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Abstract

We consider the singular logarithmic potential U = ln
p
x2/b2 + y2,

a potential which plays an important role in the modelling of triaxial
systems, such as elliptical galaxies or bars in the centres of galaxy
discs. Using properties of the central field in the axis-symmetric case
we obtain periodic solutions which are symmetric with respect to the
origin for weak anisotropies. Also we generalize our result in order to
include more general perturbations of the logarithmic potential.

Mathematics Subject Classification : 34C25, 34C14.

Key words : Periodic solutions, logarithmic potential, symmetry.

rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172007000200003

http://dx.doi.org/10.4067/S0716-09172007000200003


190 Claudio Vidal

1. Introduction

The study of the orbital structure of the logarithmic potential was initially
motivated by the need to construct self-consistent models of galaxies (see
[13] or [12] and references therein). This potential (in the plane) is given

by U = ln
q

x2

b2 + y2. If b = 1 it means that the galaxy is axis-symmetric.
The main motivations of our work arose first by the following affirmation

made by the authors of [12]: “the analytical description in general non-
axis symmetric case remains still open, several problems requires further
investigation”, and second because this problem plays an important role in
the modelling of elliptical galaxies or bars in the centres of galaxy discs.
In order to give new information about the dynamic of this problem, this
paper is devoted to obtain periodic solutions in the case of weak anisotropy.

The non-axis symmetric logarithmic problem is a one parameter Hamil-
tonian system with two degrees of freedom whose anisotropic singular po-
tential is given by

U = U(x, y; b) = ln

s
x2

b2
+ y2(1.1)

so that the equation of motion can be expressed as

ẍ = − x
x2+b2y2 ,

ÿ = − b2y
x2+b2y2

.
(1.2)

Then it determines a conservative system with Hamiltonian given by

H = H(x, x, px, py) =
1

2
(p2x + p2y) + ln

s
x2

b2
+ y2,(1.3)

where q = (x, y) ∈ IR2 \ {(0, 0)} (position) are the generalized coordinates
and p = (px, py) ∈ IR2 are the momenta (velocity). The Hamiltonian
system associated to (1.3) is given by

ẋ = px, ṗx = −∂U
∂x

ẏ = py, ṗy = −∂U
∂y .

(1.4)

Now consider weak anisotropies, i.e., choose the parameter b close to
1. Introducing the notation � = b − 1 with � << 1 we can expand the
Hamiltonian (1.3) in powers of � and obtain
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H = H(x, y, px, py) =
1
2(p

2
x + p2y) +

1
2 ln(x

2 + y2)− x2

x2+y2 �+ x2y2

(x2+y2)2 �2 + · · ·

≡ H0 + �h(x, y),
(1.5)

where

H0 = H0(x, y) =
1

2
(p2x + p2y) +

1

2
ln(x2 + y2)(1.6)

is the Hamiltonian associated to the axis-symmetric case (b = 1) and

h(x, y) =

(
H(x,y,px,py)−H0

� , if � 6= 0,
0, if � = 0,

(1.7)

which is analytic in a neighborhood of � = 0 for x2 + y2 > 0 and it is
invariant under reflections on the x-axis and y-axis. We will call the system
associated to H0, which is given by

ẍ = − x
x2+y2 ,

ÿ = − y
x2+y2 ,

(1.8)

as the unperturbed system associated to (2).

In this paper we study the problem of existence of periodic solutions of
the Hamiltonian system associated toH defined in (3) for weak anisotropies,
i.e., � << 1. More specifically, using properties of the central field in the
axis-symmetric case (i.e., b = 1) and perturbation theory we obtain peri-
odic solution which are symmetric with respect to the origin, also for weak
anisotropies (this is achieved in Theorem 1). Some references concerning
the work on the anisotropic Kepler problem and Manev problem are [9],
[14] and [11], [15] respectively.

