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Abstract

We give in this paper a convergence result concerning parallel
asynchronous algorithm with bounded delays to solve a nonlinear fixed
point problems. This result is applied to calculate the solution of a
strongly monotone operator. Special cases of these operators are used
to solve some problems related to convex analysis like minimization of
functionals, calculus of saddle point and variational inequality prob-
lem.
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1. Introduction

In this paper, we give a convergence result for parallel asynchronous itera-
tions with bounded delays. The convergence result of these algorithms was
shown by many authors. Chazan and Miranker in [5], treated the chaotic
iterations using a linear and contractive mapping. In 1975, Miellou [8] ex-
tended the works of Chazan and Miranker to the nonlinear case, using a
contraction mapping and proposes a model with bounded delays. In 1978,
Baudet in [3] generalizes the chaotic iterations of Chazan-Miranker and
Miellou and proposes a model where the delays considered can be infinite.
In a different context, El Tarazi [6] also established this result by a contrac-
tion technique according to a suitable scalar norm. Recently, Bahi [2] gave
a convergence result concerning parallel asynchronous algorithm, to solve
a linear fixed point problems, using nonexpansive linear mappings with re-
spect to a weighted maximum norm. Our goal is to establish a convergence
result concerning parallel asynchronous algorithm to solve a nonlinear fixed
point problems, using a nonlinear and nonexpansive mapping. We regard
this study as a generalization to the asynchronous case, of all results stated
by Benahmed and Addou in [1] and so, we repeat the proofs given in [1] by
including the modifications which requires the asynchronous case. Section
2 is devoted to a brief description of asynchronous parallel algorithm. In
section 3 we prove the main result concerning the convergence of the gen-
eral algorithm to a fixed point of a nonlinear operator from R” to R". This
result is applied in section 4 to the operator F' = (I +¢T)~! (¢ > 0) which
is called the proximal mapping associated with the maximal monotone op-
erator ¢I' (see Rockafellar [13]) to calculate a solution of the operator T
Special cases of these operators are also studied to solve optimization prob-
lems and variational inequality problem.

2. Preliminaries

6]
R"™ is considered as the product space [] R™, where o € N — {0} and
i=1

(0%
n = an All vectors x € R"™ considered in this study are splitted in
i=1
the form z = (z1,...,x4) where x; € R™. Let R™ be equipped with the
1

inner product (.,.);

. and the associated norm |..||; = (.,.)2 - R" will be
(0%

equipped with the inner product (z,y) = Z (xi,yi); where z,y € R" and
i=1
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1

(0%
the associated norm ||z| = <a:,w>% = (Z ||a:z||z2) *. It will be equipped
i=1

also with the uniform norm ||z||, = max ||z;||;

Definition 2.1. Define J = {.J (p)},cN a sequence of non empty sub sets
of {1,...,a} and S = {(s1 () , .., Sa (P)) } e @ sequence of N* and consider
an operator F' = (Fy, ..., F,) : R" — R™. The asynchronous algorithm
associated with F' is defined by,

20 = (29,...,20) € R"

(2.1) : Fi@®, L ae®y Gf e Jp)
1=1,...,«
p=0,1,..

It will be denoted by (F, z°, J,.S). This algorithm describes the behavior
of iterative process executed asynchronously on a parallel computer with
o processors. At each iteration p + 1, the i*" processor computes z? + by
using (2.1).

J(p) is the subset of the indexes of the components updated at the p*
step.
p—5;(p) is the delay due to the it" processor when it computes the i*" block
at the p'" iteration.

If we take s;(p) = p Vi € {1,...,a}, then (2.1) describes synchronous
algorithm (without delay). During each iteration, every processor executes
a number of computations that depend on the results of the computations
of other processors in the previous iteration. Within an iteration, each pro-
cessor does not interact with other processors, all interactions takes place
at the end of iterations.

