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Abstract

If λ is a sequence K-space and
P

xj is a series in a topological
vector space X, the series is said to be λ-multiplier convergent if the
series

P∞
j=1 tjxj converges in X for every t = {tj} ∈ λ. We show that

if λ satisfies a gliding hump condition, called the signed strong gliding
hump condition, then the series

P∞
j=1 tjxj converge uniformly for t =

{tj} belonging to bounded subsets of λ. A similar uniform convergence
result is established for a multiplier convergent series version of the
Hahn-Schur Theorem.
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Let X be a Hausdorff topological vector space and
P

xj a (formal)
series in X. The series

P
xj is said to be bounded multiplier convergent

if the series
P∞

j=1 tjxj converges in X for every t = {tj} ∈ l∞ ([D]). If
X is either a locally convex space or a metric linear space and

P
xj is

bounded multiplier convergent, then the series
P∞

j=1 tjxj actually converge
uniformly for t = {tj} ∈ l∞, ktk∞ ≤ 1 ([Sw1], [Sw2]8.2.7 ). A seriesP

xj in X is subseries convergent if the subseries
P

xnj converges in X
for every subsequence {nj}. If σ ⊂ N, let Cσ denote the characteristic
function of σ and if x is any sequence, let Cσx denote the coordinatewise
product of Cσ and x. Thus, the series

P
xj is subseries convergent iffP∞

j=1Cσ(j)xj =
P

j∈σ xj converges for every σ ⊂ N. A similar uniform
convergence result holds for subseries convergent series. Namely, if

P
xj is

subseries convergent, then the series
P∞

j=1Cσ(j)xj converge uniformly for
σ ⊂ N ([Sw2]8.1.2). Another uniform convergence result holds for subseries
and bounded multiplier convergent series in the subseries and bounded
multiplier convergent versions of the Hahn-Schur Theorem ([Sw1],[Sw2]8.1
and 8.2). We consider conditions under which the same conclusions hold if
the multiplier space l∞ is replaced by more general sequence spaces.

Let λ be a vector space of scalar sequences which contains c00, the
space of all sequences which are eventually 0, and which is equipped with
a vector Hausdorff topology under which the coordinate functionals t =
{tj} → tj are continuous for every j ∈ N (i.e., λ is a K space ([B]7.2.2)).
Let Λ ⊂ λ. The series

P
xj in X is Λ − multiplier convergent if the

series
P∞

j=1 tjxj converges in X for every t = {tj} ∈ Λ ([FP],[Sw2]8.3);
thus, a series is l∞-multiplier convergent iff the series is bounded multiplier
convergent and a series is subseries convergent iff the series is m0 multiplier
convergent, where m0 = span{Cσ : σ ⊂ N} is the sequence space of all
sequences with finite range. It is natural to ask if a uniform convergence
result as above for subseries and bounded multiplier convergent series holds
for λ-multiplier convergent series ;i.e., if

P
xj is λ-multiplier convergent, do

the series
P∞

j=1 tjxj converge uniformly for t = {tj} belonging to certain
families of bounded subsets of λ? Example 5 shows that such a result does
not hold in general, but we show in Theorem 3 that such a result does
hold if certain subsets of the multiplier space λ satisfy a gliding hump
property called the signed strong gliding hump property. We also show
that a similar uniform convergence result holds for series in a version of
the Hahn-Schur Theorem for λ-multiplier convergent series when certain
subsets of the multiplier space λ satisfy the signed strong gliding hump
property.
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We begin by defining the gliding hump property which we will employ.
An interval in N is a set of the form [m,n] = {k ∈ N : m ≤ k ≤ n} where
m ≤ n; a sequence of intervals {Ik} is increasing if sup Ik < inf Ik+1. A sign
is a variable assuming the values {±1}. Let Λ ⊂ λ.The subset Λ has the it
signed strong gliding it hump property (signed-SGHP) if for every bounded
sequence {xk} ⊂ Λ and for every increasing sequence of intervals {Ik},
there exists a subsequence {nk} and a sequence of signs {sk} such that x =P∞

