (5.4), we will have the result.

Lemma 5.3. There exists a constant C' > 0 such that VO < S < T < 00

T T
(5.7)/3 B4 (#)dt < CE(S) + C [S B8 (1) ( /w ]ut\zd:r)dt.
holds.

Proof.- Let K; be a compact of 2 such that Q — K7 be a compact set on
w.
Define h(x) := (z)m(z), where m(z) = z — zo and § is a C* function
whoose support is compactly in ©Q and equal to 1 on K;. Since ¢’ is no
increasing and positive then ¢’ is bounded on R (i.e. |¢/(t)| < M).
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Now, we apply (5.2) to this h and get

T
0>[E7¢ / 2uy b - Vudz] L — / (cE'E°Y¢ + E7¢")( / 2ush - Vudz)dt
Q S Q

+f§ B¢ fodivh (uf — [Vu?)+2 5, ; G 8w 2L+ 2a(z)uh - Vu.

(5.8)

By other hand, using that [o2h - Vuwudz < cE(t) and E(t)°T! <
E(S)°*! para S < T, we have

T
| / (E'E"'¢' + E7¢")( / 2% - Vu uydz)dt|
S Q
T
< / (E'E" ' + E°¢")( / o - Vuuydz)|dt
S Q
T
< / |cE'E°~Y¢' + E7¢"|cEdt
S
T
- / (—oE'E°\¢ — E°¢")cEdt
S
T T
<eM / _GE'E’dt + cE(S)"H! / —¢dt
S S

o
c+1

= cM[—Z—E(#)° 15 + cB(S)"+ [¢)5

N~
<2M
E(S)°T + 2ME(S)°H!
P (S) 7 +e (S)

(5.9) < EB(S)7.

o
<cM

And, since E(T') < E(S) and by Holder [qush - Vudr < ||u|||Vul| <
E(t), we obtain

LB /Q durh - Vuda]l, < —E°(T)¢'(T) /Q 20, (T) h(T) - Vu(T)dx

+EO(S)d(S) /Q 2u,(S) h(S) - Vau(S)dx
(5.10) < E7(S)C{E(S)+ E(T)} < CE *(S9).
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Here we need to make the following estimate

T Ohi Ou Ou T
_ o /! < o !
/S E°¢ /92%:8xi axi_&xkdwdt < /S E7¢ c||[Vul| || Vul| 20y )dt

T
< [ EHeB(0) + COlIVullan_poy it
(5.11)
where € will be considered little enough.

Using the inequalities (5.9), (5.10) and (5.11) on (5.8) we have that
there exists C' > 0 such that

T
/ E"(b’/ N2 + (2 — N)|Vul2dz dt
S Q
< C[§E°Y [y {0} + |Vultdadt + CE(S)7 + ¢ [ EMo¢/dt,

(5.12)

with e little enough.
Integrating by parts the expression:

0=(N-1) /ST E7¢ /Q w(ug — Au + a(x)u)dzdt,

we have

T T
o 1/ 2 o 4! 2
(N—l)/s E%% /Q|vuy dmdt—(N—l)/S E ¢/Q]ut| dudt
T
=—(N— 1)[E"gz§//ﬂuutdx]£ — (N — 1)/5 E"qﬁ’/ﬂuautdaﬁdt
T
(5.13) +(N — 1)/ (UEU_lE'qﬁl—i-EUd')/ uupdxdt .
S Q
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By the Poincaré inequality we have [ uuidz < ||ul] |[|ut|| < Cpl|Vul| ||u|] <
CE(t). Using this in (5.9) we obtain

T
(5.14) |(N - 1) / (0E°\E'¢ + E7¢") / wudadt] < CE(S)7+!.
S Q
With a similar proof to (5.10), we also obtain

(5.15) — (N -1)[E°¢ /Q uugdz]l < CE(S)7 1.

Adding (5.12) and (5.13), taking € < 1 and using (5.14) and (5.15) we
have

T T
/ EYfo¢ldt < / E°¢ / u? + |Vul?dzdt
S S Q

T
(5.16) < CE(S)”"+C/ E%’/ {u? + |Vu|*}dadt .
S Q-K;

We want to eliminate the last term of (5.16). To do this, we construct

a function £ € C*°(Q) such that { =1 in Q — K7 and £ = 0 outside w.

