Proyecciones
Vol. 26, No 2, pp. 157-187, August 2007.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/50716-09172007000200002

EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES

A. YOUSSFI
UNIVERSITÉ SIDI MOHAMMED BEN ABDALLAH, MAROC

Received: July 2006. Accepted: May 2007

Abstract

In this paper, we prove the existence of solutions for some strongly nonlinear Dirichlet problems whose model is the following $$
-\operatorname{div}\left(\bar{M}^{-1} M(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)+u M(|\nabla u|)=f-\operatorname{div} F \quad \text { in } \quad \mathcal{D}^{\prime}(\Omega)
$$ where Ω is an open bounded subset of $\mathbb{R}^{N}, N \geq 2$. We emphasize that no Δ_{2}-condition is required for the N-function M.

Mathematics Subject Classification : (2000): 46E30, 35J60, $35 J 65$.

Key words: Orlicz-Sobolev spaces, strongly nonlinear problems.

1. Introduction

Let Ω be a bounded open set of $\mathbb{R}^{N}, N \geq 2$, and let M be an N-function. Consider the following Dirichlet problem

$$
\begin{equation*}
A(u)+H(x, u, \nabla u)=f, \tag{1.1}
\end{equation*}
$$

where

$$
A(u):=-\operatorname{div} a(x, u, \nabla u)
$$

is a Leray-Lions type operator defined on its domain $\mathcal{D}(A) \subset W_{0}^{1} L_{M}(\Omega)$ and H is a nonlinearity assumed to satisfy the natural growth condition

$$
\begin{equation*}
|H(x, s, \xi)| \leq b(|s|)(h(x)+M(|\xi|)) \tag{1.2}
\end{equation*}
$$

Recently, a large number of papers was devoted to the existence of solutions of (1.1). In the variational framework, that is $f \in W^{-1} E_{\bar{M}}(\Omega)$, an existence result was proved in [8] when H depends only on x and u and satisfy the following sign condition

$$
H(x, s) s \geq 0
$$

and in [2] when M satisfies the Δ_{2}-condition and H depends also on ∇u and satisfies

$$
\begin{equation*}
H(x, s, \xi) s \geq 0 \tag{1.3}
\end{equation*}
$$

The result in [2] was generalized in [7] to N -functions without $\Delta_{2^{-}}$ condition.

In the case where $f \in L^{1}(\Omega)$, problem (1.1) was solved in [3] under the so-called coercivity condition

$$
\begin{equation*}
|H(x, s, \xi)| \geq \beta M(|\xi|) \quad \text { for }|s| \geq \text { some } \tau \tag{1.4}
\end{equation*}
$$

and in [5] assuming the sign condition (1.3) but the result was restricted to N -functions satisfying the Δ_{2}-condition (see bellow). The result contained in [5] was then extended in [6] to N -functions without assuming the Δ_{2} condition. The solution u given in this case is such that its truncated
function $T_{k}(u)$ belongs to the energy space $W_{0}^{1} L_{M}(\Omega)$ for all $k>0$, but not the function u it self.

Our main goal in this paper, is to prove the existence of a solution in $W_{0}^{1} L_{M}(\Omega)$ for problems of the kind of (1.1) when the source term has the form $f-\operatorname{div} F$ with $f \in L^{1}(\Omega)$ and $|F| \in E_{\bar{M}}(\Omega)$, without any restriction on the N -function M.

The paper is organized as follows, after giving a background in section 2, in section 3 we list the basic assumptions and our main result which will be proved in six steeps in section 4.

2. Prerequisites

2.1 Let $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an N -function, ie. M is continuous, convex, with $M(t)>0$ for $t>0, \frac{M(t)}{t} \rightarrow 0$ as $t \rightarrow 0$ and $\frac{M(t)}{t} \rightarrow \infty$ as $t \rightarrow \infty$. The N-function conjugate to M is defined as $\bar{M}(t)=\sup \{s t-M(t), s \geq 0\}$. We recall the Young's inequality: for all $s, t \geq 0$,

$$
s t \leq \bar{M}(s)+M(t) .
$$

If for some $k>0$,

$$
\begin{equation*}
M(2 t) \leq k M(t) \quad \text { for all } t \geq 0 \tag{2.1}
\end{equation*}
$$

we said that M satisfies the Δ_{2}-condition, and if (2.1) holds only for $t \geq$ some t_{0}, then M is said to satisfy the Δ_{2}-condition near infinity.
We will extend these N -functions into even functions on all \mathbb{R}.
Let P and Q be two N-functions. the notation $P \ll Q$ means that P grows essentially less rapidly than Q, i.e.

$$
\text { for all } \epsilon>0, \quad \frac{P(t)}{Q(\epsilon t)} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

that is the case if and only if

$$
\frac{Q^{-1}(t)}{P^{-1}(t)} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

2.2 Let Ω be an open subset of \mathbb{R}^{N}. The Orlicz class $K_{M}(\Omega)$ (resp. the Orlicz space $L_{M}(\Omega)$) is defined as the set of (equivalence class of) realvalued measurable functions u on Ω such that:

$$
\int_{\Omega} M(u(x)) d x<\infty \quad\left(\text { resp. } \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x<\infty \text { for some } \lambda>0\right) .
$$

Endowed with the Luxemburg norm

$$
\|u\|_{M}=\inf \left\{\lambda>0: \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x<\infty\right\}
$$

$L_{M}(\Omega)$ is a Banach space and $K_{M}(\Omega)$ is a convex subset of $L_{M}(\Omega)$. The Orlicz norm is defined on $L_{M}(\Omega)$ by

$$
\|u\|_{(M)}=\sup \int_{\Omega} u(x) v(x) d x
$$

where the supremum is taken over all functions $v \in L_{\bar{M}}(\Omega)$ such that $\|v\|_{\bar{M}} \leq 1$.
The two norms $\|\cdot\|_{M}$ and $\|\cdot\|_{(M)}$ are equivalent (see [13]).
The closure in $L_{M}(\Omega)$ of the set of bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{M}(\Omega)$.
2.3 The Orlicz-Sobolev space $W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$) is the space of functions u such that u and its distributional derivatives up to order 1 lie in $L_{M}(\Omega)\left(\operatorname{resp} . E_{M}(\Omega)\right)$.
It is a Banach space under the norm

$$
\|u\|_{1, M}=\sum_{|\alpha| \leq 1}\left\|D^{\alpha} u\right\|_{M}
$$

Thus, $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ can be identified with subspaces of the product of $(N+1)$ copies of $L_{M}(\Omega)$. Denoting this product by ΠL_{M}, we will use the weak topologies $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ and $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$.
The space $W_{0}^{1} E_{M}(\Omega)$ is defined as the norm closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^{1} E_{M}(\Omega)$ and the space $W_{0}^{1} L_{M}(\Omega)$ as the $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ closure of $\mathcal{D}(\Omega)$ in $W^{1} L_{M}(\Omega)$.
We say that a sequence $\left\{u_{n}\right\}$ converges to u for the modular convergence in $W^{1} L_{M}(\Omega)$ if, for some $\lambda>0$,

$$
\int_{\Omega} M\left(\frac{D^{\alpha} u_{n}-D^{\alpha} u}{\lambda}\right) d x \rightarrow 0 \text { for all }|\alpha| \leq 1,
$$

this implies convergence for $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$ (see [9, Lemma 6]).
If M satisfies the Δ_{2}-condition on \mathbb{R}^{+}(near infinity only if Ω has finite measure), then the modular convergence coincides with norm convergence (see [13, Theorem 9.4]).

