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Abstract

In this paper, we prove the existence of solutions for some strongly
nonlinear Dirichlet problems whose model is the following

Vu

— 1
—div(M M
(T M (V)

) + uM(|Vu|) = f —divF in D'(Q),

where 0 is an open bounded subset of RN, N > 2.
We emphasize that no Ag-condition is required for the N-function
M.
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1. Introduction

Let © be a bounded open set of IRV, N > 2, and let M be an N-function.
Consider the following Dirichlet problem

(1.1) A(u) + H(z,u,Vu) = f,

where

A(u) := —diva(z,u, Vu)

is a Leray-Lions type operator defined on its domain D(A)CW{ Ly (Q) and
H is a nonlinearity assumed to satisfy the natural growth condition

(1.2) [H (2,5, €)| < b(|s])(h(z) + M([E]))

Recently, a large number of papers was devoted to the existence of
solutions of (1.1). In the variational framework, that is f € W~ Eg7(),
an existence result was proved in [8] when H depends only on z and u and
satisfy the following sign condition

H(z,s)s >0,

and in [2] when M satisfies the Ag-condition and H depends also on Vu
and satisfies

(1.3) H(z,s,§)s > 0.

The result in [2] was generalized in [7] to N-functions without As-
condition.

In the case where f € L'(€2), problem (1.1) was solved in [3] under the
so-called coercivity condition

(1.4) |H(x,s,&)| > BM(|£]) for |s| > some T

and in [5] assuming the sign condition (1.3) but the result was restricted to
N-functions satisfying the As-condition (see bellow). The result contained
in [5] was then extended in [6] to N-functions without assuming the Ao-
condition. The solution u given in this case is such that its truncated
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function T} (u) belongs to the energy space Wi Ly (Q2) for all k& > 0, but
not the function u it self.

Our main goal in this paper, is to prove the existence of a solution in
Wi Ly () for problems of the kind of (1.1) when the source term has the
form f — divF with f € L*(Q) and |F| € E57(2), without any restriction
on the N-function M.

The paper is organized as follows, after giving a background in section
2, in section 3 we list the basic assumptions and our main result which will
be proved in six steeps in section 4.

2. Prerequisites

2.1 Let M : IR" — IR™ be an N-function, ie. M is continuous, convex,
with M(t) > 0 for ¢ > 0, MT(t)—>Oast—>OandMT(t)—>ooast—>oo. The
N-function conjugate to M is defined as M (t) = sup{st — M (t),s > 0}. We

recall the Young’s inequality: for all s,¢ > 0,
st < M(s) + M(t).
If for some k > 0,
(2.1) M(2t) < kM(t) forall t>0,

we said that M satisfies the Ag-condition, and if (2.1) holds only for ¢ >
some tg, then M is said to satisfy the As-condition near infinity.

We will extend these N-functions into even functions on all IR.

Let P and @ be two N-functions. the notation P<() means that P grows
essentially less rapidly than @, i.e.

P(t)

for all e >0, —=< —0 as t— o0,

Q(et)
that is the case if and only if

Q'(t)
P=i(t)

—0 as t— co.

2.2 Let © be an open subset of IRY. The Orlicz class Kj;(f2) (resp. the
Orlicz space Ljs(€2)) is defined as the set of (equivalence class of) real-
valued measurable functions « on 2 such that:
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/QM(u(x))dm < oo (resp. /QM (@) dx < oo for some A > 0).

Endowed with the Luxemburg norm

x)

llu|lar = inf{A >0: /QM (%) dr < oo},

Ly () is a Banach space and Kj/(Q) is a convex subset of Ly (€2). The
Orlicz norm is defined on L/ (Q2) by

lull ) = sup /Q u(z)v(z)de,

where the supremum is taken over all functions v € Lg7(€2) such that
[voll37 < 1.

The two norms |[.[[as and ||.||(as) are equivalent (see [13]).

The closure in Ly/(€2) of the set of bounded measurable functions with
compact support in € is denoted by Ej;(€2).

2.3 The Orlicz-Sobolev space WL (Q) (resp. W1E(9)) is the space of
functions u such that w and its distributional derivatives up to order 1 lie
in Ly () (resp. Ep(9)).