The paper is organized as follows. In section 2 we study the symmetries
of the singular logarithmic potential. In section 3, we prove Theorem 1.
The key of the proof is to analyze properties of the solutions of the central
field generated by the logarithmic potential which are sufficiently close to
the circular orbit. To conclude the proof of the theorem we need to use the
result which affirms that the solutions of the differential equations depend
uniformly and analytically on all the data of the problem, and also the
symmetries of the problem under reflections with respect to the x and y axis.
This kind of argument was first used in [2] or [3], when the perturbation
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in the logarithmic case is only invariant under reflections with respect to
the x-axis. In our work the periodic solutions obtained are more restrictive
because they present two symmetries, namely, reflection with respect the
x and y axes. On the other hand, the author in [15] proved the existence
of periodic solutions with fixed period using an interesting adaptation of
the Poincaré continuation method. Also, we generalize our result in order
to include more general perturbations of the logarithmic potential. We
emphasize that the periodic solutions obtained (by different methods) in
[15] and Theorem 1 for each |�| < �0 fixed, are not the same, because they
are obtained by different initial conditions.

2. Symmetries of the logarithmic potential

To find periodic solution orbits in the singular logarithmic potential it is
important to know the symmetries of the system (1.2). Let

X = X(x, y, px, py) =

µ
px, py,−

x

x2 + b2y2
,− y

x2 + b2y2

¶
,(2.1)

be the vector field associated to the Hamiltonian system (1.4). In order to
make clear our presentation, we will remember some important definitions
and preliminary results adapted to our problem.

Definition 1. Let Ψ : IR4 → IR4 be a linear application. It is said that
the vector field X in (2.1) is Ψ-invariant (or Ψ is a symmetry for X) if
X ◦Ψ = Ψ ◦X.

Lemma 1. Assume that the system (1.4) admit a Ψ-symmetry (as in
Definition 1). If ϕ(t) = ϕ(t,q,p) is a solution of (1.4) then ψ(t) = Ψ ◦ϕ(t)
is also a solution of (1.4).

Proof: Derivating with respect to t and since Ψ is linear, we have that

dψ(t)

dt
= Ψ

dϕ(t)

dt
= Ψ ◦X(ϕ(t)) = X ◦Ψ(ϕ(t)) = X(ψ(t)).

Since the equations of motion (1.2) are invariant under reflections with
respect to the x and y axes, we have the following result
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Proposition 1. The following linear applications:

S1 : (x, y, px, py) −→ (x,−y, px,−py)
S2 : (x, y, px, py) −→ (−x, y,−px, py)
S3 : (x, y, px, py) −→ (−x,−y,−px,−py)

(2.2)

are Si-invariant (i = 1, 2, 3) for the vector field (1.4).

Another important kind of discrete symmetries are the called reversible,
which we define next.

Definition 2. It is said that the system (1.4) is reversible (or Φ-reversible)
if there is a linear invertible transformation Φ : IR4 → IR4 such thatX◦Ψ =
−Ψ ◦X.

In this case we have a direct and important consequence

Lemma 2. Assume that the system (1.4) admits a Φ-reversible symmetry
(as in Definition 2). If ϕ(t) = ϕ(t,q,p)) is a solution of (1.4), then φ(t) =
Φ ◦ ϕ(−t) is also a solution of (1.4).

Proof: It is a direct consequence from the above definition.

Since our system (1.2) is a mechanical system, we can prove easily the
following proposition.

Proposition 2. The following linear applications:

S0 : (x, y, px, py) −→ (x, y,−px,−py)
S4 : (x, y, px, py) −→ (−x, y, px,−py)
S5 : (x, y, px, py) −→ (x,−y,−px, py)
S6 : (x, y, px, py) −→ (−x,−y, px, py),

(2.3)

are Si-reversible (i = 0, 4, 5, 6) for the vector field (1.4).
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The symmetry S0 is the usual symmetry with respect to the zero velocity
curve (i.e., the zero velocity curve is defined by the points (q,p) = (q,0) ∈
IR4 such that H(q,p) = h), which is presented in all the Hamiltonian
systems where the Hamiltonian function can be written as kinetic energy
plus potential energy.

Using the previous notation, we define:

Definition 3. For i ∈ {0, 1, 2, 3, 4, 5, 6} the solution ϕ(t) of (1.4) is called
Si-symmetric if and only if Si(ϕ(t)) = ϕ(t).

The previous symmetries in Proposition 1 and Proposition 2 are very
useful to find symmetric periodic orbits, especially by means of the contin-
uation method, as we will show in the next sections.

Some important properties of the symmetric orbit, are expressed in the
following lemma, whose proof is an immediate consequence of the Existence
and Uniqueness Theorem for an ordinary differential equation.