We multiply the equation (1.1) by &u and integrate it on £2; then we
multiply this expression by E?¢’, and integrate on [S,T], and integrating
by parts we get

/ST E"qb'/Q —&ua(x)udzdt
= /T E°¢ /Q Eu(ugy — Au)dxdt

S
T T
= / EU¢,/fuuttd$dt—/ EU(,b'/ﬁuAudwdt
S Q S Q
T
= —/ (UnglE/gZ)’—i—quﬁ”)/ Suudxdt
S Q
T
- / By / culdudt + [E°¢ / wda]
S Q Q
T
(5.17) —/ E"qﬁ’/ EulAudxdt .
S Q

I.=
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Using the Green Identity and V(u?) = (Vu) u + uVu we have

I = / TEU¢>/ /Q V(&u) - Vudzdt

S

= /T E"qﬁ’/ {V(&u-Vu+EVu - Vuldr dt
S Q

T o ./ 1 2 2
_ / B /Q{§V(§)-V(u ) + €|Vl Yda dt

S

(5.18) - /TE%'/Q{_%(A@U?+gyvu\2}dx.dt

S
Replacing (5.18) on (5.17) we obtain

T T
/S anb'/g—fua(:r)utda:dt = —/S (UEU_lE'¢'—i—EUqﬁ")/quutdwdt
T
+/S E0¢//Qg|vu|2dxdt+[Ew//guutdx]g
T
(5.19) - /S foudy /Q {%(A&)uQ—i—éuf}d:cdt,

from where

T T
/ E7¢ 1-|Vuldzdt < / qus// | Vu|*dzdt
S Q-K, S Q
T
_ / (GE°\E'¢ + E76") / Eunydadt
S Q
—[E"qﬁ'/ wupdr) s
Q
T
+/ anb'/ —&ua(x)updzdt
S Q
T 1
(5.20) - / E°¢ / {§(A§)u2+§u?}dx dt .
S Q
Since ¢ is bounded, in a similar way to (5.9), we obtain
T
(5.21) | / (GET\E'Y + E7¢") / cuuydadt| < CEV .
S Q
Also, using the fact of £ is bounded, similarly to (5.10) we get

(5.22) —[E°¢ / uugdz]l < CEYO.
Q
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And, using (5.21) and (5.22) in (5.20) we obtain

T T
/ﬁﬂd/ WW@WﬁCﬂ&”H{vmWW/W$HﬁWﬁ
S Q—K; S w

(5.23)

Now, to eliminate the last term of (5), we will adapt the Conrad and
Rao [1] method.

We start with an arbitrary function 3 € C*°(RY) be such that 0 < 3 <
1, =1 on wand B =0 outside a neighborhood of w (see [4], Theorem
1.2.2, or [2] p.p 3489).

Now, fix ¢t and consider the solution z to the elliptic problem:

(5.24) Az = f(z)uin Q
(5.25) Zloo = 0.

Multiplying the equation (5.24) by z, integrating on € and using the
Green Identity, we have:

/B(z)uzdx = / (Az)zdx = —/ V2 |2dz

Q Q Q

hence, using the Holder and Poincaré inequalities, we obtain
(5.26) |23 < C’/Q \Vz|?de = —C’/QB(:L‘)uzdx < clu|2@)l2lL2(0) ;
then,

Similarly to (5.26) we have

IA

2|2, < C/Q\Vz\2d:n = —C’/Qﬁ(x)uzdx clBulr2@)lzlr2 @)

(5.28)

IN

c’u|L2(w)|Z’L2(Q) )

then,

(5.29) 12112 < Clulp2()
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Differentiating with respect to t to the equation (5.24) we have the
problem

(5.30) Az = p(z)up in
(5.31) Zlon = 0.