It is a Banach space under the norm

lulliar =D [1D%ullpy-
al<1

Thus, WLy (Q) and WLE () can be identified with subspaces of the
product of (N + 1) copies of Lys(€2). Denoting this product by IILys, we
will use the weak topologies o(I1Lys, I1E5;) and o(I1Lyy, I1L7;).

The space Wi Ep(€2) is defined as the norm closure of the Schwartz space
D(2) in W'E) () and the space W Ly(Q) as the o(IILyy, IIE5;) closure
of D(Q) in WLy (Q).

We say that a sequence {u,} converges to u for the modular convergence
in WYLy () if, for some A > 0,

D, — D°
/M(%) dx — 0 for all |a] <1,
Q

this implies convergence for o(IILys, I1L7;) (see [9, Lemma 6]).
If M satisfies the Ag-condition on IR™ (near infinity only if © has finite
measure), then the modular convergence coincides with norm convergence

(see [13, Theorem 9.4]).
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Recall that the norm || Dul|ps defined on Wi Ly (€2) is equivalent to ||u|1,as
(see [10]).

Let W1L:7(Q) (resp. W1E57(9)) denotes the space of distributions on
) which can be written as sums of derivatives of order < 1 of functions in
L7(€2) (resp. E77(€2)). It is a Banach space under the usual quotient norm.

If the open Q has the segment property then the space D(f2) is dense
in W3 L () for the topology o (I1Lys, IIL5;) (see [10]). Consequently, the
action of a distribution in W™1L77(2) on an element of W Ly(€) is well
defined. For an exhaustive treatments one can see for example [1, 13].

2.4 We will use the following lemma, (see [6]), which concerns operators of
Nemytskii Type in Orlicz spaces. It is slightly different from the analogous
one given in [13].

Lemma 2.1. Let © be an open subset of IRV with finite measure. let M,
P and ) be N-functions such that Q< P, and let f : Q x IR — IR be a
Carathéodory function such that, for a.e.x €  and for all s € IR,

|f(x,5)] < c(z) + ki P M (ko s)),

where ki, ko are real constants and c(x) € Eg(S2). Then the Nemytskii
operator Ny, defined by N¢(u)(x) = f(x,u(x)), is strongly continuous from
P(Eu,35) = {u € La() = d(u, Exr(Q)) < £} into Eqg().

We will use the following lemma which can be found in [12],

Lemma 2.2. If {f,} € LY(Q) with f, — f € LY(Q) a.e. in Q, f, f >0
a.e. in ) and/ fu(x)dx — / f(z)dz, then f, — f strongly in L*(Q).
Q Q

We also use the technical lemma:

Lemma 2.3. Let x and y be two nonnegative real numbers and let
P(s) = se?,

with § = 4. Then

26/(s) —ylo(s)| 2 5. VseR.



162 A. Youssfi

3. Assumptions and main result
Let Q be an open bounded subset of IR, N > 2, with the segment property
and let M and P be two N-functions such that P<<M.
Let A: D(A) C WgLa(2) — W'L77(Q) be a mapping (non everywhere
defined) given by

A(u) := —diva(z,u, Vu)

where a : Q x IR x RN —IRY is a Carathéodory function (i.e., a(z,,-) is
continuous on IR x RN for almost every = in  and a(-, s,£) is measurable
on ( for every (s,€) in IR x IRN) satisfying for a.e. z € Q, and for all s € IR
and all £, 7 € RN, € #1,

— ——1
(31 la(w,5,9)| < ao(w) + kP M(kals|) + kT M(k€])
where ag(z) belongs to E57(€2) and k1, k2 to IRY,

(3‘2) (a(a:,s,g) - a(ﬂ%S,U))'(f - 77) >0

(3-3) a(z,s,§)-& = M([¢])

Furthermore, let H : Q x IR x IRN —IR be a Carathéodory function such
that

(3.4) [H(z,s,6)] < b(|s])(M([£]) + h(x))

for almost = €  and for all s € IR, ¢ € RN, with b a real valued positive
increasing continuous function and h a nonnegative function in L'(Q), and

(3.5) H(z,s,&)sgn(s) = M([])

for a.e. x € Q, for every ¢ € RN and for every s € IR such that |s| > o,
where ¢ is a positive real number. Consider the following Dirichlet problem:
A(uw)+ H(z,u,Vu) = f —div(F) in

(3.6)
u=20 on Of),

We shall prove the following existence result:
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Theorem 3.1. Assume that f € L'(Q), |F| € E57(Q) and (3.1)-(3.5) hold
true, then there exists at least a function u solution of (3.6) in the sense
that u € WLy (), H(z,u, Vu) € LY(Q) and

/ a(z,u, Vu) - VI (u — v)dz + / H(z,u, Vu)Ti(u —v)dx
Q Q
= / fTi(u—v)der + / F - VTi(u—v)dz
Q Q
for every v € WLy (2) N L>®(Q) and every k > o.