Lemma 3. (i) The solution ϕ(t) = (q(t),p(t)) = (x(t), y(t), px(t), py(t))
is S0-symmetric if and only if it has a point on the zero velocity curve (i.e.,
there is a time t0 such that px(t0) = py(t0) = 0).
(ii) For i = 1 (resp. i = 2) the solution ϕ(t) is Si-symmetric if and only if
it lies on the x-axis for all time t ∈ IR (resp. y-axis).
(iii) For i = 4 (resp. i = 5) the solution ϕ(t) = (q(t),p(t)) is Si-symmetric
if and only if it crosses the y-axis (resp. x-axis) orthogonally, i.e., there is
a time t0 such that x(t0) = 0 and py(t0) = 0 (resp. there is a time t0 such
that y(t0) = 0 and px(t0) = 0).

Proof: First, we will prove the item (i). In order to prove the necessary
condition, as the solution ϕ(t) = S0(ϕ(t)), it follows that px(t) = −px(−t)
and py(t) = −py(−t) for all t ∈ IR. Thus, at t = 0 we have px(0) = 0
and py(0) = 0, i.e., the orbit is on the zero velocity curve. To prove the
sufficient condition, first we note that since the Hamiltonian system (1.4)
is autonomous we can assume without loss of generality that there is a
time t0 = 0 such that px(0) = 0 and py(0) = 0. As by Proposition 1,
ϕ(t) = S0(ϕ(t)) is also a solution of (1.4) and since ϕ(0) = ϕ(0), then by
the Existence and Uniqueness Theorem for an ordinary differential equa-
tion it follows that ϕ(t) = ϕ(t) for all t ∈ IR.
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The item (ii) for i = 1 (the other case is analogous) follows observing
that S1(ϕ(t)) = ϕ(t) if and only if y(t) = 0 and py(t) = 0 for all t ∈ IR.

To prove item (iii) for i = 4 (the same arguments are true for i = 5),
assuming that ϕ(t) = S4(ϕ(t)) it follows that x(t) = −x(−t) and py(t) =
−py(−t) for all t ∈ IR. Thus, at t = 0 we have x(0) = 0 and py(0) = 0, i.e.,
the orbit crosses the y-axis orthogonally. To prove the sufficient condition,
first we note that since the Hamiltonian system (1.4) is autonomous we can
assume without loss of generality that there is time t0 = 0 such that x(0) =
0 and py(0) = 0. As by Proposition 1 ϕ(t) = S4(ϕ(t)) is also a solution
of (1.4) and since ϕ(0) = ϕ(0), then by the Existence and Uniqueness
Theorem for an ordinary differential equation it follows that ϕ(t) = ϕ(t)
for all t ∈ IR.

The properties of the Si-symmetric orbits were first studied by Birkhoff [4]
for the restricted three body problem and later by many authors. We now
introduce an useful technique to obtain symmetric periodic orbits in our
problem.

Proposition 3. (i) For i = 4 (resp. i = 5) the solution ϕ(t) is a Si-
symmetric periodic orbit if and only if it crosses the y-axis (resp. x-axis)
orthogonally in exactly two distinct points.
(ii) An orbit ϕ(t) is a S4 and S5-symmetric periodic orbit (duple symmetric)
if and only if it crosses the x-axis and the y-axis orthogonally.
(iii) An orbit ϕ(t) is a S0-symmetric periodic orbit if and only if it meets
the zero velocity curves at two distinct points.

Proof: In order to clarify the ideas of the proof we will prove only the
item (i) for i = 4. The proof in the other cases are similar. For i = 4,
considering ϕ(t) a P -symmetric periodic solution of (1.4) we have that
S4(ϕ(t + P )) = ϕ(t), so at t = −P/2 it follows that x(P/2) = 0 and
py(P/2) = 0. Thus, since at t = 0, x(0) = 0 and py(0) = 0, the orbit
crosses the y-axis orthogonally in exactly two distinct points. The proof in
the other direction is as follows. Assuming that the solution ϕ(t) satisfies
x(0) = py(0) = 0 and x(T ) = py(T ) = 0 and x(t) 6= 0 for t ∈ (0, T ), it is
enough to define

ϕ(t) =

(
ϕ(t), 0 ≤ t ≤ T
S4(ϕ(2T − t)), T < t ≤ 2T.
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Since S4(ϕ(T )) = ϕ(T ) and S4(ϕ(0)) = ϕ(0) by the Existence and
Uniqueness Theorem for an ordinary differential equation it follows that
ϕ(t+ 2T ) = ϕ(t) for all t ∈ IR and it is S4-symmetric.