Recall that the norm $\|D u\|_{M}$ defined on $W_{0}^{1} L_{M}(\Omega)$ is equivalent to $\|u\|_{1, M}$ (see [10]).
Let $W^{-1} L_{\bar{M}}(\Omega)$ (resp. $W^{-1} E_{\bar{M}}(\Omega)$) denotes the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\bar{M}}(\Omega)$ (resp. $E_{\bar{M}}(\Omega)$). It is a Banach space under the usual quotient norm.

If the open Ω has the segment property then the space $\mathcal{D}(\Omega)$ is dense in $W_{0}^{1} L_{M}(\Omega)$ for the topology $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$ (see [10]). Consequently, the action of a distribution in $W^{-1} L_{\bar{M}}(\Omega)$ on an element of $W_{0}^{1} L_{M}(\Omega)$ is well defined. For an exhaustive treatments one can see for example [1, 13].
2.4 We will use the following lemma, (see [6]), which concerns operators of Nemytskii Type in Orlicz spaces. It is slightly different from the analogous one given in [13].

Lemma 2.1. Let Ω be an open subset of \mathbb{R}^{N} with finite measure. let M, P and Q be N-functions such that $Q \ll P$, and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that, for a.e. $x \in \Omega$ and for all $s \in \mathbb{R}$,

$$
|f(x, s)| \leq c(x)+k_{1} P^{-1} M\left(k_{2}|s|\right)
$$

where k_{1}, k_{2} are real constants and $c(x) \in E_{Q}(\Omega)$. Then the Nemytskii operator N_{f}, defined by $N_{f}(u)(x)=f(x, u(x))$, is strongly continuous from $\mathcal{P}\left(E_{M}, \frac{1}{k_{2}}\right)=\left\{u \in L_{M}(\Omega): d\left(u, E_{M}(\Omega)\right)<\frac{1}{k_{2}}\right\}$ into $E_{Q}(\Omega)$.

We will use the following lemma which can be found in [12],
Lemma 2.2. If $\left\{f_{n}\right\} \subset L^{1}(\Omega)$ with $f_{n} \rightarrow f \in L^{1}(\Omega)$ a.e. in $\Omega, f_{n}, f \geq 0$ a.e. in Ω and $\int_{\Omega} f_{n}(x) d x \rightarrow \int_{\Omega} f(x) d x$, then $f_{n} \rightarrow f$ strongly in $L^{1}(\Omega)$.

We also use the technical lemma:
Lemma 2.3. Let x and y be two nonnegative real numbers and let

$$
\phi(s)=s e^{\theta s^{2}}
$$

with $\theta=\frac{y^{2}}{4 x^{2}}$. Then

$$
x \phi^{\prime}(s)-y|\phi(s)| \geq \frac{x}{2}, \quad \forall s \in \mathbb{R}
$$

3. Assumptions and main result

Let Ω be an open bounded subset of $\mathbb{R}^{N}, N \geq 2$, with the segment property and let M and P be two N-functions such that $P \ll M$.
Let $A: \mathcal{D}(\mathcal{A}) \subset W_{0}^{1} L_{M}(\Omega) \longrightarrow W^{-1} L_{\bar{M}}(\Omega)$ be a mapping (non everywhere defined) given by

$$
A(u):=-\operatorname{div} a(x, u, \nabla u)
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function (i.e., $a(x, \cdot, \cdot)$ is continuous on $\mathbb{R} \times \mathbb{R}^{N}$ for almost every x in Ω and $a(\cdot, s, \xi)$ is measurable on Ω for every (s, ξ) in $\mathbb{R} \times \mathbb{R}^{N}$) satisfying for a.e. $x \in \Omega$, and for all $s \in \mathbb{R}$ and all $\xi, \eta \in \mathbb{R}^{N}, \xi \neq \eta$,

$$
\begin{equation*}
|a(x, s, \xi)| \leq a_{0}(x)+k_{1} \bar{P}^{-1} M\left(k_{2}|s|\right)+k_{1} \bar{M}^{-1} M\left(k_{2}|\xi|\right) \tag{3.1}
\end{equation*}
$$

where $a_{0}(x)$ belongs to $E_{\bar{M}}(\Omega)$ and k_{1}, k_{2} to \mathbb{R}_{+}^{*},

$$
\begin{gather*}
(a(x, s, \xi)-a(x, s, \eta)) \cdot(\xi-\eta)>0 \tag{3.2}\\
a(x, s, \xi) \cdot \xi \geq M(|\xi|) \tag{3.3}
\end{gather*}
$$

Furthermore, let $H: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a Carathéodory function such that

$$
\begin{equation*}
|H(x, s, \xi)| \leq b(|s|)(M(|\xi|)+h(x)) \tag{3.4}
\end{equation*}
$$

for almost $x \in \Omega$ and for all $s \in \mathbb{R}, \xi \in \mathbb{R}^{N}$, with b a real valued positive increasing continuous function and h a nonnegative function in $L^{1}(\Omega)$, and

$$
\begin{equation*}
H(x, s, \xi) \operatorname{sgn}(\mathrm{s}) \geq M(|\xi|) \tag{3.5}
\end{equation*}
$$

for a.e. $x \in \Omega$, for every $\xi \in \mathbb{R}^{N}$ and for every $s \in \mathbb{R}$ such that $|s| \geq \sigma$, where σ is a positive real number. Consider the following Dirichlet problem:

$$
\begin{cases}A(u)+H(x, u, \nabla u)=f-\operatorname{div}(F) & \text { in } \quad \Omega \tag{3.6}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

We shall prove the following existence result:

Theorem 3.1. Assume that $f \in L^{1}(\Omega),|F| \in E_{\bar{M}}(\Omega)$ and (3.1)-(3.5) hold true, then there exists at least a function u solution of (3.6) in the sense that $u \in W_{0}^{1} L_{M}(\Omega), H(x, u, \nabla u) \in L^{1}(\Omega)$ and

$$
\begin{aligned}
& \int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}(u-v) d x+\int_{\Omega} H(x, u, \nabla u) T_{k}(u-v) d x \\
& =\int_{\Omega} f T_{k}(u-v) d x+\int_{\Omega} F \cdot \nabla T_{k}(u-v) d x
\end{aligned}
$$

for every $v \in W_{0}^{1} L_{M}(\Omega) \cap L^{\infty}(\Omega)$ and every $k \geq \sigma$.

Remark 3.1.