Remark 3.1.

1. We can replace assumptions (3.3), (3.4) and (3.5) by the following ones:

(3.3) a(@,5,6)€ > aM ('%)

with a, A > 0 and

(3.4 (5,9 < o(lsl) (3 (£]) 4 )
with 0 < A < and

(3.5 (s €)sen(s) > 5ar (41)

with 0 <7 < X and 8 > 0.

2. A consequence of (3.3) and the continuity of a with respect to &, is that,
for almost every x in (2 and s in IR,

a(z,s,0) = 0.

3. Note that assumption (3.5) gives a sign condition on H only near infinity.

4. In (3.4) we can assume only that b is positive and continuous.

Remark 3.2. The solution of (3.6) given by theorem 3.1 belongs to W} L ()
even if F' = 0, this regularity is due to assumption (3.5).
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4. Proof of theorem 3.1

Let {f,} be a sequence of L>°(£2) functions that converges strongly to f in
LY(9).

Let n in IN and let

H(xusaf)
L+ 2l H(z,5,6)|

Hn(.:v, S? g) =

It’s easy to see that |Hy(z,s,&)| < n, |Hp(z,s,§)| < |H(z,s,&)| and
H,(x,s,&)sgn(s) > 0 for |s| > o. Since H,, is bounded for fixed n, there
exists, (see [11, Propositions 1 and 5]), a function wu,, in W3 Ly () solution
of

{ A(up) + Hp(x, up, Vuy) = fr —divF in  Q,

Uy =0 on 0f),

in the sense
(3.7)

/a(:n,un,Vun)-Vvd:B+/ H,(z,up, Vup)vdr = / fnvd$+/ F-Vuvdzx
Q Q Q Q

for every v € Wi Ly (Q).

Stepl: Estimation in W} Ly ().
For k > 0, we denote by T} the usual truncation at level k defined by
T (s) = max(—k, min(k, s))
for all s € IR. Let us choose
v =¢(T5(un))
as test function in (3.7), where o is given by (3.5), ¢ is the function in

lemma 2.3 and b is the function in (3.4). Using (3.3) and the Young’s
inequality, we obtain
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| MOVT, ()6 T + [ Haet, ) (T (1))

< 0@ full oy + ¢(0) [ TFNdz + 5 [ MOTT, ()6 (T )

Since {f,,} is bounded in L'(2), there exists a constant ¢ not depending
on n such that

%/QM(|VTU(un)])¢'(Ta(un))da: + /QHn(a:,un,VunM(Ta(un))da:

< c(¢(0) + ¢'(0)),

which we can write, since H,, enjoys the same properties of H,

1 /
2 S MOV ()6 Tolwn) + [ Ha o, V)T )

+ / H (2, i, Vi )T (1) e
{lunlo}

< ¢(¢(0) + ¢/ ().
By (3.4) we have

/ Hy (2,10, Vi) $(To () d
{lun|<o}

< b(0) (| MUV () 6(To(wn)) o+ 6(0) 1300y )

while using(3.5), we get

/{|un>a} Hy (2, un, Vg )§(To (un))de > ¢(a) / M(|Vup|)da.

{lun|2o}

Hence, we obtain

Jo MV T (un)]) (36 (T (1)) — B ST (u))])

£000) [ M(Vual)ds < c(9(0) + /(o)) + b))l xcy
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Then, lemma 2.3 with the choice z = 3 and y = b(0), yields

1 [ MOV ()i + 6(0) [ M(IFunl)da

{lun|zo}

< c(@(0) + ¢'(0)) + b(o) (o)Al 11 (0)
which implies that

(3.8) /Q M(|Vun|)dz < co,

where ¢p is a constant not depending on n. Thus {u,} is bounded in
WLy (), and consequently there exist a function u in WLy (Q) and a
subsequence still denoted by {u,} such that

(3.9) Up, —u in WLy () for o(IlLyg, Ez7)
and
(3.10) up, — u in Ep(Q) strongly and a.e. in €.