Remarks. 1) Item (i) says that we need to construct only the half of
one orbit that crosses the x-axis (resp. y-axis) orthogonally at two distinct
points to get one symmetric periodic solution with respect to the x-axis
(resp. y-axis).

2) Item (ii) says that we need to construct only a quarter of one orbit
that crosses the x-axis and the y-axis orthogonally to get one symmetric
periodic solution with respect to the x-axis and y-axis.

3. Existence of S4 and S5 symmetric periodic orbits

In this section we will prove the existence of S4 and S5 symmetric periodic
orbits of the system (1.2) with b close to 1. Initially we will study the
unperturbed problem, i.e., the problem (1.8).

3.1. Analysis of the logarithmic potential

Initially we will summarize some important properties of the unperturbed
problem (1.8) (see [1] or [5]) which is given by

q̈ = − q

kqk2 ,(3.1)

where q = (x, y), that will be essential to get our main result in this
section. We will denote by p = q̇ the momentum of the system. Using
polar coordinates (ρ, θ) the equation (3.1) assumes the form

ρ̈ = −1ρ +
c2

ρ3

ρ2θ̇ = c.

(3.2)

The energy conserved along the motion will be denoted by

H =
ρ̇2

2
+

c2

2ρ2
+ ln ρ ≡ h.(3.3)

Observing the graph of the effective potential energy in Figure 1
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Figure 1 : Graph of the effective potential energy.

Veff (ρ) =
c2

2ρ2
+ ln ρ(3.4)

and using the relation

ρ̇ = ±
q
2[h− Veff (ρ)](3.5)

it follows that the phase portrait of the problem given by the first equation
in (3.2) is given by the Figure 2.

Figure 2 : Phase portrait of (13)

.
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Easily we verify that the circular orbit given by ρ(t) = a (where a =
c = 1

ω ) is an equilibrium position of (3.1) which is stable in the sense of
Liapunov, because it corresponds to a minimum of the effective potential,
and therefore, the solutions of (3.1) which are close to the circular are closed
in the variables (ρ, ρ̇) (but not necessarily periodic in the original variables
(x, y), in fact, it is necessary the commensurability between 2π and the
period of ρ(t)). The period T of these oscillations is

T ' 2aπ√
2
,

(where ' means sufficiently close) since the eigenvalues of the linear part

associated to the periodic orbit r0(t) are given by ±i
√
2
a . Let us now move

on to deal directly with the orbit. For an almost circular orbit, we have
seen above that ρ oscillates around the value a. It is known that the
apsidal angle, that is the variation of the polar angle θ during the time in
which ρ oscillates from a minimum (ρmin, pericenter) to the next maximum
(ρmax, apocenter) is close to τ =

2π
ω . Now, we will enunciate the following

important result.

Lemma 4. The angle between the successive pericenter and apocenter for
an orbit close to the circular r0(t) is Φ ' π√

2
. In particular, π

2 < Φ < π.

Proof: It is necessary to evaluate the apsidal angle of the polar angle θ
during the time in which ρ oscillates from a minimum to the next maximum.
The time is obviously close to T

2 (see Figure 2). To evaluate the angle swept
out in this time we shall have to multiply by a mean angular velocity. Since
θ̇ = c

ρ2 and ρ oscillates around a, we shall assume the mean angular velocity
to be

θ̇ =
c

a2
=
1

a
.

The apsidal angle will therefore be

Φ ' 1

2
T θ̇ =

aπ√
2

1

a
=

π√
2
.

Since the circular orbit can be written as r0(t) = aeiωt we have

r0(0) = (a, 0) ≡ a, ṙ0(0) = (0, aω) ≡ iaω,
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considering these vectors as complex numbers. Let the one-parametric
family of solutions of (3.1) with μ ∈ (−1, 1) be given by

qμ(t) = (xμ(t), yμ(t)) such that qμ(0) = a and pμ = q̇μ(0) = i (1+μ)aω,

i.e., they are solution of (3.1) with the same initial position as the circular
orbit r0(t) and initial velocity with the same direction that the circular
orbit. We will introduce the notation

ρμ(t) = kqμ(t)k.

By the hypothesis it follows that

ρ̇μ(0) = 0,

and by (3.2) it is clear that

ρ̈μ(0) =
(2 + μ)μ

a
.