Multiplying (5.30) by z, integrating on € and using the Green Identity
we obtain

/B(J:)ut zdr = / (Az)zpdx = —/ |Vzt|2d:n,
Q Q Q

hence, using the Holder and Poincaré inequalities, we obtain

(6:32)aff < C [ [Valide = ~C [ @y zdz < clulpa iz

then

(533) ’Zt‘LZ S C’ut‘LZ(Q) .
Also

B SC'/Q|VZt|2d93 = —C'/Qﬁ(ﬂﬁ)ut zdr < clBurz)lalrz)
(5.34) < clurl 2wyl 2l 2
then
(535) |Zt|L2 < C|ut|L2(w) .

By other hand,

T
0 = / anf)// Z(Utt — Au + aut)dm dt
S Q

T
= [anﬁ’/ zutdx]g—/ (UE'E'jflcb/—i-E"gb”)/ zupdx dt
Q S Q
T
(5.36) +/ E”¢’/(—zAu+azut — zpug)dx dt .
S Q

Using the Green Identity and the fact that z is solution of (5.24)-(5.25)
we obtain

T T
/ E"gb'/ zAudx dt = / E"gb'/(Az)udmdt
5 Q Q

S

- /TE"ng//Q(ﬁ(a:)u)udxdt

S

(5.37) _ / "oy /w widz dt |

S
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Using (5.37) on (5.36) we have
T T
/ E°¢ / wdedt = / E°¢ / zAudz dt
S w S Q
T
= [EU¢’/ zutdx]g—/ (UE’E”_1¢'+E”¢")/zutdxdt
Q S Q

T
(538) +/ EG¢/ / ((IZ’U,t - ztut)dx dt .
S Q

We can observe that the following inequality holds
T
[125% / uda] — / (GE'E°\ + E°") / wde dt| < CE(S).
Q S Q

(5.39)

By other hand, let > 0, using (5.35) we obtain

T T
| / oy / awdedt| < / E7¢'Cl | 2 e 2 lt
S Q S

IN

T
[ B0 Clunl a2

C [T ., 2 R 2
—/ Eczﬁ/utdxdt—i——/ Egb/utdxdt
277 S w 2 S Q
¢ r o 4/ 2 r o+1 ./
3 Eqb/utdxdt—i—n/ oL dt
2n Js w S
where n will be taken little enough.
Also, we have

T T
|/ Eagb,/ zawdx dt| < / EU¢'|/ zauydz| dt
S Q S Q

T
/S E7¢'|2] 12 (q |aue| 2 dt

IN

IN

(5.40)

IN

IN

T
/9EU¢,C|U|L2(w)|\/aut|L2dt
T T
7/ E%’/ u2da:dt+C('y)/ E%’/ au?dz dt
S w S Q
T T
= fy/ E"qﬁ’/ u2dxdt—i—C(’y)/ E°¢'(—E')dt
S w S

T T
’y/ E%ﬁ'/ u2d:vdt—0(’y)/ E°(E') dt,
S w S

IN

(5.41)

IN



62 Luis Cortés and Yolanda Santiago

where v will be taken very little.

Since
. /T EoEldt _ 1 [E(t)aJrl]T 1 {E(S)U+1 . E(T)aJrl}
S c+1 S o+1
1
< o+1
< — (B

then (5.41) becomes

T T
|/ anﬁ’/ zaugdz dt| < 'y/ E"qﬁ'/ wldx dt + C(v)E(S)° .
S Q S w

(5.42)

Using (5.39), (5.40) and (5.42) in (5.38), we have
T c (T
(=) [ 529 [ wawae < = [ 509 [ uddea
S w n.Js w
T
(5.43) +CE(S)1+U + 77/ E1+a¢/dt )
S

Taking v < 1, from (5.43) we have that there exists C' > 0 such that
Vn >0

T C T
/ E"¢’/ widrdt < —/ E"¢’/ uldax dt
S w nJs w
T
(5.44) +CE(S)7 +1 / B0 gl dt
S

holds, where 7 is little enough.
Replacing (5.44) in (5.23) we get

T
/ E°¢ \Vu|?dadt
S Q—K;

T T
(5.45) < CE(S)"7 +(C+ %)/ E”d)’/ U?da;dwrn/ B¢t
S w S

Replacing (5.45) in (5.16) we have

T T
(I-n) / EYo¢ldt < CE(S)1+“+(C+%) / E°¢ / uldxdt
S S w
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and taking n < 1 we obtain

T T
/ E"¢dt < CE(S) +C / IO / w2dudt .
S S

w

6. Finishing the proof of the Theorem

Let p:t — p(t) a decreasing function which goes to zero as t goes to the
infinite. Later on, we choose p.
Let us define the function & by

Gr,t) = a(r) if g <r<R-pt)
(6.1) G(rt) = a(R—p(t)) if >R pt)
and the function @ on w x RT by
(6.2) oz, t) = &z, 1), Vg > %.