1. We can replace assumptions (3.3), (3.4) and (3.5) by the following ones:

$$
\begin{equation*}
a(x, s, \xi) \cdot \xi \geq \alpha M\left(\frac{|\xi|}{\lambda}\right) \tag{3.3}
\end{equation*}
$$

with $\alpha, \lambda>0$ and

$$
\begin{equation*}
|H(x, s, \xi)| \leq b(|s|)\left(M\left(\frac{|\xi|}{\mu}\right)+h(x)\right) \tag{3.4}
\end{equation*}
$$

with $0<\lambda \leq \mu$ and

$$
\begin{equation*}
H(x, s, \xi) \operatorname{sgn}(\mathrm{s}) \geq \beta M\left(\frac{|\xi|}{\tau}\right) \tag{3.5}
\end{equation*}
$$

with $0<\tau \leq \lambda$ and $\beta>0$.
2. A consequence of (3.3) and the continuity of a with respect to ξ, is that, for almost every x in Ω and s in \mathbb{R},

$$
a(x, s, 0)=0
$$

3. Note that assumption (3.5) gives a sign condition on H only near infinity.
4. In (3.4) we can assume only that b is positive and continuous.

Remark 3.2. The solution of (3.6) given by theorem 3.1 belongs to $W_{0}^{1} L_{M}(\Omega)$ even if $F=0$, this regularity is due to assumption (3.5).

4. Proof of theorem 3.1

Let $\left\{f_{n}\right\}$ be a sequence of $L^{\infty}(\Omega)$ functions that converges strongly to f in $L^{1}(\Omega)$.

Let n in $I N$ and let

$$
H_{n}(x, s, \xi)=\frac{H(x, s, \xi)}{1+\frac{1}{n}|H(x, s, \xi)|}
$$

It's easy to see that $\left|H_{n}(x, s, \xi)\right| \leq n,\left|H_{n}(x, s, \xi)\right| \leq|H(x, s, \xi)|$ and $H_{n}(x, s, \xi) \operatorname{sgn}(\mathrm{s}) \geq 0$ for $|s| \geq \sigma$. Since H_{n} is bounded for fixed n, there exists, (see [11, Propositions 1 and 5]), a function u_{n} in $W_{0}^{1} L_{M}(\Omega)$ solution of

$$
\begin{cases}A\left(u_{n}\right)+H_{n}\left(x, u_{n}, \nabla u_{n}\right)=f_{n}-\operatorname{div} F & \text { in } \quad \Omega \\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

in the sense
$\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v d x+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) v d x=\int_{\Omega} f_{n} v d x+\int_{\Omega} F \cdot \nabla v d x$ for every $v \in W_{0}^{1} L_{M}(\Omega)$.

Step1: Estimation in $W_{0}^{1} L_{M}(\Omega)$.
For $k>0$, we denote by T_{k} the usual truncation at level k defined by

$$
T_{k}(s)=\max (-k, \min (k, s))
$$

for all $s \in \mathbb{R}$. Let us choose

$$
v=\phi\left(T_{\sigma}\left(u_{n}\right)\right)
$$

as test function in (3.7), where σ is given by (3.5), ϕ is the function in lemma 2.3 and b is the function in (3.4). Using (3.3) and the Young's inequality, we obtain

$$
\begin{aligned}
& \int_{\Omega} M\left(\left|\nabla T_{\sigma}\left(u_{n}\right)\right|\right) \phi^{\prime}\left(T_{\sigma}\left(u_{n}\right)\right) d x+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(T_{\sigma}\left(u_{n}\right)\right) d x \\
\leq & \phi(\sigma)\left\|f_{n}\right\|_{L^{1}(\Omega)}+\phi^{\prime}(\sigma) \int_{\Omega} \bar{M}(2|F|) d x+\frac{1}{2} \int_{\Omega} M\left(\left|\nabla T_{\sigma}\left(u_{n}\right)\right|\right) \phi^{\prime}\left(T_{\sigma}\left(u_{n}\right)\right) d x .
\end{aligned}
$$

Since $\left\{f_{n}\right\}$ is bounded in $L^{1}(\Omega)$, there exists a constant c not depending on n such that

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} M\left(\left|\nabla T_{\sigma}\left(u_{n}\right)\right|\right) \phi^{\prime}\left(T_{\sigma}\left(u_{n}\right)\right) d x+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(T_{\sigma}\left(u_{n}\right)\right) d x \\
& \leq c\left(\phi(\sigma)+\phi^{\prime}(\sigma)\right),
\end{aligned}
$$

which we can write, since H_{n} enjoys the same properties of H,

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} M\left(\left|\nabla T_{\sigma}\left(u_{n}\right)\right|\right) \phi^{\prime}\left(T_{\sigma}\left(u_{n}\right)\right) d x+\int_{\left\{\left|u_{n}\right|<\sigma\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(T_{\sigma}\left(u_{n}\right)\right) d x \\
& +\int_{\left\{\left|u_{n}\right| \geq \sigma\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(T_{\sigma}\left(u_{n}\right)\right) d x \\
& \leq c\left(\phi(\sigma)+\phi^{\prime}(\sigma)\right) .
\end{aligned}
$$

By (3.4) we have

$$
\begin{aligned}
& \int_{\left\{\left|u_{n}\right|<\sigma\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(T_{\sigma}\left(u_{n}\right)\right) d x \\
& \leq b(\sigma)\left(\int_{\Omega} M\left(\left|\nabla T_{\sigma}\left(u_{n}\right)\right|\right) \phi\left(T_{\sigma}\left(u_{n}\right)\right) d x+\phi(\sigma)\|h\|_{L^{1}(\Omega)}\right)
\end{aligned}
$$

while using(3.5), we get

$$
\int_{\left\{\left|u_{n}\right| \geq \sigma\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(T_{\sigma}\left(u_{n}\right)\right) d x \geq \phi(\sigma) \int_{\left\{\left|u_{n}\right| \geq \sigma\right\}} M\left(\left|\nabla u_{n}\right|\right) d x .
$$

Hence, we obtain

$$
\begin{aligned}
& \int_{\Omega} M\left(\left|\nabla T_{\sigma}\left(u_{n}\right)\right|\right)\left(\frac{1}{2} \phi^{\prime}\left(T_{\sigma}\left(u_{n}\right)\right)-b(\sigma)\left|\phi\left(T_{\sigma}\left(u_{n}\right)\right)\right|\right) d x \\
& +, \phi(\sigma) \int_{\left\{\left|u_{n}\right| \geq \sigma\right\}} M\left(\left|\nabla u_{n}\right|\right) d x \leq c\left(\phi(\sigma)+\phi^{\prime}(\sigma)\right)+b(\sigma) \phi(\sigma)\|h\|_{L^{1}(\Omega)} .
\end{aligned}
$$