Therefore for μ ∈ (−1, 1)

sg(ρ̈μ(0)) = sg(μ),

(where sg(s) means the sign of the real number s). In conclusion, ρμ(0) is
a maximum or minimum, hence it is an apocenter or pericenter depending
if μ < 0 or μ > 0, respectively.

As in the previous section Φ(t, (q,p), 0) = (q(t, (q,p), 0),p(t, (q,p), 0)
will denote the flow of the Hamiltonian system associated to (3.1). Since the
solution r0(t) crosses the positive y-axis transversally (in fact, orthogonally)
at time τ

4 =
π
2ω , by the Continuous Dependence of Initial Conditions and

Parameters Theorem (see [10]) there exists δ > 0 (δ < 1) such that for
|μ| < δ, Φ(t, (qμ,pμ, 0) = (qμ(t),pμ(t)) is defined in [0,

τ
4 ] and intersects

the positive y-axis in a single point. Moreover, the time-function tμ ≡
t((qμ,pμ), μ) ∈ [0, τ4 ] defined by the first time that qμ(tμ) intersects the
positive y-axis is continuous.

For 0 < μ < δ (resp. −δ < μ < 0) qμ(0) is a pericenter (resp. apoc-
enter) of the solution qμ(t) of the unperturbed problem (3.1), and since
an apocenter (resp. pericenter) corresponds to critical points of ρμ(t) and
they are given by consecutive times, we obtain:

Lemma 5. The function ρμ(t) for 0 < μ < δ (resp. −δ < μ < 0) is an
increasing function (resp. decreasing) for t ∈ (0, tμ].
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Using Lemma 4 and the previous lemma, it is clear that Figure 3 shows
the behavior of the solution ρμ(t) of (3.2) for μ sufficiently small.

Figure 3 : Particular solutions ρμ (t) of (3.2)

By the previous result it follows that ρ̇μ(t) > 0 for 0 < μ < δ (resp.
ρ̇μ(t) < 0 for −δ < μ < 0) and t ∈ (0, tμ(qμ,pμ), μ)]. Since
yμ = ρμ(t) sin(θμ(t)) and θμ(tμ) =

π
2 , it is clear that

ẏμ(tμ) = ρ̇μ(tμ) > 0 (resp. < 0) if 0 < μ < δ

(resp.− δ < μ < 0).(3.6)

Summarizing, the following lemma has been proved.

Lemma 6. There exists δ > 0 such that ẏμ(tμ) > 0 (resp. ẏμ(tμ) < 0) for
μ ∈ (0, δ) (resp. for μ ∈ (−δ, 0)).

3.2. Symmetric periodic solution of the perturbed problem

Let q(t, (q,p), �) be the solution of the perturbed problem

ẍ = − x
x2y2 − �∂h∂x

ÿ = − y
x2+y2 − �∂h∂y .

(3.7)

We will consider (x, y) ∈ IR2 such that x2 + y2 > ν2 with 0 < ν < a, so
that h is analytic in this domain.

Jubitza
Imagen colocada
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Henceforth, in this subsection we will consider solutions of (3.7) with
initial positions (x(0), y(0)) = (a, 0) ≡ a. To get the appropriate initial
velocities p, we fix δ > 0 as before and define the segment in IR2 by

Iδ = {(0, λaω) / λ ∈ (1− δ, 1 + δ)}

and we consider p ∈ Iδ.
Now, let the function

l : Iδ × (−δ, δ)→ IR

be
l(p, �) = ẏ(ta(p, �), a,p, �)

where ta(p, �) means the positive minimal time at which the solution inter-
sects the positive y-axis. This function is well defined and it is continuous
because of the previous results and since the solutions of the first order sys-
tems of differential equations associated to (3.7), by the Kamke’s theorem
(see [10]) depend uniformly analytically on all the data of the problem, i.e.,
the initial values and the functions that define the differential equation.

As we have seen in Subsection 3.1, for � = 0 and by the previous sub-
section, for each μ ∈ (−δ, δ) fixed, the initial velocity associated to the
solution (qμ(t),pμ(t)) is pμ = i(1 + μ)aω, then

kiaω − pμk = aω|μ|

and by Lemma 6 we have

l(pμ, 0) > 0 for μ ∈ (0, δ) and l(pμ, 0) < 0 for μ ∈ (−δ, 0).