Lemma 6.1 (Gagliardo-Niremberg). Ifm > %, there exists ¢ > 0 such
that for every v € H™(Q)

N
0 1-6 : —
(6.3) V]| Lo () < C||U||Hm(Q)HU||L2(Q) with 6 = om”

Now, using (2.3) and (2.4) it is possible to apply (6.3) and deduce

21 6‘
el ooy < elluel Bom ey lluel 250
SE(t)lfg
(6.4) < Ol (U, u) [ By g E(E) 0

Let p > 0 such that (2.6) holds. Then, using the Jensen Inequality and
(6.4) we will estimate the last term of (5.7).

/S Z E(t)74/(£)( /w w2dz) dt

| B@ree / s ala o)
/ E(t

) [[ufaT || pis [lo” 7] e

IN
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_ /TE(t)”qb’(t)(/ ! dz)#(/wuf(p%l)a(x,t)dx)#dt

w oz, t)P

T 2+2 -
= [ Bore T ey [ —man / uy ' al, )da) T di
S w 7 w
T
< / B ()T (¢ () / o
S wa
(f u%a@c,t)dx)m||u,:<t>r|zts(m
< O [ BRSO 0y [
=~ m s wa(a:,t)P X

(6.5) .(/wuza(x,t)dx)#dt.

To simplify notations, we introduce

(6.6) e(t) = ¢’(t)(/w @d@% .

Let € > 0. Applying the Young inequality we get the following estimation

/ E(t / (;t) dx)dt

< Cm / BTG ¢/ (1) T ()7 ( / ufa(x,t)dx)#dt
S w
T or =0 1 9
< C’m/ E(t)" "ot @' (t) D oo (e(t) /uta x,t)dz) v+t Lidt
S w P
T
< Cul [ BTG (a T - / () [ wta(a, dodt)?
S S w
T T
< O, BE@#)PtD+0=9 g/ 1\ dt + C,,, / e(t /u2a z,t)dz dt .
< Cuts [0 B o W)t + Ot [0 [ wfatan
(6.7)
o is defined such that
6 N

(6.8) olp+1)+(1—-60)=0c+1, thatis T

From (5.7) and (6.7) we can deduce: if € is little enough, there exists a
positive constant C such that

6.9) [S U B d it < CES)H 1 C /S 0 /w w2a(z, t)dudt
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Now, choosing p and ¢ carefully, we will estimate the last term of (6.9).
The Choice of the function p.
Let us assume that ¢ is a concave and strictly increasing C? function

such that
(6.10) #(t) — 400 and ¢'(t) — 0 ast— +oo.

Lemma 6.2. If b satisfies (2.6), then there exists C' > 0 such that

B 1 p(t)
(6.11) /% o < O

Proof.- If b satisfies (2.6), then

R 1 R—p(t) 1 R 1
/ - dr = / ——dr +/ — dr
£ a(r,t)P B a(r, t)P R—p(t) G(r, )P

/R—p(t) 1 p /R 1 p
— _— + -
o arp” T e a(R—p0)p

5 1 R 1

p(t)

(6.13) p(t) = b1 (1))

We observe that p is decreasing, since b is increasing and ¢’ is decreasing.
From definition of p and (6.12) we have

3 =

(6.14) e(t) < Cp(t)7 .
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Also, we obtain

/a(a:,t)u?dx = / ofz, tyude + ofz, tude
w L<|z[<R—p(t) |z|>R—p(t)
< / a(z)uldr + / a(R — p(t))uidx
Q le|>R—p(t)

IN
[
&
—~
~
~—
-
S
—
)
—~
~
~—

)E(t)
(6.15) = —E'@t)+¢)E®).