k=1 skCInk
xnk [coordinate sum] belongs to Λ. The subset Λ has the strong

gliding hump property (SGHP) if the signs above can all be chosen to equal
to1 ; the SGHP has been employed on numerous occasions ([N ],[Sw2],[SS]).
The idea of multiplying the ”humps” CIx by signs was introduced by Stuart
([St1],[St2]) and used to treat weak sequential completeness of β−duals.
For example, the space l∞ has the SGHP and the methods of [BSS] can
be used to construct other spaces with SGHP. Let M0 be the subset of m0

consisting of the sequences of 0’s and 1’s, M0 = {Cσ : σ ⊂ N}. Then the
subsetM0 has SGHP but the space m0 does not have SGHP. We now show
that the space of bounded series bs ([B]) has the signed-SGHP but fails
SGHP; Stuart showed that bs has the signed weak gliding hump property
but not the weak gliding hump property and we essentially just use his
proof ([St1],[St2]). Recall that bs is the space of all sequences t = {tj}
such that ktk = supn

¯̄̄Pn
j=1 tj

¯̄̄
< ∞ equipped with this norm ([B]1.2); an

equivalent norm to kk is given by ktk0 = sup{|Pk∈I tk| : I an interval} .
If x = {xj} and y = {yj} are sequences, we write x · y =

P∞
j=1 xjyj for the

formal dot product of x and y when the series converges.

Example 1. bs has signed-SGHP. Actually, bs has an even stronger
property than signed-SGHP; it is not necessary to pass to a subsequence
in the definition of signed-SGHP. Let {Ik} be an increasing sequence of
intervals and {tk} ⊂ bs be bounded. Put M = sup{

¯̄̄P
j∈I t

k
j

¯̄̄
: k ∈ N, I an

interval inN} <∞. Define signs inductively by setting s1 = signCI1 ·t1 and
sn+1 = −[sign

Pn
k=1 skCIk · tk][signCIn+1 · tn+1]. Put y =

P∞
k=1 skCIkt

k;

we show kyk ≤ 2M . We first show by induction that
¯̄̄Pmax In

j=1 yj
¯̄̄
≤ M

for every n. For n = 1,
¯̄̄Pmax I1

j=1 yj
¯̄̄
=
¯̄̄P

j∈I1 s1t
1
j

¯̄̄
≤ M. Suppose the

inequality holds for n. Then
¯̄̄Pmax In+1

j=1 yj
¯̄̄
=
¯̄̄Pmax In

j=1 yj +
P

j∈In+1 yj
¯̄̄
≤

M since
¯̄̄P

j∈In+1 yj
¯̄̄
=
¯̄̄P

j∈In+1 sn+1t
n+1
j

¯̄̄
≤ M and

¯̄̄Pmax In
j=1 yj

¯̄̄
≤ M

and both of these terms have opposite signs. Now for arbitrary n let

k = kn be the largest integer such that max Ik ≤ n. Then
¯̄̄Pn

j=1 yj
¯̄̄
=
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¯̄̄Pmax Ik
j=1 yj +

Pn
j=max Ik+1

yj
¯̄̄
≤
¯̄̄Pmax In

j=1 yj
¯̄̄
+
¯̄̄Pn

j=min Ik+1
sk+1t

k+1
j

¯̄̄
≤ 2M

so kyk ≤ 2M as desired.

Note that bs does not have SGHP [consider t = {1,−1, 1,−1, ...} and
Ik = {2k− 1}; then C∪Ikt = {1, 0, 1, 0, ...} /∈ bs and likewise the same holds
for any subsequence of {Ik}]. Additional spaces with the signed-SGHP can
be constructed employing the methods of [BSS].

We next consider the uniform convergence of multiplier convergent se-
ries when subsets of the space of multipliers has signed-SGHP. We first
establish a lemma.