If we take
si(p) =p Vp e N,Vi € {1,...,a}
J(p)={1,..,a} VpeN
then (2.1) describes the algorithm of Jacobi.

If we take
si(p)=p Vp e N,Vi e {1,...,a}
J(p)=p+1(moda) VpeN
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then (2.1) describes the algorithm of Gauss-Seidel.

For more details about asynchronous algorithms see [5], [8], [3], [6] and
[4].

Definition 2.2. An operator F' from R™ to R" is said to be nonexpansive
with respect to the norm ||..|| if, |F (z) — F (2')|| < ||z — 2'|| for all z,2" €
R™.

3. The main result

We establish in this section the convergence of the general parallel asyn-
chronous algorithm with bounded delays to a fixed point of a nonlinear
operator F': R — R".

Theorem 3.1. Suppose
(ho) 3 a subsequence {py},cN such that, ¥i € {1,...,a}, i € J(px) and
i (Px) = Dk

(h1) 3s € N, such that, Vi € {1,...,a}, Vp e N, p—s <s;(p) <p

(h2) Jue R™, F(u) =u

(hg) Va2’ € R, |IF (@) — F @), < llo — o/l

(hg) Vo, 2’ € R, |F (z) — F (2)|* < (F (z) = F (&) ,2 — &)

Then, for all z° € R™ the sequence (2.1) is convergent in R™ to a fixed
point x* of F.

Proof. We follow the steps given in Addou-Benahmed [1] Theorem 4, with
important modifications in the step (7). The steps (4i) and (i) are similar.
We proceed then in three steps:

i) First, we show that the sequence {||zP — u is convergent. For
peN

1

p € N, we consider the (s + 1) iterates 2P, zP~", ..., P~ in the process

and put
Pt — uH = max Hl‘l —u
oo p—s<I<p

ZP =max
0<I<s

HOO

Then Vi € {1, ...,a} we have, either i ¢ J (p) so,

|

p+1l
%

X

wif| . = 2] — uil|;

27 = ull

VANRIVAN

max
0<i<s

zp

Pl — uH
oo
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orie J(p)so,

e ], = [ (0 59) - 0]
< F(xil(p),...,xia(p)) — F (u) .
< |27 2d ) —u] by (he))
o
= g;j,j(l’) - ujHj (for some j,1 < j < )
< |25 —y
o0
< jmax ol —ul | (wep—s<s)<p)
R
then
Vie{l,.. a}, a:f“ — ;|| < 2P
that is
ot =, <2
WS
therefore
2Pt = max )xpﬂ*l — uH
0<I<s oo
= Maw{ max H:L‘p*l—uH , H:BPH—UH }
0<i<s—1 00 50
< 2P

which proves that the sequence {zP}  is decreasing (positive) then
it’s convergent. It’s limit is

lim 27 = lim max |aP~! —uH
p—00 p—00 0<Ii<s 00
= im [2790) —u| (0 <j(p) <)
p*)OO o0
— L D _
Jm 2 —ulo

which proves that the sequence {||zP — u| oo}pEN is convergent and
so, the sequence {z"} N is bounded.
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(ii) As the sequence {xP*}, N is bounded ({py},cn is defined by (ho)),

it contains a subsequence noted also {zP*}, n which is convergent
in R™ to an z*. We show that x* is a fixed point of F. For this,
we consider the sequence {y? = 2P — F(2”)},eN and prove that klim

— 00
yPk = 0.

o’ = )
o ()=l 2 ) -t

o4 = o ol = 7 (o) =l - 2P () - %)

however

(F(zP*) —u,yPk) = (F(aP*) — F(u), 2P+ — F(zP*))
= (F(aP*) — F(u), [2P% — F(u)] — [F(2P%) — F(u)])
= (F(aP*) — F(u),a?* — u) — || F(aP*) — F(u)]||?
> 0 (by (ha))

S0,

lyPel* < fla? = ul® = || F (@) — uf
2
= |la? —ul]” = [l27F = ul|” (by (ho))

However, by (i) the sequence {||zF — ul|} N is convergent, then the
sequence {||z? — ul| .}, o is also convergent with limit

lim |[2P —u| = lm |zPk — ul
p—0 k—o0
= lim [jaPrt! — o
k—o0
= [la" —u
and so
lim [jy?*|| =0
k—o0
which implies that
lim y?* =0

k—o0
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and so
¥ —F(z*)=0

that is z* is a fixed point of F.