Then, lemma 2.3 with the choice $x=\frac{1}{2}$ and $y=b(\sigma)$, yields

$$
\begin{aligned}
& \frac{1}{4} \int_{\Omega} M\left(\left|\nabla T_{\sigma}\left(u_{n}\right)\right|\right) d x+\phi(\sigma) \int_{\left\{\left|u_{n}\right| \geq \sigma\right\}} M\left(\left|\nabla u_{n}\right|\right) d x \\
& \leq c\left(\phi(\sigma)+\phi^{\prime}(\sigma)\right)+b(\sigma) \phi(\sigma)\|h\|_{L^{1}(\Omega)}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\int_{\Omega} M\left(\left|\nabla u_{n}\right|\right) d x \leq c_{0}, \tag{3.8}
\end{equation*}
$$

where c_{0} is a constant not depending on n. Thus $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1} L_{M}(\Omega)$, and consequently there exist a function u in $W_{0}^{1} L_{M}(\Omega)$ and a subsequence still denoted by $\left\{u_{n}\right\}$ such that

$$
\begin{equation*}
u_{n} \rightharpoonup u \text { in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n} \rightarrow u \text { in } E_{M}(\Omega) \text { strongly and a.e. in } \Omega \text {. } \tag{3.10}
\end{equation*}
$$

Step2: $\left\{a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right\}$ is bounded in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ for all $k \geq \sigma$.
We will use the Orlicz norm. For that, let $\psi \in\left(L_{M}(\Omega)\right)^{N}$ with $\|\psi\|_{M} \leq 1$. For all $k \geq \sigma$, we write using (3.2)

$$
\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \frac{\psi}{k_{2}}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\frac{\psi}{k_{2}}\right) d x \geq 0
$$

so that

$$
\begin{align*}
\frac{1}{k_{2}} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \psi d x \leq & \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \tag{3.11}\\
& -\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \frac{\psi}{k_{2}}\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \\
& +\frac{1}{k_{2}} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \frac{\psi}{k_{2}}\right) \cdot \psi d x
\end{align*}
$$

To estimate the first term in the right, we take $v=T_{k}\left(u_{n}\right)$ as test function in (3.7) and then use the Young's inequality, the fact that $H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) \geq 0$ on the set $\left\{\left|u_{n}\right| \geq k\right\}$ and (3.3), to obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x+\int_{\left\{\left|u_{n}\right| \leq k\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) d x \\
& \leq k\left\|f_{n}\right\|_{L^{1}(\Omega)}+\int_{\Omega} \bar{M}(2|F|) d x
\end{aligned}
$$

Assumption (3.4) yields

$$
\begin{aligned}
\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) d x\right| & \leq k b(k)\left(\int_{\Omega} M\left(\left|\nabla u_{n}\right|\right) d x+\|h\|_{L^{1}(\Omega)}\right) \\
& \leq k b(k)\left(c_{0}+\|h\|_{L^{1}(\Omega)}\right),
\end{aligned}
$$

where c_{0} is the constant in (3.8). Hence, since $\left\{f_{n}\right\}$ is bounded in $L^{1}(\Omega)$, we deduce that

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq \lambda_{k},
$$

with λ_{k} a constant depending on k. By the Young's inequality, (3.11) becomes

$$
\begin{gathered}
\frac{1}{k_{2}} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \psi d x \leq \lambda_{k}+\left(1+2 k_{1}\right) \int_{\Omega} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x \\
\quad+\left(1+\frac{1}{k_{2}}\right)\left(1+2 k_{1}\right) \int_{\Omega} \bar{M}\left(\frac{\left|a\left(x, T_{k}\left(u_{n}\right), \frac{\psi}{k_{2}}\right)\right|}{1+2 k_{1}}\right) d x \\
\quad+\frac{1+2 k_{1}}{k_{2}} \int_{\Omega} M(|\psi|) d x
\end{gathered}
$$

By virtue of (3.1) and the convexity of \bar{M}, we get

$$
\begin{aligned}
& \int_{\Omega} \bar{M}\left(\frac{\left|a\left(x, T_{k}\left(u_{n}\right), \frac{\psi}{k_{2}}\right)\right|}{1+2 k_{1}}\right) d x \\
& \leq \frac{1}{1+2 k_{1}}\left(\int_{\Omega}\left(\left|a_{0}(x)\right|\right) d x+k_{1} \bar{M}^{-1} M\left(k k_{2}\right)|\Omega|\right) \\
&+\frac{k_{1}}{1+2 k_{1}} \int_{\Omega} M(|\psi|) d x .
\end{aligned}
$$

We conclude that

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \psi d x \leq c_{k}
$$

for all $\psi \in\left(L_{M}(\Omega)\right)^{N}$ with $\|\psi\|_{M} \leq 1$, this means that

$$
\begin{equation*}
\left\|a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right\|_{(\bar{M})} \leq c_{k}, \tag{3.12}
\end{equation*}
$$

for every $k \geq \sigma$.
Step3: Almost everywhere convergence of the gradients.
Since the function u belongs to $W_{0}^{1} L_{M}(\Omega)$, there exists a sequence $\left\{v_{j}\right\} \subset \mathcal{D}(\Omega)$, (see [9]), which converges to u for the modular convergence in $W_{0}^{1} L_{M}(\Omega)$ and a.e. in Ω.
For $m \geq k \geq \sigma$, we define the function ρ_{m} by

$$
\rho_{m}(s)=\left\{\begin{array}{lll}
1 & \text { if } & |s| \leq m \\
m+1-|s| & \text { if } & m \leq|s| \leq m+1 \\
0 & \text { if } & |s| \geq m+1
\end{array}\right.
$$

Let $\theta_{n}^{j}=T_{k}\left(u_{n}\right)-T_{k}(v j), \theta^{j}=T_{k}(u)-T_{k}\left(v_{j}\right)$ and $z_{n, m}^{j}=\phi\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right)$ where ϕ is the function in lemma 2.3.

In what follows, we denote by $\epsilon_{i}(n, j),(i \in \mathbb{N})$, various sequences of real numbers which tend to 0 when n and $j \rightarrow \infty$ respectively, i.e.

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \epsilon_{i}(n, j)=0
$$

We use $z_{n, m}^{j} \in W_{0}^{1} L_{M}(\Omega)$ as test function in (3.7) to get
$<A\left(u_{n}\right), z_{n, m}^{j}>+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} d x=\int_{\Omega} f_{n} z_{n, m}^{j} d x+\int_{\Omega} F \cdot \nabla z_{n, m}^{j} d x$.
In view of (3.10), we have $z_{n, m}^{j} \rightarrow \phi\left(\theta^{j}\right) \rho_{m}(u)$ weakly in $L^{\infty}(\Omega)$ for $\sigma^{*}\left(L^{\infty}, L^{1}\right)$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} z_{n, m}^{j} d x=\int_{\Omega} f \phi\left(\theta^{j}\right) \rho_{m}(u) d x
$$

and since $\phi\left(\theta^{j}\right) \rightarrow 0$ weakly in $L^{\infty}(\Omega)$ for $\sigma\left(L^{\infty}, L^{1}\right)$ as $j \rightarrow \infty$, we have

$$
\lim _{j \rightarrow \infty} \int_{\Omega} f \phi\left(\theta^{j}\right) \rho_{m}(u) d x=0
$$

hence, we obtain

$$
\int_{\Omega} f_{n} z_{n, m}^{j} d x=\epsilon_{0}(n, j)
$$

Thanks to (3.8) and (3.10), we have as $n \rightarrow \infty$

$$
z_{n, m}^{j} \rightharpoonup \phi\left(\theta^{j}\right) \rho_{m}(u) \quad \text { in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right),
$$