Lemma 2. Let Λ ⊂ λ. Let
P

xj be Λ-multiplier convergent. If the
series

P∞
j=1 tjxj do not converge uniformly for t ∈ B ⊂ Λ, then there exist

a symmetric neighborhood of 0,V , tk ∈ B and an increasing sequence of
intervals {Ik} such that

P
j∈Ik t

k
jxj /∈ V .

Proof : If the series
P∞

j=1 tjxj do not converge uniformly for t ∈ B
, there exist a symmetric neighborhood of 0, U , such that for every k
there exist tk ∈ B, mk ≥ k such that

P∞
j=mk

tkjxj /∈ U . For k = 1,
let m1, t

1 ∈ B satisfy this condition so
P∞

j=m1
t1jxj /∈ U . Pick a symmetric

neighborhood of o, V , such that V +V ⊂ U . There exists n1 > m1 such thatP∞
j=n1+1 t

1
jxj ∈ V . Then

Pn1
j=m1

t1jxj =
P∞

j=m1
t1jxj −

P∞
j=n1+1 t

1
jxj /∈ V .

Put I1 = [m1,n1]. Now just continue the construction.

Theorem 3. Let Λ ⊂ λ have signed-SGHP and let
P

xj be Λ-multiplier
convergent. Then the series

P∞
j=1 tjxj converge uniformly for t belonging

to bounded subsets of Λ.

Proof: IfB ⊂ Λ is bounded andP∞
j=1 tjxj fails to converge uniformly for

t ∈ B, let the notation be as in Lemma 2. Let nk, sk be as in the definition
of signed-SGHP above and t =

P∞
j=1 sjCInj

tnj ∈ Λ. Then P tjxj does not

converge in X since
P

j∈Ink
tjxj = sk

P
j∈Ink

tnkj xj /∈ V ,i.e.,
P

tjxj doesn’t
satisfy the Cauchy condition.

Remark 4. If Λ = l∞, then Theorem 3 implies that any bounded mul-
tiplier convergent series is such that the series

P∞
j=1 tjxj converge uniformly

for ktk∞ ≤ 1. This statement improves the result for bounded multiplier
convergent series given in 8.2.2 of [Sw2], removing the locally convex and
sequential completeness assumptions. A (vector) version of Theorem 3 is
established in [SS] Lemma 22 under the assumption that the multiplier
space has SGHP. A result with the same conclusion as Theorem 3 is given
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in [WLC], Theorem 7, but the assumptions there are quite different, being
topological in nature, and difficult to compare.

Remark 5. If λ = m0 and Λ =M0,then a series is subseries convergent
iff the series is m0 or M0 multiplier convergent (spanM0 = m0). Then
Theorem 3 implies that any subseries convergent series

P
xj is such that

the series
P∞

j=1Cσ(j)xj converge uniformly for σ ⊂ N ([Sw2]8.1.2).

Thus, Theorem 3 gives a generalization of the known results for uniform
convergence of subseries and bounded multiplier convergent series.

Example 6. Without some type of assumption on the multiplier space
λ, the conclusion of Theorem 3 can fail even when the multiplier space
satisfies gliding hump conditions like the weak gliding hump property or the
zero gliding hump property ([Sw2]). Let ej be the sequence with a 1 in the
jth coordinate and 0 in the other coordinates. Then

P
ej is lp−multiplier

covergent in (lp, kkp) for any 1 ≤ p < ∞, but the series P∞
j=1 tje

j do not

converge uniformly for ktkp ≤ 1 [Take tk = ek,
P∞

j=1 t
k
j e

j = ek.].