(iii) We prove as in (i) that the sequence {||zF — z*(| .}y is convergent,
0
=0

(e o]

lim ||zP — ™|
p—00

prk —r*

= lim
koo

Which proves that 2P — z* with respect to the uniform norm ||..|| .
|

Remark 3.2. The hypothesis (hg) means that the processors are synchro-
nized and all the components are infinitely updated at the same iteration.
This subsequence can be chosen by the programmer (Bahi [2]).

Remark 3.3. The hypothesis (h1) means that the delays dues to the com-
munications between processors and to the calculus are bounded, which
means that after (s + 1) iterations, all the processors are supposed to have
update their own data (Bahi [2]).

Remark 3.4. The hypothesis (hy) is verified by a large class of operators.
For example, the resolvent F = (I +\T)~! (where A > 0) associated with
a maximal monotone operator T' (see Lemma 4.3 below). Again, the metric
projection p. of a Hilbert space H onto a nonempty closed convex set C;
that is, for x € H, p.(x) is the unique element of C which satisfies

_ = inf —
lz = pe (@) = nf, iz —yll

see for proof, Phelps [10], Examples 1.2.(f). In the linear case, take for
example a linear operator which is symmetric, positive semi-definite (or
simply positive) and nonexpansive, as shown in the following proposition:

Proposition 3.5. Let A be a linear symmetric positive and nonexpansive
operator in R"™. Then A verify the hypothesis (hy).
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Proof. Recall that an operator A is said to be symmetric if for all
z,y €R", (Az,y) = (z, Ay).
(i) The operator B = I — A is symmetric. Indeed, Vz,y € R"
(Bz,y) = (z—Az,y)=(z,y) - (Az,y)

(z,y) — (z, Ay) = (z,y — Ay)
= <(E, By>

(ii) The operator B est positive. Indeed, Yz € R"

(Bz,z) = (x — Aw,x) = 2| — (Az,2) > 0
since  (Aw,a) < || Az] |l < [le]®

(iii) A and B are commuting operators. Indeed,

AB=A(I-A)=A—- A2 =(1-A)A=BA
(iv) AB is a symmetric operator. Indeed, Vx,y € R"

(ABz,y) = (Bzx, Ay) = (z, BAy) = (z, ABy)

(v) AB is a positive operator (see proof in [7], Theorem 10.7).

(vi) The operator A verify the hypothesis (h4). Indeed, Vz € R"

(Az,z) — ||Az||® = (Az, 2 — Az) = (Az, Bx) = (ABz,z) > 0

4. Applications

4.1. Solutions of maximal strongly monotone operators

In this section, we apply the parallel asynchronous algorithm with bounded
delays to the proximal mapping F' = (I + ¢T')~! (¢ > 0) associated with
the maximal monotone operator ¢I'. We say that a multifunction 7" from
D(T) C R"™ — R" is monotone if

Vo, o' € D(T), (x —a',y—19) >0, Vy € Tz, Vy € T
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It is said to be maximal monotone if, in addition, the graph
G(T)=A{(z,y):x€ D(T) and y € Tz}

is not properly contained in the graph of any other monotone operator
T : D(T) CR™ — R". It is said to be strongly monotone with modulus a
(a > 0) or a-strongly monotone if

Ve,o' € D(T), (x— 2",y —y) > allz — w'HZ, Vy € Tz, Vy € Tx'.