Step2: {a(z, Ty (un), VIk(un))} is bounded in (L37(2)) for all k > o.
We will use the Orlicz norm. For that, let v € (L ()N with ||¢]|x < 1.
For all k > o, we write using (3.2)

/Q (a(x,Tk(un), VTi(uy)) — alx, T (uy), ]{%)) ) (VTk(Un) _ %) dz > 0,
so that

(3.11)

1
E/Sza(x,Tk(un),VTk(un))-wdfc < /Qa(a:,Tk(un),VTk(un))-VTk(un)d:U

- / o, T (1), kﬂ) VT () d
Q 2

1 (0
4 /Q ol Te(un), 1) - oo
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To estimate the first term in the right, we take v = Ti(uy) as test
function in (3.7) and then use the Young’s inequality, the fact that
Hy (2, un, Vup)Ti(un) > 0 on the set {|u,| > k} and (3.3), to obtain

1 / a2, Ti(wn), VT () - VT (wn)dz + / Ho (2, t, Vi) T (1)
2 Jo {Jun|<k}

< blfulley + [ QIF)dz.

Assumption (3.4) yields

IN

|/ H, (z,upn, Vup) T (uy,)dz
{Jun|<k}

k) ([ M(Tundo + Al o)
< kb(k)(co + [|PllL1 (),

where cg is the constant in (3.8). Hence, since {f,} is bounded in L(Q) ,
we deduce that

/Qa(x,Tk(un),VTk(un))-VTk(un)d:L‘ < Ay

with Ay a constant depending on k. By the Young’s inequality, (3.11)
becomes

1

k_z/ga(z,frk(un),vmun)) cpdr < A + (1+2k31)/QM(|VTk(un)|)d$

(e, Ti(un), 22)

1 S
14+ —)(1+2k M 2 |d
L 1)/9 1+ 2k v

1+ 2k
= [ M(wide.

_l’_
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By virtue of (3.1) and the convexity of M, we get
_[late T 2
M d

/Q 1+ 2k v

1
1+ 2k

<

(/Q (a0 (@) dz + klﬁ_lM(kk2)|Q|>

k1

+1—i—2kl

[ (s

Q

We conclude that
/a(m,Tk(un),VTk(un))-wd:B < ¢k
Q

for all ¥ € (L ()N with ||1]|a < 1, this means that

(3.12) la(e, Ti(wn), VT (wn)ll iy < i
for every k > o.

Step3: Almost everywhere convergence of the gradients.

Since the function u belongs to WLy (), there exists a sequence
{v;} € D(Q), (see [9]), which converges to u for the modular convergence
in WLy (Q) and a.e. in Q.

For m > k > o, we define the function p,, by

1 if |s|<m
pm(s) =% m+1—|s| if m<|s|<m+1
0 if |s|>m+1.

Let 0], = Ti.(un) — Ti(vj), 07 = Ty (u) — Ty (v)) and 2, ., = H(03) prm(un)
where ¢ is the function in lemma 2.3.

In what follows, we denote by €;(n,j), (i € IN), various sequences of
real numbers which tend to 0 when n and 7 — oo respectively, i.e.

lim lim €(n,j) =0.
j—00 N—00
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We use 2}, € Wy Ly () as test function in (3.7) to get

(3.13)
< A(un),zgm > +/ Hn(x,un,Vun)zﬁ; ndT = / fnz,ﬂ mdx—i—/ F‘Vz,% mdx.
’ Q ’ Q ’ Q ’

In view of (3.10), we have 2], — ¢(67)pm(u) weakly in L°(Q) for
o*(L>®, L') as n — oo, then

tiny [ fuzdde = [ 10(09)pun(u)de,

n—oo
and since ¢(67) — 0 weakly in L>(Q) for o(L>, L) as j — oo, we have

lim /Q O pon () daz = 0,

J—00

hence, we obtain

/ fnsz md*’lj = GO(nvj)'
Q b

Thanks to (3.8) and (3.10), we have as n — oo

2 = (07 pm(u)  in WiLa(Q) for o(I1Lyy, I1ES),

which implies that

n—o0

lim / F-VZ dr— / F V096 (69 pyn () da +/ F-Vud(69)p, (u)dz.
Q ’ Q Q
On the one hand, by Lebesgue’s theorem we get