We next consider a multiplier version of the Hahn-Schur Theorem. The
classical scalar version of the Hahn-Schur Theorem asserts that if the scalar
series

P
j xij is absolutely convergent for every i and limi

P
j∈σ xij exists for

every σ ⊂ N and if xj = limi xij , then
P

xj is absolutely convergent andP∞
j=1 |xij − xj |→ 0 or, equivalently, limi

P
j∈σ(xij − xj) = 0 uniformly for

σ ⊂ N ([Sw2]5.4). By employing the last statement of the conclusion of
the classical Hahn-Schur Theorem,versions of the Hahn-Schur Theorem for
vector-valued subseries and bounded multiplier convergent series have been
given in [Sw2]8.1,8.2 , and an abstract version of the theorem which includes
certain multiplier convergent series is given in [Sw2]9.3 . We now present a
version of the Hahn-Schur Theorem for multiplier convergent series when
the subset Λ of the multiplier space λ satisfies the signed-SGHP. We first
establish a special case of the theorem.

Lemma 7. Suppose that Λ ⊂ λ has signed-SGHP,
P

j xij is Λ-multiplier
convergent for every i and limi

P∞
j=1 tjxij = 0 for every t ∈ Λ. If B ⊂ Λ is

bounded, then limi
P∞

j=1 tjxij = 0 uniformly for t ∈ B.

Proof : It suffices to show that limi
P∞

j=1 t
i
jxij = 0 for any sequence

{ti} ⊂ B. Let U be a neighborhood of 0 in X and pick a symmetric neigh-
borhood, V, of 0 such that V +V +V ⊂ U . Set n1 = 1 and pickN1 such that
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P∞
j=N1 t

n1
j xn1j ∈ V . Since limi xij = 0 (c00 ⊂ λ) for every j and {tij : i ∈ N}

is bounded from the K space assumption on λ, limi t
i
jxij = 0 for every j

([Sw2]8.2.4) so there exist n2 > n1 such that
PN1−1

j=1 tijxij ∈ V for i ≥ n2.
Pick N2 > N1 such that

P∞
j=N2 t

n2xn2j ∈ V . Continuing this construction

produces increasing sequences {nk}, {Nk} such that
P∞

l=Nj
t
nj
l xnj l ∈ V

and
PNj−1

l=1 tilxil ∈ V for i ≥ nj . Set Ij = {l : Nj−1 ≤ l < Nj}. De-
fine the matrix M = [mij ] = [

P
l∈Ij t

nj
l xnil]. We show that M is a

signed K-matrix in the terminology of [St1] ,[St2] ,[Sw2]2.2.4 . First the
columns of M go to 0 since limi xil = 0 for every l. Given an increas-
ing sequence {pj}, by the signed-SGHP assumption there is a subsequence
{qj} of {pj} and signs {sj} such that t = {tj} =

P∞
j=1 sjCIqj

tqj ∈ Λ.
Then

P∞
j=1 sjmiqj =

P∞
j=1 sj

P
l∈Iqj t

qj
l xnil =

P∞
j=1 tjxnij → 0 by hypoth-

esis. Therefore, M is a signed K-matrix and by the signed version of the
Antosik-Mikusinski Matrix Theorem the diagonal of M goes to 0 ([St1]
,[St2],[Sw2]2.2.4 ). Thus, there exists N such that mii ∈ V for i ≥ N . If

i ≥ N , then
P∞

l=1 t
ni
l xnil =

PNi−1−1
l=1 tnil xnil+

P
l∈Ii t

ni
l xnil+

P∞
l=Ni

tnil xnil ∈
V + V + V ⊂ U so limi

P∞
l=1 t

ni
l xnil = 0. Since the same argument can be

applied to any subsequence, it follows that limi
P∞

j=1 t
i
jxij = 0

Theorem 8. Suppose that Λ ⊂ λ has signed-SGHP,
P

j xij is Λ-
multiplier convergent for every i and limi

P∞
j=1 tjxij exists for every t ∈ Λ.

Let xj = limi xij for every j. If B ⊂ Λ is bounded, then (i)
P

xj is
Λ−multiplier convergent, (ii) limi

P∞
j=1 tjxij =

P∞
j=1 tjxj uniformly for

t ∈ B, (iii) the series
P∞

j=1 tjxij converge uniformly for t ∈ B.