which implies that
$\lim _{n \rightarrow \infty} \int_{\Omega} F \cdot \nabla z_{n, m}^{j} d x=\int_{\Omega} F \cdot \nabla \theta^{j} \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u) d x+\int_{\Omega} F \cdot \nabla u \phi\left(\theta^{j}\right) \rho_{m}^{\prime}(u) d x$.
On the one hand, by Lebesgue's theorem we get

$$
\lim _{j \rightarrow \infty} \int_{\Omega} F \cdot \nabla u \phi\left(\theta^{j}\right) \rho_{m}^{\prime}(u) d x=0
$$

on the other hand, we write

$$
\begin{aligned}
\int_{\Omega} F \cdot \nabla \theta^{j} \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u) d x= & \int_{\Omega} F \cdot \nabla T_{k}(u) \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u) d x \\
& -\int_{\Omega} F \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u) d x
\end{aligned}
$$

so that, by Lebesgue's theorem one has

$$
\lim _{j \rightarrow \infty} \int_{\Omega} F \cdot \nabla T_{k}(u) \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u) d x=\int_{\Omega} F \cdot \nabla T_{k}(u) \rho_{m}(u) d x
$$

Let $\lambda>0$ such that $M\left(\frac{\left|\nabla v_{j}-\nabla u\right|}{\lambda}\right) \rightarrow 0$ strongly in $L^{1}(\Omega)$ as $j \rightarrow \infty$ and $M\left(\frac{|\nabla u|}{\lambda}\right) \in L^{1}(\Omega)$, the convexity of the N -function M allows us to have

$$
\begin{aligned}
& M\left(\frac{\left|\nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u)-\nabla T_{k}(u) \rho_{m}(u)\right|}{4 \lambda \phi^{\prime}(2 k)}\right) \\
& \leq \frac{1}{4} M\left(\frac{\left|\nabla v_{j}-\nabla u\right|}{\lambda}\right)+\frac{1}{4}\left(1+\frac{1}{\phi^{\prime}(2 k)}\right) M\left(\frac{|\nabla u|}{\lambda}\right) .
\end{aligned}
$$

Then, by using the modular convergence of $\left\{\nabla v_{j}\right\}$ in $\left(L_{M}(\Omega)\right)^{N}$ and Vitali's theorem, we obtain

$$
\nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u) \rightarrow \nabla T_{k}(u) \rho_{m}(u) \quad \text { in }\left(L_{M}(\Omega)\right)^{N}
$$

for the modular convergence, and then

$$
\lim _{j \rightarrow \infty} \int_{\Omega} F \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) \rho_{m}(u) d x=\int_{\Omega} F \cdot \nabla T_{k}(u) \rho_{m}(u) d x
$$

We have proved that

$$
\int_{\Omega} F \cdot \nabla z_{n, m}^{j} d x=\epsilon_{1}(n, j) .
$$

Since $H_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} \geq 0$ on the set $\left\{\left|u_{n}\right|>k\right\}$ and $\rho_{m}\left(u_{n}\right)=1$ on the set $\left\{\left|u_{n}\right| \leq k\right\}$, we have

$$
\begin{equation*}
<A\left(u_{n}\right), z_{n, m}^{j}>+\int_{\left\{\left|u_{n}\right| \leq k\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x \leq \epsilon_{2}(n, j) \tag{3.14}
\end{equation*}
$$

Now, we will evaluate the first term of the left-hand side of (3.14) by writing

$$
\begin{aligned}
& <A\left(u_{n}\right), z_{n, m}^{j}> \\
& =\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x \\
& =\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x,
\end{aligned}
$$

and then

$$
\begin{aligned}
& <A\left(u_{n}\right), z_{n, m}^{j}> \\
& =\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& \left.+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& -\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x,
\end{aligned}
$$

where by $\chi_{j}^{s}, s>0$, we denote the characteristic function of the subset

$$
\Omega_{j}^{s}=\left\{x \in \Omega:\left|\nabla T_{k}\left(v_{j}\right)\right| \leq s\right\} .
$$

For fixed m and s, we will pass to the limit in n and then in j in the second, third, fourth and five terms in the right side of (3.15). Starting with the second term, we have

$$
\begin{aligned}
& \left.\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
& \left.\rightarrow \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \cdot\left(\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta^{j}\right) d x
\end{aligned}
$$

as $n \rightarrow \infty$, since by lemma 2.1 one has

$$
\left.\left.a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rightarrow a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \phi^{\prime}\left(\theta^{j}\right)
$$

strongly in $\left(E_{\bar{M}}(\Omega)\right)^{N}$ as $n \rightarrow \infty$, while

$$
\nabla T_{k}\left(u_{n}\right) \rightharpoonup \nabla T_{k}(u)
$$

weakly in $\left(L_{M}(\Omega)\right)^{N}$ by (3.8). Let χ^{s} denote the characteristic function of the subset

$$
\Omega^{s}=\left\{x \in \Omega:\left|\nabla T_{k}(u)\right| \leq s\right\} .
$$

As $\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} \rightarrow \nabla T_{k}(u) \chi^{s}$ strongly in $\left(E_{M}(\Omega)\right)^{N}$ as $j \rightarrow \infty$, one has

$$
\left.\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \cdot\left(\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta^{j}\right) d x \rightarrow 0
$$

as $j \rightarrow \infty$. Then

$$
\begin{equation*}
\left.\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x=\epsilon_{3}(n, j) \tag{3.16}
\end{equation*}
$$

For the third term of (3.15), by virtue of (3.12) there exist a subsequence still indexed again by n and a function l_{k} in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ with $k \geq \sigma$ such that
$a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup l_{k} \quad$ weakly in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)$.
Then, since $\nabla T_{k}\left(v_{j}\right) \chi_{\Omega \backslash \Omega_{j}^{s}} \in\left(E_{M}(\Omega)\right)^{N}$, we obtain

$$
-\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \rightarrow-\int_{\Omega \backslash \Omega_{j}^{s}} l_{k} \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) d x
$$

as $n \rightarrow \infty$. The modular convergence of $\left\{v_{j}\right\}$ allows us to have

$$
-\int_{\Omega \backslash \Omega_{j}^{s}} l_{k} \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta^{j}\right) d x \rightarrow-\int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x
$$

as $j \rightarrow \infty$. This, proves that
$-\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x=-\int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x+\epsilon_{4}(n, j)$.