lim /QF - Vuo(6))pl,(u)dz = 0,

j—o0

on the other hand, we write

[ F V8@ (s = [ VT 0)pn(u)ds
Q Q

- /Q F -V Ti(0,) (67)prm (u) dr,
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so that, by Lebesgue’s theorem one has

lim [ P VTw)d/ 0oz = [ F-VTi(w)pn(u)da,

J—0o0

Let A > 0 such that M (W%%/\—VM) — 0 strongly in L'(Q2) as j — oo and
M (W—/\M) € L'(), the convexity of the N-function M allows us to have

M (!VTkwj)d(w)pm(u) - VTk<u>pm<u>r>
40! (2k)

o () ) ()

Then, by using the modular convergence of {Vv;} in (La(€2))
Vitali’s theorem, we obtain

N and

VT3 (0))¢' (0))pm(u) = VTi(w)pm(u)  in (Lar(2)Y
for the modular convergence, and then
lm/FVﬂ@WWMMW:/FVﬂ@%MM

Q Q

J—0o0

We have proved that

/ F -V dx = e (n,j).
Q ’

Since Hp (2, Un, Vun)2}, ,, > 0 on the set {|u,| > k} and pp,(un) = 1 on
the set {|u,| < k}, we have

(3.14) < A(“n%%{,m >+ Chun | <k) Hn(xyumvun)(é(e%)dx < ea(n, j)
Up |<

Now, we will evaluate the first term of the left-hand side of (3.14) by
writing
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< Aun), 2, m
a(z, un, V) - (VT (un) — VT (0;))¢ (62) prm (un) da
a(x, tp, Vi) - Vund(02) ol (uy)dz

a(z, Ti(un), VTk(un)) - (VTk(un) — VTi(v)))¢' (62)dax

+
D\:o\»@\

a(@, tn, Vuy) - VT (Uj)(/b/(egz)Pm(un)dx

\

{lun|>k}

+ [ a(z,un, Vuy) - V(09 pl, (un)dz,

D

and then

< A(up), 2, >

2y m
= | (a(a Ti(ua), 9Tk()) = ale Talwn). VT(0)x5)
(VT (un) — VT (v5)x5) ' (63,)da
1)+ [0 Tin), VT )N) - (VTiun) = VTiei)))e (0
- / O Tl VT - VTi(03)6/ (6]
Q\QS
—/ (2, un, V) VTk ()¢ (02) prm (un ) da
{|un|>k}
+/ a(, tn, Vi) - Vund(09) ol (u,)dz,
Q
where by xj, s > 0, we denote the characteristic function of the subset

QF ={z € Q: |VT)(vj)| < s}

For fixed m and s, we will pass to the limit in n and then in j in the
second, third, fourth and five terms in the right side of (3.15). Starting
with the second term , we have
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[ @ Tulwn), VT, 1)) - (VTi(ua) = V(036 (0)de

— [ ala Te(w), VTk(e,)x) - (VI(w) = V(e x)6 (0)da

as n — 00, since by lemma 2.1 one has

a(z, Tio(un), VIi(v;)x5)) ' (04) — alz, Ti(w), VIi(v;)x;)) 8 (¢7)
strongly in (Eq7(€2))" as n — oo, while

VTk (un) — VTk (u)

weakly in (L7 ()Y by (3.8). Let x* denote the characteristic function of
the subset
O ={xeQ:|VIT,(u)| < s}

As VTi(vj)x; — VTg(u)x® strongly in (Ep ()N as j — oo, one has

[ 0l D), PTh(0)x6) - (VI () = VTi(w)x)6 (67)do — 0
as j — 0o. Then

(3.16)
/Qa(ﬂf’Tk(un% VTk(v)X5) - (VTk(un) — VTk(v5)x5) ¢ (6))dx = e3(n, j).
For the third term of (3.15), by virtue of (3.12) there exist a subsequence

still indexed again by n and a function lj, in (L37(Q2))" with k > o such
that

a(@, Ti(un), VIg(up)) = I, weakly in (L77(Q))Y for o(IlL57, IIEy).
Then, since VTk(vj)XQ\Q; € (Eym(Q))N, we obtain