From (6.9), using (6.15) , (6.14), p(t)% < p(S)% and the fact that E de-
creases, we have

T
/ BT/ (t)dt
< CB§)" 40 [ el (Bt
< 1+a+c/ S)5 (—E' (1)) dt—i—C/ v/ (1) E(S)dt

< CE(S)™7 +Cp(8)F{E(S) - B(T)} + CE(S) /S o039 (0)dt
T
(6.16)K CE(S) + Cp(S)7 E(S) + CE(S) / p(t)7 & (t)dt .
S
The choice of the function ¢.
Here, we will show how to define ¢ such that [, gb’ (t)dt is finite.

Let p’ > 1+ p and define

(6.17) w(t) =1 +/1t @dr, VEs 1.

Then, 1) is an strictly increasing, convex and C? function, which satisfies

1
Y(t) — +o00  and  P'(t) = D) — 400 as t — +00.
v’
Define
(6.18) o) =y~ (t), Vt>1.
Then ¢ is a strictly increasing, concave and C? function, satisfying

—0 as t— 4oo.

(6.19) ¢(t) — +oo  and qﬁ'(w(t)):wl(t)



About decay of solution of the wave equation with dissipation 67

Thus ¢ has all the properties that we use to get (5.7) and (6.16). Using
p(t) = b=1(¢'(t)) and making a change of variable ¢t = v(7), using (6.19)
and making another change of variable 7 = ¢(¢), and using bil(ﬁ) =

b_l(b(#)) =b"lo b(T—il) = 77 we obtain

+o00 1 +00 1
| ewrdwa = [ @@ v
1 1
+oo 1
- [ @ e

/

= lim - {M7%+1 — 1} and since — Lii<o
M—oo L 4] p
1
= = >0
b _
2
Estimation depending on ¢.
Since 1 o ¢ = I then 9'(¢(t))¢'(t) = 1, and then ¢'(t) = w/(;(t)) =
b(—L), from which we deduce
o(t)P

(6.20) p(t) = b7 (¢/(1) = b o b

/Tp(t)%gb’(t)dt - /T L

s oD
1 _r
- — gl
p
- D) o))
p
1 _r _r
— TS —o1) )
p
1

(6.21) {qS(S)l_%} since ¢ = ¢! > 0.

IN

21
p
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Using (6.20) and (6.21) in (6.16) we have

/T o+1 1/ 140 C c
B¢/ (tydt < CE(S)"™7 + E(S)—— + E(S)——
s 9(5) 7 o(5)7
(6.22) < CE(S)™ + E(S)———

$(S)»

Then apply Lemma 4.4 since (4.26) holds with ¢’ = 5/ —1> 0, and deduce
that exists a constant C' depending continuously on E(1), such that

C C
(6.23) E(t) < - . ovE>1.

st)Fn BT

q

Growth of ¢.
Estimate the growth of ¢ is equivalent to bound the function ¢! = 4.
Let Tp such that b(ﬁ) <1, Vr>T1.

If s < 7 and since b is increasing we have b(T—}],) < b(s%

. 1
), i.e. E. <

sP

~

1

(=)

On other hand, we have that: if p’ > 1, 1 + (7 — 1)z < 7'z holds for
z>1and 7 > 1. In fact, we only have to prove that 1 < (1 — 7 4 77)z. If
7 > 1 then ™ —r >0andso 1+ ™ —r > 1; then multiplying by z > 1
we have (1 — 7+ 77")z > 1. Using these remarks we obtain

T’ )

T 1 1 T 1
= 1 —ds <1 —/ ds <1 -1
o(7) +/1 Ty <y S 4 -5
p/

1 1

(6.24) ST.b(%)_B(%)'

TP

Then, letting ¢t = B(i) ( that is T—i, = B7!(1)) and using (6.24) we have
p/

P(1) < t, from which 7 < 7Lt) = ¢(t), that is

1 1
Thus, using (6.25) in (6.23) we obtain
(6.26) E(t) < Cp, < 1,7 = (Bl(l))g ;
o7 T ’f

_ N
where 0 = S -
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