As regards the fourth term, observe that $\rho_{m}\left(u_{n}\right)=0$ on the subset $\left\{\left|u_{n}\right| \geq m+1\right\}$, so we have

$$
\begin{aligned}
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& =-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x .
\end{aligned}
$$

As above, we obtain

$$
\begin{aligned}
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& =-\int_{\{|u|>k\}} l_{m+1} \cdot \nabla T_{k}(u) \rho_{m}(u) d x+\epsilon_{5}(n, j) .
\end{aligned}
$$

Observing that $\nabla T_{k}(u)=0$ on the subset $\{|u|>k\}$, one has

$$
\begin{equation*}
-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x=\epsilon_{5}(n, j) \tag{3.18}
\end{equation*}
$$

For the last term of (3.15), we have

$$
\begin{aligned}
& \left|\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x\right| \\
& =\left|\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x\right| \\
& \leq \phi(2 k) \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x .
\end{aligned}
$$

To estimate the last term of the previous inequality, we test by $T_{1}\left(u_{n}-\right.$ $\left.T_{m}\left(u_{n}\right)\right) \in W_{0}^{1} L_{M}(\Omega)$ in (3.7), to get
$\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x$

$$
\begin{aligned}
& +\int_{\left\{\left|u_{n}\right| \geq m\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) d x \\
& =\int_{\Omega} f_{n} T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} F \cdot \nabla u_{n} d x .
\end{aligned}
$$

Using the fact that $H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) \geq 0$ on the subset $\left\{\left|u_{n}\right| \geq m\right\}$ and the Young's inequality, we get

$$
\begin{aligned}
& \frac{1}{2} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x \\
\leq & \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \left|\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \phi\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x\right| \\
& \leq 2 \phi(2 k)\left(\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) . \tag{3.19}
\end{align*}
$$

From (3.16), (3.17), (3.18) and (3.19) we obtain

$$
\begin{align*}
&<A\left(u_{n}\right), z_{n, m}^{j}>\geq \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \tag{3.20}\\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \phi^{\prime}\left(\theta_{n}^{j}\right) d x \\
&-2 \phi(2 k)\left(\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
&-\int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x+\epsilon_{6}(n, j) .
\end{align*}
$$

Now, we turn to second term of the left hand side of (3.14). We have

$$
\begin{aligned}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x\right| \\
& \quad=\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} H_{n}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \phi\left(\theta_{n}^{j}\right) d x\right| \\
& \quad \leq b(k) \int_{\Omega} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x+b(k) \int_{\Omega} h(x)\left|\phi\left(\theta_{n}^{j}\right)\right| d x \\
& \quad \leq b(k) \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x+\epsilon_{7}(n, j) .
\end{aligned}
$$

Then,

$$
\begin{align*}
\mid \int_{\left\{\left|u_{n}\right| \leq k\right\}} & H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x \mid \tag{3.21}\\
\leq b(k) \int_{\Omega} & \left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x \\
& +b(k) \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x \\
& +b(k) \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\left|\phi\left(\theta_{n}^{j}\right)\right| d x+\epsilon_{7}(n, j)
\end{align*}
$$

We proceed as above to get
$\left.b(k) \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x=\epsilon_{8}(n, j)$ and

$$
b(k) \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\left|\phi\left(\theta_{n}^{j}\right)\right| d x=\epsilon_{9}(n, j) .
$$

Hence, we have

$$
\begin{align*}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(\theta_{n}^{j}\right) d x\right| \\
& \leq b(k) \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \tag{3.22}\\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\phi\left(\theta_{n}^{j}\right)\right| d x \\
& \quad+\epsilon_{10}(n, j) .
\end{align*}
$$

Combining (3.14), (3.20) and (3.22), we get

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\phi^{\prime}\left(\theta_{n}^{j}\right)-b(k)\left|\phi\left(\theta_{n}^{j}\right)\right|\right) d x \\
& \leq \int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x \\
& +2 \phi(2 k)\left(\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right)+\epsilon_{11}(n, j) .
\end{aligned}
$$

Then, lemma 2.3 with $x=1$ and $y=b(k)$, yields

$$
\begin{align*}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \tag{3.23}\\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& \leq 2 \int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x \\
& +4 \phi(2 k)\left(\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right)+\epsilon_{11}(n, j) .
\end{align*}
$$

On the other hand

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
&= \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& \quad+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}-\nabla T_{k}(u) \chi^{s}\right) d x \\
& \quad-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
& \quad+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x .
\end{aligned}
$$

We shall pass to the limit in n and then in j in the last three terms of the right hand side of the above equality. By similar arguments as in (3.15) and (3.21), we obtain

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}-\nabla T_{k}(u) \chi^{s}\right) d x=\epsilon_{12}(n, j)
$$

and

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x=\epsilon_{13}(n, j)
$$

and

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x=\epsilon_{14}(n, j) \tag{3.24}
\end{equation*}
$$

so that

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right) \\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
& =\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& \quad+\epsilon_{15}(n, j) .
\end{aligned}
$$

Let $r \leq s$, we use (3.2), (3.25) and (3.23) to get

$$
\begin{aligned}
0 \leq & \int_{\Omega^{r}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
\leq & \int_{\Omega^{s}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
= & \int_{\Omega^{s}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x \\
\leq & \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right) \\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x+\epsilon_{15}(n, j) \\
\leq & 2 \int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x \\
& +4 \phi(2 k)\left(\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right)+\epsilon_{16}(n, j),
\end{aligned}
$$

Which gives by passing to the limit sup over n and then over j

$$
\begin{aligned}
& 0 \leq \limsup _{n \rightarrow \infty} \int_{\Omega^{r}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
& \leq 2 \int_{\Omega \backslash \Omega^{s}} l_{k} \cdot \nabla T_{k}(u) d x+4 \phi(2 k)\left(\int_{\{|u| \geq m\}}|f| d x+\int_{\{m \leq|u| \leq m+1\}} \bar{M}(|F|) d x\right) .
\end{aligned}
$$

Letting s and then $m \rightarrow \infty$, taking into account that
$l_{k} \nabla T_{k}(u) \in L^{1}(\Omega), f \in L^{1}(\Omega), \bar{M}(|F|) \in L^{1}(\Omega),\left|\Omega \backslash \Omega^{s}\right| \rightarrow 0$,
$\{|u| \geq m\} \rightarrow 0$, and $\{m \leq|u| \leq m+1\} \rightarrow 0$, one has
$\int_{\Omega^{r}}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \rightarrow 0$
as $n \rightarrow \infty$. As in [4], we deduce that there exists a subsequence of $\left\{u_{n}\right\}$ still indexed again by n such that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \quad \text { a.e. in } \Omega \text {. } \tag{3.26}
\end{equation*}
$$

Thus, by (3.12) and (3.26) we have

$$
\begin{equation*}
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \quad \text { weakly in }\left(L_{\bar{M}}(\Omega)\right)^{N} \tag{3.27}
\end{equation*}
$$

for $\sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)$ and for all $k \geq \sigma$.