= [l Tiun), V() V()0 @) — = [ 0V TL(w) (67
o\Q2 o\
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as n — 00. The modular convergence of {v;} allows us to have

—/ Ik - VTi(v;)d' (67 )dx — — I - VT (u)dx
o\Q: O\Qs

as j — oo. This, proves that

- / a(@, To(tn), Vi (un))-V T (0))¢ (60 )d = — / Uy VT (w)dz+ea(n, 5).
2\0s 0\Qs

(3.17)

As regards the fourth term, observe that p,,(u,) = 0 on the subset
{|un| > m + 1}, so we have

{lun|>k}
- /{| =) a(@, Tnt1(un), VIt (un)) - VT]C@]‘)(ﬁI(Q%)pm(un)dx‘
Un | >
As above, we obtain

B /{u >k} G,(.I" Tm+1(un)7 VTm—i-l(un)) . VTk(v])¢,(9%)pm(Un)d$

= —/ It - VT (w) pm(uw)dx + €5(n, 5).
{lul>k}

Observing that VT (u) = 0 on the subset {|u| > k}, one has

(3.18) - / (@, 1, Vttn) - V()6 (00) prn () dee = €5(n, )
{un >k}

For the last term of (3.15), we have

/Qa(:c, U, Vuy,) - Vuﬂ)(@%)p;n(un)dx

= |/ a(g:, Un, vun) : vun(ﬁ(evjl)p;n(un)dx
{m<|un|<m+1}
< ¢(2k:)/ a(z, up, V) - Vupde.
{m<|up|<m+1}
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To estimate the last term of the previous inequality, we test by 77 (u, —
T (uy)) € WaLp(Q) in (3.7), to get
a(x, Up, V) - Vupdx

{m<|un|<m+1}

+/ Hy (z,upn, Vup)T1(un — Tin(uy))dx
{lun|>m}

::/1ﬁﬂ]@m——Tﬁ@de$+i/ F - Vupdz.
Q

{m<Jun|<m+1}

Using the fact that H,(z,u,, Vuy)T1(u, — Tn(uy)) > 0 on the subset
{Jun| > m} and the Young’s inequality, we get

1

2 /{mgun|§m+1}

g/ |mm+/ (| F|)da.
([} (m<lun|<m1}

It follows that

a(x, Un, V) - Vupdx

/Qa(x, Un,, Vun) : Vun(ﬁ(egl)p;n(un)dx

(3.19)
k nld M dz | .
SQMQ)<Awpmﬂf|x+A;<meH}M“FDx>
From (3.16), (3.17), (3.18) and (3.19) we obtain
(3.20)

< A(“”)? Z?L,m > 2 /Q(a(xv Tk(“”)? VTk(un)) - a(x7 Tk(un)7 VTk(’Uj)X;))

{(VTi(un) = VT (v;)x5) ¢ (03,)d

_2¢@k)(Auuzm}Uhmx+fémsmm$m+uﬂ4OFwdx>

—/ li - VT (u)dx + eg(n, 7).
O\Qs
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Now, we turn to second term of the left hand side of (3.14). We have

‘/ Hy(z,up, Vun)qﬁ(ﬂﬁ;)da:
{lun|<k}

_ / Hy (x, Ty (un), VI (un)) (69 da
{lun|<k}

< (k) | MOVTL)) |60 Ido + b(k) | h@)]o(6))]do

< b(k)/ﬂa(x,Tk(un),VTk(un)) VT (un)|6(609)|dz + €e7(n, ).
Then,

(3.21)
| / Hy (2, U, Vup) (6 dx
{lun|<k}

< bk | (e, Tilua), VT(un) = ala, Tiluen), VIi(0))3))
(Vi) = VT(0)x5 ) [6(63)da
+ 0(0) [ ale, Tiwn), VIL(©0G) - (TTik(un) = VIi(0)x5)0(0})|da
+ 00k) [ ale, (), V() - VTG 10003 lda + ex(n, ).

We proceed as above to get

b(k) [ ol Tlun), V(o)) (VL) =V T ()5 00 o = s, )
and

b(k)/ga(fﬂka(un%VTk(un)) VT (v;)x;510(03)|d = e9(n, ).
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Hence, we have

‘/ H,(z,un, Vun)gb(%)dx
{lun|<k}

(3.22) < b(k‘)/Q (CL(.’IJ,Tk(un)a VTi(un)) — a(z, Ty(uy,), VTk(vj)X;f))
. (VTk(un) - VTk(fuj)X;) |6(67)|da
+ €10(n, ).