Let T be a multivalued maximal monotone operator defined from R"
to R™. A fundamental problem is to determine an z* in R" satisfying
0 € Tz* which will be called a solution of the operator T'. The follow-
ing Theorem gives a general result concerning the solution of a maximal
strongly monotone operator.

Theorem 4.1. Let T' be a multivalued maximal a-strongly monotone op-
erator in R" (a > 0). Then

1. T has a unique solution x*.

2. Any parallel asynchronous algorithm with bounded delays associated
with the single-valued mapping F = (I + c¢T')~! where ¢ > 3@
converges in R"™ to the solution x* of the problem 0 € Tx.

Proof. We give the proof in the form of Lemmas. The two Lemmas 4.2
and 4.3 were shown in [1] by Addou and Benahmed.

Lemma 4.2. (Addou-Benahmed [1], Theorem 4) Let T' be a maximal
monotone operator in R" and F = (I +¢T)~", (¢>0). Then the solu-
tions of T are exactly the fixed points of F' in R".

Proof of Lemma 4.2.

0eTr <= ze(l+cD)x
— z={I+clN 'z
= x=Fz
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Lemma 4.3. (Addou-Benahmed [1], Theorem 4) Let T' be a maximal
monotone operator and F' = (I + ¢T')~! (¢ > 0). Then F satisfy the
hypothesis (hy).

Proof of Lemma 4.3. Consider z, 2’ in R"™ and show that
|F (z) = F () || < (F(2) - F (/) & — ')
Put y = F (x) and ¢y = F (2') then,

xecy+cly
ey + Ty

ie.

zecy+cly
ey + Ty

As ¢ > 0, the operator ¢TI is monotone and so,
(=y)— (" ~y),y—y) >0

therefore
(@—a',y—y)—lly—o/|* >0

which implies

|F (z) — F ()| < (F(z) — F (2') 2 — ')

We complete the proof of Theorem by the Lemma,
Lemma 4.4. Let T be a maximal a-strongly monotone operator in R"
(a>0)and F = (I +¢T)"" (¢ >0). Then
(a) F has a unique fixed point z*

(b) For ¢ > 3@, the mapping F' is nonexpansive with respect to
the norm ||..[|, in R"

Proof of Lemma 4.4.
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(a) Consider T" =T —al, 8 = ljac and F' = (I + BcT")~!. Take
z e R",

zey+cly
x€(l+ac)y+c(T—al)y
Bz € (1 + ac)y + T’y
Bx € (I + BTy

y = F'(Bz)

ie., Yz € R", F(z) = F'(Bx).

y = F(x)

11717

As T is a-strongly monotone (maximal), the operator 7" is max-
imal monotone and then the map F’ = (I + 3c¢T")~! is nonex-
pansive in R", so Vz, 2’ € R"

|F (z) = F (&) || = | F' (Bz) — F' (B2') | < B ||z — /|

As B = 5 +1 — < 1, the application F' is contractive in R" and

then has a unique fixed point z* (Banach’s fixed point Theorem)
which will be the solution of the operator 7' by Lemma 4.2.

(b) The Euclidean norm and the uniform norm are equivalents in
R™ by the relation:

2l < llzll < Va2l » ¥z eR”
Then, Vz,2’ € R"
|F () = F ()| < B e — ||

implies
|1F (z) = F ()]l < BVellz — 2|l
= L2 o — /||
It is sufficient to take ¢ such that
Vo <1
1+4+ac —
i.e.
-1
(4.1) 0> Y

So, the theorem is entirely shown.
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4.2. Minimization of functional

Let’s begin by this proposition that provides a characterization of strongly
convex functions. Recall that a function f : R" — RU{+o00} is said to
be strongly convexe with modulus a (a > 0) or a-strongly convex if for all
z,2’ € R" and t €]0, 1] one has
1
Jltw+ (1= 02)) <tf(@) + (1= )f () - satd — 1) o - |

The subdifferential of a proper (i.e not identically +o00) convex function
f on R"™ is the (generally multivalued) mapping 0f : R™ — R™ defined by

Of(x) ={y € R" f(2') = f(z) + (y,2’ — x), V2’ € R"}

which is a maximal monotone operator if in addition f is a lower semicon-
tinuous function (lsc).