Step4: Modular convergence of the truncations.
Going back to (3.23), we write

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
& +\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) d x \\
& +4 \phi(2 k)\left(\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
& +2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x+\epsilon_{11}(n, j) .
\end{aligned}
$$

and by (3.24) we get

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
&+4 \phi(2 k)\left(\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \bar{M}(|F|) d x\right) \\
&+2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x+\epsilon_{17}(n, j) .
\end{aligned}
$$

We pass now to the limit sup over n in both sides of this inequality, to obtain

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
& \quad+4 \phi(2 k)\left(\int_{\{|u| \geq m\}}|f| d x+\int_{\{m \leq|u| \leq m+1\}} \bar{M}(|F|) d x\right) \\
& \quad+2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x+\lim _{n \rightarrow \infty} \epsilon_{17}(n, j),
\end{aligned}
$$

in which, we pass to the limit in j to get

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \\
& \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) \chi^{s} d x \\
& \quad+4 \phi(2 k)\left(\int_{\{|u| \geq m\}}|f| d x+\int_{\{m \leq|u| \leq m+1\}} \bar{M}(|F|) d x\right) \\
& \quad+2 \int_{\Omega \backslash \Omega^{s}} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x
\end{aligned}
$$

letting s and then $m \rightarrow \infty$, one has
$\limsup _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x$
On the other hand, by Fatou's lemma, we have
$\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x$.
It follows that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x=\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x .
$$

By lemma 2.2 we conclude that

$$
\begin{equation*}
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) \rightarrow a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) \tag{3.28}
\end{equation*}
$$

strongly in $L^{1}(\Omega), \forall k \geq \sigma$. The convexity of the N-function M and (3.3) allow us to have

$$
\begin{aligned}
& M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|}{2}\right) \\
& \leq \frac{1}{2} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right)+\frac{1}{2} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u)
\end{aligned}
$$

Then, by (3.28) we get

$$
\lim _{|E| \rightarrow 0} \sup _{n} \int_{E} M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|}{2}\right) d x=0
$$

So that, by Vitali's theorem one has

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { in } W_{0}^{1} L_{M}(\Omega)
$$

for the modular convergence, for all $k \geq \sigma$.

Step5: Equi-integrability of the nonlinearities.
As a consequence of (3.10) and (3.26), one has

$$
H_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow H(x, u, \nabla u) \quad \text { a.e. in } \Omega .
$$

We shall prove that the sequence $\left\{H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right\}$ is uniformly equiintegrable in Ω.
Let E be a measurable subset of Ω, for all $m \geq \sigma$, we have

$$
\begin{aligned}
& \int_{E}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x=\int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \\
+ & \int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x .
\end{aligned}
$$

On the one hand, the use of $T_{1}\left(u_{n}-T_{m-1}\left(u_{n}\right)\right)$ as test function in (3.7), the Young's inequality and (3.3) led to

$$
\begin{gathered}
\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m-1}\left(u_{n}\right)\right) d x \leq \int_{\left\{\left|u_{n}\right| \leq m-1\right\}}\left|f_{n}\right| d x \\
+\int_{\left\{m-1 \leq\left|u_{n}\right| \leq m\right\}} \bar{M}(2|F|) d x
\end{gathered}
$$

Then, assumption (3.5) gives

$$
\int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \int_{\left\{\left|u_{n}\right| \leq m-1\right\}}\left|f_{n}\right| d x+\int_{\left\{m-1 \leq\left|u_{n}\right| \leq m\right\}} \bar{M}(2|F|) d x .
$$

For all $\epsilon>0$, one can find an $m=m(\epsilon)>1$ such that

$$
\sup _{n} \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \frac{\epsilon}{2} .
$$

On the other hand, we use (3.3) and (3.4) to get

$$
\begin{aligned}
\int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq & \int_{E}\left|H_{n}\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right)\right| d x \\
\leq & b(m)\left(\int_{E} M\left(\left|\nabla T_{m}\left(u_{n}\right)\right|\right) d x+\int_{E} h(x) d x\right) \\
\leq & b(m) \int_{E} a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \cdot \nabla T_{m}\left(u_{n}\right) d x \\
& +b(m) \int_{E} h(x) d x .
\end{aligned}
$$

We use the fact that from (3.28) the sequence $\left\{a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right)\right.$. $\left.\nabla T_{m}\left(u_{n}\right)\right\}$ is equi-integrable and that $h \in L^{1}(\Omega)$ to obtain

$$
\lim _{|E| \rightarrow 0} \sup _{n} \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x=0
$$

where $|E|$ denotes the Lebesgue measure of the subset E. Consequently

$$
\lim _{|E| \rightarrow 0} \sup _{n} \int_{E}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x=0 .
$$

This proves that the sequence $\left\{H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right\}$ is uniformly equi-integrable in Ω. By Vitali's theorem, we conclude that $H(x, u, \nabla u) \in L^{1}(\Omega)$ and

$$
\begin{equation*}
H_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow H(x, u, \nabla u) \tag{3.29}
\end{equation*}
$$

strongly in $L^{1}(\Omega)$.

Step6: Passage to the limit.
Let $v \in W_{0}^{1} L_{M}(\Omega) \cap L^{\infty}(\Omega)$. By [9, Lemma 4], there exists a sequence $\left\{v_{j}\right\} \subset \mathcal{D}(\Omega)$ such that $\left\|v_{j}\right\|_{\infty} \leq(N+1)\|v\|_{\infty}$ and

$$
v_{j} \rightarrow v \quad \text { in } W_{0}^{1} L_{M}(\Omega)
$$

for the modular convergence and a.e. in Ω. Let $k \geq \sigma$. We go back to approximate equations (3.7) and use $T_{k}\left(u_{n}-v_{j}\right)$ as test function to obtain

$$
\begin{align*}
& \int_{\Omega} a\left(x, T_{t}\left(u_{n}\right), \nabla T_{t}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}-v_{j}\right) d x+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}-v_{j}\right) d x \tag{3.30}\\
& =\int_{\Omega} f_{n} T_{k}\left(u_{n}-v_{j}\right) d x+\int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}-v_{j}\right) d x
\end{align*}
$$

where $t=k+(N+1)\|v\|_{\infty}$. The first term in the left-hand side of (7.3.23) is written as

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{t}\left(u_{n}\right), \nabla T_{t}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}-v_{j}\right) d x \\
& =\int_{\left\{\left|u_{n}-v_{j}\right|<k\right\}} a\left(x, T_{t}\left(u_{n}\right), \nabla T_{t}\left(u_{n}\right)\right) \cdot \nabla T_{t}\left(u_{n}\right) d x \\
& -\int_{\left\{\left|u_{n}-v_{j}\right|<k\right\}} a\left(x, T_{t}\left(u_{n}\right), \nabla T_{t}\left(u_{n}\right)\right) \cdot \nabla v_{j} d x
\end{aligned}
$$