Proof : Let t ∈ Λ. Since the space Λ has the signed weak gliding hump
property, it follows from Stuart’s weak sequential completeness result thatP∞

j=1 tjxj converges and limi
P∞

j=1 tjxij =
P∞

j=1 tjxj .([Sw2] 12.4.1;see also
[St1] 3.5); Stuart’s result is for the case when Λ is a vector space with
signed-WGHP, but his proof is valid for a subset with signed-WGHP.

Since limi
P∞

j=1 tj(xij − xj) = 0 for every t ∈ Λ, Lemma 7 applies and
gives (ii).

Suppose that (iii) fails to hold. Then there exists a closed symmetric
neighborhood of 0, U , in X such that for every i there exist ki > i, a finite
interval Ii with min Ii > i, ti ∈ B such that

P
k∈Ii t

i
kxkik /∈ U . Put i1 = 1.

By the above, there exist k1 > 1, I1 with min I1 > i1, t
1 ∈ B such thatP

k∈I1 t
1
kxk1k /∈ U . By Theorem 3 there exists j1 such that

P∞
k=j tkxik ∈ U

for every t ∈ B, 1 ≤ i ≤ k1, j ≥ j1 . Set i2 = max{I1 + 1, j1}. Again,
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by the above there exist k2 > i2, I2 with min I2 > i2, t
2 ∈ B such thatP

k∈I2 t
2
kxk2k /∈ U . Note that k2 > k1 by the definition of i2.

Continuing this construction produces an increasing sequence {ki}, an
increasing sequence of intervals {Ii} and ti ∈ B such that

(1)
P

k∈Ii t
i
kxkik /∈ U .

Define a matrix M = [mij ] = [
P

k∈Ij t
i
kxkik]. We claim that M is a

signed K-matrix. First, the columns of M converge by hypothesis. Next,
given any increasing sequence {pj} there is a subsequence {qj} of {pj} and
signs {sj} such that t = {tj} =

P∞
j=1 sjCIqj

tqj ∈ Λ. Then the sequenceP∞
j=1 sjmiqj =

P∞
j=1 sj

P
l∈Iqj t

qj
l xkil =

P∞
j=1 tjxkij converges by hypothe-

sis. Hence,M is a signed K-matrix and the diagonal ofM converges to 0 by
the signed version of the Antosik-Mikusinski Matrix Theorem ([Sw2]2.2.4).
But, this contadicts (1).

A subseries version (M0 = Λ ⊂ m0 = λ) of the Hahn-Schur Theorem
is given in [Sw2]8.1 and a bounded multiplier version of the Hahn-Schur
Theorem is given in [Sw2]8.2. Both versions follow from Theorem 3. A
(vector) version of Theorem 7 for spaces with SGHP is given in Theorem
25 and Corollary 27 of [SS].

Without some assumption on the multiplier space λ, the conclusion of
Theorem 8 can fail.

Example 9. Let xij = ej if 1 ≤ j ≤ i and xij = 0 if i < j. ThenP
j xij is l

p-multiplier convergent in lp for 1 ≤ p <∞ for every i. If t ∈ lp,P∞
j=1 tjxij →

P∞
j=1 tje

j in lp. However, the convergence is not uniform for

ktkp ≤ 1 [Take tk = ek , so
P∞

j=1 t
k
jxij =

Pi
j=1 t

k
j e

j = ek if i ≥ k.].

There is an abstract version of the Hahn-Schur Theorem which covers
certain multiplier convergent series given in [Sw2]9.3; however, the vector
version given there uses essentially a strong gliding hump type hypothesis.
A (vector) version of Theorem 7 for spaces with SGHP is given in [SS]
Theorem 25. Useful vector forms of the signed-SGHP seem to be difficult
to formulate. There is a version of Theorem 7 given in [WCC],Theorem 7,
and in [AP], Theorem 3.1, but the assumptions there are of a topological
nature unlike the algebraic signed-SGHP.
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