Combining (3.14), (3.20) and (3.22), we get

[ (0@ D), Vi) = a(a. Telwn). VL))
(VTk(un) = VT(05)x5) (¢/(65) — b(k)|6(63)]) da

< / lg - VT (u)dx
Q\Qs
+20(20) ( | aldet [ MoFDdx) +en(n, ).
{lun|>m} {m<|un|<m+1}

Then, lemma 2.3 with = 1 and y = b(k), yields
(3.23)

| (el Tu(un), Vi(wn)) = ae, Tiua), VT(2,)x)
(VTi(un) = VTi(0))x5) da

< 2 lk . VTk(u)da:
Q\Qs

+H0(2h) ( J o nlda s | mﬂ%ISmH}M(!F!)dw> +en(n.g).
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On the other hand
| (0@ D). Vi) = e, Ti (), TT(w)x)

- (VTk(up) — VT(u)x?®) dx

- /Q (a(w, Ti(un), VTi(wn)) = o, T(un), VTi(05)x3))

(VTi(un) = VTi(vy)x5) do
+ / oz, T (tn), VTx(n)) - (VTk(0,)XS — VT (w)x")dac

Q

_ /Q (@, T (un), VTi(w)X®) - (VT (tn) — VTi(w)x®)d

+ /Q o, Ti(un), VTe(07)x) - (VTi(tn) — VTi(v7)x)dz.

We shall pass to the limit in n and then in j in the last three terms of
the right hand side of the above equality. By similar arguments as in (3.15)
and (3.21), we obtain

| 0l D), Vi) - (VIk(03)x; = VTk(u)x)d = exa(m. )

and

/Qa(x, Ti(up), VT (w)x?®) - (VIk(up) — VI(uw)x®)dz = €13(n, j)

and

(324) [ alw. Tulwn). VIL@)XS) - (TTi(un) = VT(0y)x)dr = ena(m, ),

so that
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| (@@ Tilwn). Vi) = e, i), ()
(VT4 (un) — VTi(u)x®)d
B2~ [ (ale, Ti(un), VIiun)) = ala, Ti(un), VIL()X5)
(VTi(un) — VTi(vj)x3)dz

+ 615(n7j)‘

Let 7 < s, we use (3.2), (3.25) and (3.23) to get

0< | (0@ Tulun), VIil(wn)) = ae, Ti(ua), VTi(w)
(VTi(un) — VTi(u))da

< [ (ala, Tyfun), VIilwn)) = ala, (), VIi(w))
(VTi(un) — VT (u))da

= | (ala, Ti(un), 9 Tk(un)) = ale Tilwn), VTi(u)x"))
(VTh(un) — VT (w)x®)da

< [ (ale, Tiwn), TT(un) = a(a, Te(u), VI()X)

«(VTi(uy) — VT (u)x®)dzx
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= [ (e, Ti(un), 9Tk ()) = ae, Ti(un), T T(03)5))
(VTi(un) — VTi(v)x5;)dz + e15(n, j)

< 2/ lg - VTi(u)dzx
o\Qs

+45(20) ( | aldet [ H<|F|>dx> + 1o ),
{lun|>m} {m<]un|<m+1}

Which gives by passing to the limit sup over n and then over j

0 <limsup [ (a(z,Tk(un), VIi(un)) — a(x, Tk (uyn), VIi(w)))

n—o00 Qr

(VT (un) — VT (u))dx

<2 [ I VTu(u)de + 46(2K) (/{Wm} flde + /{

M(\F!)dm) .
Q\Qs

m<|u|<m+1}
Letting s and then m — oo, taking into account that

VT (u) € LY(Q), f € LYQ), M(|[F]) € LY(Q), 12\ @] -0,

{lu| > m} — 0, and {m < |u] <m+ 1} — 0, one has

[ (@, (), VT (un)=a(a, Tilun). VL)) (VT (1) = V() do — 0

as m — 00. As in [4], we deduce that there exists a subsequence of {u,}
still indexed again by n such that

(3.26) Vu, — Vu a.e. in €.