Proposition 4.5 (Rockafellar [13, Proposition 6] Let f : R" — RU{+4o00}
be convex proper and lower semicontinuous. Then the following conditions
are equivalent:

(a) f is a-strongly convex
(b) Of is a-strongly monotone
(c) whenever y € 9f(x) one has for all 2/ € R™:

Py 2 f@)+ e’ ) + salle |

Corollary 4.6. Let f : R" — R U {400} be a lower semicontinuous
a-strongly convex function which is proper. Then

(1) f has a unique minimizer x*

(2) Any asynchronous parallel algorithm with bounded delays asso-
ciated with the single-valued mapping F' = (I + cdf)~! where

-1 e . .
c> ‘/E; converges to the minimizer x* of f in R™.

Proof. Remark that
0€df(z) < f(a')> f(z) V' e R"

= f(@)=min /()

S0, the solutions of the operator df are exactly the minimizer of f.

The subdifferential df is maximal and a-strongly monotone (Proposition
4.5). We apply then Theorem 4.1 to the operator Of. [ ]
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4.3. Saddle point

In this paragraph, we apply Theorem 4.1 to calculate a saddle point of
functional L : R"x R™ — [—o00,400]. Recall that a saddle point of L is
an element (z*,y*) of R"x R satisfying

L(z*,y) < L(z*,y*) < L(z,y"), V(z,y) € R" x R™
which is equivalent to

L(z*,y*)=inf L(x,y*)=sup L(z*y)
zeR”" yeRm
Suppose that L(x,y) is proper and convex lower semicontinuous in
z € R", concave upper semicontinuous in y € R™, then L is a proper
closed saddle function in the terminology of Rockafellar [10]. Let the sub-
differential of L at (z,y) € R"x R™, 0L(z,y), be defined as the set of
vectors (z,t) € R"x R™ satisfying

V(a',y') € R" xR™  L(z,y') — (¥ —y,t) < L(z,y) < L(2,y) — (2’ — z,2)
then the multifunction 77, defined in R"™ x R™ by

Tr(z,y) = {(2,t) e R" x R™: (2,—t) € OL(x,y)}

is a maximal monotone operator; see Rockafellar [10], [11]. In this case the
global saddle points of L (with respect to minimizing in z and maximizing
in y) are the elements (x,y) solutions of the problem (0,0) € T7(z,y). That
is
(0,0) € T, (z*,y") <= (2*,y") = arg min max L (z,y)
zeR” yeR™

Definition 4.7. The functional L from R"x R™ to [—o0, 4+00] is said to
be strongly convex-concave with modulus a (a > 0) or a-strongly convex-
concave if L(z,y) is a-strongly convex in x and a-strongly concave in y.

Lemma 4.8. If the functional L is a-strongly convex-concave, then the
multifunction 77, is an a-strongly monotone operator.

Proof. Define the inner product and the norm in R"x R™ as follows: For
(z,9), («',y) e R"x R™:

{ <($7y) ) (x,7y/)>R"><Rm = <x7$/>Rn + <y’y/>Rn
2 2
1@ W)l g = V2R + IR
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we write simply as

{ ((@,9), (@ y) = (@,2") + (,9/)
Iz, 9)ll =/ llll* + Ny )1®

Consider (z,y), (',y") in R"x R™, (2,t) € Tr(x,y) and
(2/,t") € Tr(«,y') and show that