Thus, by (3.27) and (3.28) we obtain

$$
\int_{\Omega} a\left(x, T_{t}\left(u_{n}\right), \nabla T_{t}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}-v_{j}\right) d x \rightarrow \int_{\Omega} a\left(x, T_{t}(u), \nabla T_{t}(u)\right) \cdot \nabla T_{k}\left(u-v_{j}\right) d x
$$

as $n \rightarrow \infty$. Since

$$
T_{k}\left(u_{n}-v_{j}\right) \rightarrow T_{k}\left(u-v_{j}\right) \quad \text { in } L^{\infty}(\Omega) \text { for } \sigma^{*}\left(L^{\infty}, L^{1}\right),
$$

we use (3.29) and the fact that $f_{n} \rightarrow f$ strongly in $L^{1}(\Omega)$ as $n \rightarrow \infty$, to obtain

$$
\begin{aligned}
\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}-v_{j}\right) d x & \rightarrow \int_{\Omega} H(x, u, \nabla u) T_{k}\left(u-v_{j}\right) d x, \\
\int_{\Omega} f_{n} T_{k}\left(u_{n}-v_{j}\right) d x & \rightarrow \int_{\Omega} f T_{k}\left(u-v_{j}\right) d x,
\end{aligned}
$$

as $n \rightarrow \infty$. For the last term in the right-hand side of (3.30) we write

$$
\int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}-v_{j}\right) d x=\int_{\left\{\left|u_{n}-v_{j}\right|<k\right\}} F \cdot \nabla u_{n} d x-\int_{\left\{\left|u_{n}-v_{j}\right|<k\right\}} F \cdot \nabla v_{j} d x .
$$

Hence, by (3.9) we obtain

$$
\int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}-v_{j}\right) d x \rightarrow \int_{\Omega} F \cdot \nabla T_{k}\left(u-v_{j}\right) d x
$$

Therefore, passing to the limit as $n \rightarrow \infty$ in (3.30), we get

$$
\begin{aligned}
& \int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}\left(u-v_{j}\right) d x+\int_{\Omega} H(x, u, \nabla u) T_{k}\left(u-v_{j}\right) d x \\
& =\int_{\Omega} f T_{k}\left(u-v_{j}\right) d x+\int_{\Omega} F \cdot \nabla T_{k}\left(u-v_{j}\right) d x
\end{aligned}
$$

in which we pass to the limit as $j \rightarrow \infty$ to obtain

$$
\begin{aligned}
& \int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}(u-v) d x+\int_{\Omega} H(x, u, \nabla u) T_{k}(u-v) d x \\
& =\int_{\Omega} f T_{k}(u-v) d x+\int_{\Omega} F \cdot \nabla T_{k}(u-v) d x .
\end{aligned}
$$

Which completes the proof of theorem 3.1.
Remark 4.1. If the N-function M satisfies the Δ_{2}-condition, the sequence $\left\{a\left(x, u_{n}, \nabla u_{n}\right)\right\}$ will be bounded in $\left(L_{\bar{M}}(\Omega)\right)^{N}$. Then, the function u solution of the problem (3.6) is such that: $u \in W_{0}^{1} L_{M}(\Omega), H(x, u, \nabla u) \in$ $L^{1}(\Omega)$ and

$$
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla v d x+\int_{\Omega} H(x, u, \nabla u) v d x=\int_{\Omega} f v d x+\int_{\Omega} F \cdot \nabla v d x
$$

for every $v \in W_{0}^{1} L_{M}(\Omega) \cap L^{\infty}(\Omega)$.
Remark 4.2. We can interpret theorem 3.1 in the following sense: the problem

$$
\left\{\begin{array}{l}
u \in W_{0}^{1} L_{M}(\Omega), H(x, u, \nabla u) \in L^{1}(\Omega) \\
-\operatorname{div} a(x, u, \nabla u)+H(x, u, \nabla u)=\mu
\end{array}\right.
$$

admits a solution if and only if μ belongs to $L^{1}(\Omega)+W^{-1} L_{\bar{M}}(\Omega)$.
Remark 4.3. If we replace (3.1) by the more general growth condition

$$
|a(x, s, \xi)| \leq b_{0}(|s|)\left(a_{0}(x)+\bar{M}^{-1} M(\tau|\xi|)\right)
$$

where $a_{0}(x)$ belongs to $E_{\bar{M}}(\Omega), \tau>0$ and b_{0} is a positive continuous increasing function, we can adapt the same ideas to prove the existence of solutions for the problem

$$
\left\{\begin{array}{l}
u \in W_{0}^{1} L_{M}(\Omega), H(x, u, \nabla u) \in L^{1}(\Omega) \text { and } \\
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}(u-v) d x+\int_{\Omega} H(x, u, \nabla u) T_{k}(u-v) d x \\
=\int_{\Omega} f T_{k}(u-v) d x+\int_{\Omega} F \cdot \nabla T_{k}(u-v) d x \\
\text { for } v \in W_{0}^{1} L_{M}(\Omega) \cap L^{\infty}(\Omega),
\end{array}\right.
$$

by considering the following approximation problems

$$
\left\{\begin{array}{l}
u_{n} \in W_{0}^{1} L_{M}(\Omega) \\
-\operatorname{div} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)+H_{n}\left(x, u_{n}, \nabla u_{n}\right)=f_{n}-\operatorname{div} F \quad \text { in } \Omega .
\end{array}\right.
$$

As an application of this result, we give
$-\operatorname{div}\left(\left(1+|u|^{q} \frac{\exp \left(|\nabla u|^{p}\right)-1}{|\nabla u|^{2}} \nabla u\right)+u\left(\exp \left(|\nabla u|^{p}\right)-1\right)=f-\operatorname{div} F \quad\right.$ in Ω.
with $p>1$ and $q>0$.

References

[1] Adams, R.: Sobolev spaces, Academic Press Inc, New York, (1975)
[2] Benkirane, A., Elmahi, A.: An existence theorem for a strongly nonlinear problems in Orlicz spaces, Nonlinear Anal. T.M.A. 36, pp. 11-24 (1999).
[3] Benkirane, A., Elmahi, A.: strongly nonlinear elliptic equations having natural growth terms and L^{1} data, Nonlinear Anal. T.M.A. 39, pp. 403-411 (2000).
[4] Benkirane, A., Elmahi, A.: Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. T.M.A. 28, pp. 1769-1784 (1997).
[5] Benkirane, A., Elmahi, A., Meskine, D.: An existence theorem for a class of elliptic problems in L^{1}, Applicationes Mathematicae 29, 4, pp. 439-457 (2002).
[6] Elmahi, A., Meskine, D.: Nonlinear elliptic problems having natural growth and L^{1} data in Orlicz spaces , Ann. Mat. Pura Appl. 184, 2, pp. 161-184 (2004).
[7] Elmahi, A., Meskine, D.: Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces, Abst. Appl. Anal. 2004, 12, pp. 1031-1045 (2004).
[8] Gossez, J.-P.: A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. Sympos. Pure Math., 45, Part 1, (1986).
[9] Gossez, J.-P.: Some approximation properties in Orlicz-Sobolev spaces, Stud. Math. 74, pp. 17-24 (1982).
[10] Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. soc. 190, pp. 163-205 (1974).
[11] Gossez, J.-P., Mustonen, V.: Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11, pp. 379-492 (1987).
[12] Hewitt, E., Stromberg, K.: Real and abstract analysis, Springer-Verlag, Berlin Heidelberg New York, (1965).
[13] Krasnosel'skii, M., Rutikii, Ya.: Convex functions and Orlicz spaces, Groningen, Nordhooff (1969).

A. Youssfi
Département de Mathématiques et Informatique Faculté des Sciences
Dhar-Mahraz
B.P 1796 Atlas
Fès Morocco
Morocco
e-mail: Ahmed.youssfi@caramail.com