For the next argument we only need to consider one (fixed) value of μ,
so we will choose

p+ = pμ and p− = p−μ with μ ∈ (0, δ).

By the continuity of l, and taking η = 1
2 min{l(p+, 0), |l(p−, 0)|} > 0 there

exists �0 < δ such that

|l(p−, 0)− l(p−, �)| < η, and |l(p+, 0)− l(p+, �)| < η

for � ∈ (−�0, �0). It follows that

l(p+, �) > 0 and l(p−, �) < 0, for � ∈ (−�0, �0).(3.8)

Now, we are in position to enunciate the main result of this section.
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Theorem 1. There exists �0 > 0 such that for every � ∈ (−�0, �0), there
is p� so that the solution q(t) = q(t, (a,p�), �) of (3.7) is periodic and
symmetric with respect to the x-axis and y-axis.

Proof: Our objective is to prove that there exist �0 > 0 and an initial
velocity p for each value of � ∈ (−�0, �0) such that l(p, �) = 0, i.e., the
solution intersects orthogonally the y-axis. The conclusion of the theorem
follows from item (iii) of proposition 3.

Using the previous analysis, more explicitly from (3.8), it follows by
the Intermediate Value Theorem, that there is �0 > 0 such that for every
� ∈ (−�0, �0) there exists p� such that l(p�, �) = 0.

In Figures 4 and 5 we exhibit numerically, one example of a periodic
solution near the circle of radius 1 and one non periodic solution respec-
tively.

Figure 4 : Periodic solution of (2) for a = 1, � = b− 1 = 0, 000001,
(px(0), py(0)) = (0, 0.9999999).

Jubitza
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Figure 5 : Solution of (2) for a = 1, � = b−1 = 0.000001, (px(0), py(0)) =
(0, 0.95).

Remark We have used similar arguments to those considered in [2] where
the author proved the existence of periodic solutions of the system

q̈ = g(q, �),

where g(q, 0) = − q
kqkα+2 , α ≥ 0, and g with the particular symmetry

given by the reflection with respect to the x-axis, while in our approach we
have considered two kinds of symmetries simultaneously. Therefore, our
Theorem 1 is not included in [2]. It is clear that our result admits the
following generalization. Let the following mechanical system

q̈ = ∇V (q) + �g(q, �)(3.9)

be such that

• V (q) = 1
2 ln kqk;

• g(q, �) is an analytic function;

• g(q, �) = ∇G(q, �) for some analytic real functionG which is invariant
under the reflections (x, y)→ (−x, y) and (x, y)→ (x,−y).

Thus, applying the same argument used to prove Theorem 1 we obtain:

Theorem 2. Under the above conditions, there exists �0 > 0 such that
for every � ∈ (−�0, �0), there is p� so that the solution q(t) = q(t, (a,p�), �)
of (3.9) is periodic and symmetric with respect the x-axis and y-axis.

Jubitza
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4. Conclusions

From the following affirmation made by the authors in [12]: “the analytical
description in general non-axis symmetric case remains still open, several
problems require further investigation”, and due to the practical impor-
tance of this problem in the modelling of elliptical galaxies or bars in the
centres of galaxy discs, we were induced to attack this problem, in order to
obtain periodic solutions of the problem for weak anisotropies.

In fact, in order to get weak anisotropies, i.e., when the parameter b
is close to 1 we introduce the notation � = b − 1 with � << 1, and then
we expand the Hamiltonian(1.3) in powers of �, such that now we have one
problem which is a perturbation of the central field defined by the potential
U = ln kqk.

We have performed an analytical study of the singular logarithmic po-
tential for weak anisotropies. Using important properties of the central
field defined by the potential U = ln kqk, we obtain the existence of pe-
riodic solutions which are symmetric with respect to the origin. Here, we
used the fact that the perturbation function is invariant under reflections
with respect to the x and y axes.

We observe that the initial conditions originating periodic solutions ob-
tained by Theorem 1 are given by (x(�), y(�) = (a, 0) and (px(�), py(�)) =
p(�). On the other hand, from Theorem 1 we only can affirm that the pe-
riod is close to τ . Also we emphasize that the periodic solutions obtained
for this problem by the application of Theorem 2 in [15] and Theorem 1 for
each fixed |�| < �0, are not the same, because they are obtained by different
initial conditions. Notice that the methods used in order to get periodic
solutions of the logarithmic problem in [15] and the approach given in this
paper are different.
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