((z,9) = (@, 9), (z,0) = (/1) = al|(x,9) = (2¥)|

The function L(z,y) is a-strongly convex in z. Proposition 4.5 implies
that the operator 0, L is a-strongly monotone in z. As z € 9, L(z,y) and
2 € 9, L(x',y") we obtain,

(z—Z2z—2a)>alx —a:/||2

In the same way, —t € 0,L(z,y), —t' € 0,L(z',y) and 9y(—L) is a-
strongly monotone in y (use proposition 4.5 with f(y) = —L(x,y)) we
obtain,

(=) = (=t),y— o) < —ally —o/|
thus is
(t—ty—y) > ally—y|

therefore

(z—2z—ay+{t—t,y—1) 2a(||a:—m'||2+”y—y/}|2)
ie.

2
<(Z,t) - (Zl7t,)7 (x7y) - (.’L", yl)> >a H({IZ, y) - (‘rlv y,)H
which proves that 77, is a-strongly monotone in R”x R™. [
If L is a a-strongly convex-concave function and proper closed then 77, is

maximal (see Rockafellar [11]) a-strongly monotone (Lemma 4.8). We can
then apply Theorem 4.1 to the operator 17, so,
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Corollary 4.9. Let L be a proper closed a-strongly convex-concave func-
tion from R™x R™ into [—o0, +00]. Then

1. L has a unique saddle point (z*,y*).

2. Any parallel asynchronous algorithm with bounded delays associated
with the single-valued mapping F = (I + ¢T)~! where ¢ > @
from R"x R™ into R"x R™ converges to the saddle point (z*,y*)
of L.

4.4. Variational inequality

Let C be a nonempty closed convex set in R™ and A a multivalued maximal
monotone operator in R™ such that D(A) = C. The variational inequality
problem in its general form consists of finding x* € C' satisfying

(4.2) Jy* e Az*, (y*,x—2") >0, Vo e C.

For z € R", let N.(x) be the normal cone to C' at  defined by
Ne(z)={yeR": (yx —2) >0, V2 C}.

The multifunction 7" defined in R"™ by,
Ax+ N.(x) ifxeC
(43) T“”:{w ) ifegcC

is a maximal monotone operator (Rockafellar [12]).

Lemma 4.10 If A is a-strongly monotone then T is an a-strongly monotone
operator.

Proof. Consider z,2' € D(T) =C,y € Tz and ¢ € T2’
then

Yy =y1+y2, 11 €Az, y2 € Ne(x)
v =yl +vh, v € A, yh € N.(2))

however
Y2 € NC(x) = <y2,:£—z) > 07 VzeC
yy € Ne(2') = (yh, 2’ —2) >0, Vze€ C
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therefore
(y—yx—a) = (n—vyz—2)+(y2 — v, v —2)

= (n—vr—2)+ (y2,x —2') + (vh — vy, 2" —x)

>alja—a|” 20 20

> allx —a:'H2

Lemma 4.11 The solutions of the operator 1" are exactly the solutions of
the variational inequality problem (4.2).

Proof.

0eTz* 0 € Az* + N.(z*)

Jy* € Az* : 0 € y* + Ne(x*)

Jy* € Az* . —y* € N(z*)

Jy* € Ax* : (—y*,x* —2) >0Vze O
Jy* e Az* : (y*,z—2*) >0VzeC
x* is solution of (4.2)

1eeeey

By applying the Lemma 4.10, Lemma 4.11 and Theorem 4.1, we can
write

Corollary 4.12. Let C' be a nonempty closed convex set in R™ and
A a multivalued maximal a-strongly monotone operator in R™ such that
D(A) = C. Then

1. The variational inequality problem (4.2) has a unique solution z*.

2. Any parallel asynchronous algorithm with bounded delays associated
with the single-valued mapping F' = (I 4 ¢T')~! where T defined by

(4.3) and ¢ > # converges to the solution z* of the problem (4.2).

Acknowledgments: The author would like to thank the anonymous ref-
erees for their careful reading and useful remarks.
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