Thus, by (3.12) and (3.26) we have

(3.27)
a(z, T (upn), VI (uy)) = a(z, Tg(uw), VIE(u))  weakly in (LM(Q))N

for o(IlLyz, ILE)) and for all k > o.
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Step4: Modular convergence of the truncations.

Going back to (3.23), we write

/Qa(:c, Ti(un), VT (uy)) - VI (uy)dx
< /Q o, T (un), VT (1)) - VT4 (05)x

+ /Q a(@, Ty (un), VIk(07)x5) - (Vi (tn) — VT4 (v))x5)d

+4628) </{|unzm} ol + /{mswsml} MUFde)

+2 oo a(z, T(u), VIp(u)) - VI (u)dz + e11(n, 7).

and by (3.24) we get

/Q a(, T (un), VT(un)) - Vi (1) dee

< /Q 0, T (un), VT () - VT (03)x S

+46(28) </{un|zm} fnldz + /{mswsml} MOFW)

+2 oo a(x, T (u), VI (u)) - VI (u)dz + er7(n, 7).

We pass now to the limit sup over n in both sides of this inequality, to
obtain

limsup | a(z, Ti(un), VIk(uy)) - VIi(uy)de
Q

n—oo

< /Qa(x,Tk(u),VTk(u)) - VTi(vj)x;dx

1 46(2k) ( /{ g /{ e M(|F|)da:>

+2 . a(z, Tp(u), VI(u)) - VIg(u)dz + lim e7(n,j),
Q QS n—oo
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in which, we pass to the limit in j to get

n—oo

lim sSup a(w, Tk(“n)» VTk(un)) ! VTk(un)dx
Q

: / a(x, Ty(u), VTi(u)) - VT (u)x*dx
Q

1 46(2k) ( /{ o /{ e M(|F\)da:>

+2 y a(z, Ti(u), VI (u)) - VI (u)dz,
Q\Qs

letting s and then m — oo, one has

n—oo

limsup [ a(z, T (un), VT (un)) VT (uy)dz < / a(z, Ty, (u), VI (u)) VT (u)de
Q Q
On the other hand, by Fatou’s lemma, we have

/Qa(:n,Tk(u),VTk(u))-VTk(u)d:U < liminf Qa(:n,Tk(un),VTk(un))-VTk(un)d:L‘.

n—oo

It follows that

lim | a(z, T(un), Vi (un))-VTi(un)da = / a(z, Ty (u), VT3 (u)-V Ty () de.

By lemma 2.2 we conclude that
(3.28)  a(x, Tk(upn), VIr(uy)) - VIg(uyn) — a(x, Tp(u), VI(uw)) - VI (u)

strongly in LY(Q), Vk > 0. The convexity of the N-function M and (3.3)
allow us to have

o (’VTk(Un); VTk(“)’)

< —a(x, Ti(un), VI (upn)) - VI (uy) + %a(m, Ti(uw), VI (u)) - VT (u).

N =

Then, by (3.28) we get

lim sup/ M (‘VTk(un) — VT;Ju)\) dr =0
|E|—>O n E 2 '
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So that, by Vitali’s theorem one has
Tio(un) — Te(u)  in Wy L ()
for the modular convergence, for all k£ > o.
Step5: Equi-integrability of the nonlinearities.
As a consequence of (3.10) and (3.26), one has
H,(x,up, Vuy) — H(x,u,Vu) a.e. in Q.
We shall prove that the sequence {H, (z,uy,, Vuy)} is uniformly equi-

integrable in €.
Let E be a measurable subset of €2, for all m > o, we have

/|Hn(x,un,Vun)]dx:/ |Hy (2, Up, Vuy,)|dx
E En{|un|<m}

—|—/ |H,, (2, Uy, Vuy,)|dz.
En{|un|>m}

On the one hand, the use of T} (u,, — Tpn—1(uy)) as test function in (3.7),
the Young’s inequality and (3.3) led to

/ Ho (2, t, Vitn) T4 (i — T (1) )i < / | fo|d
Q {

|un|<m—1}%
+ / (2| F|)da.
{m—1<|un|<m}

Then, assumption (3.5) gives

/ \Ho (2, V)| dee g/ ]fn|da:+/ M (2|F|)d.
{un|2m) {un|<m—1} fm1<unl <}

For all € > 0, one can find an m = m(e) > 1 such that

sup/ | Hp (2, Up, Vuy,)|dz < <
{lun|2m} 2

n



FExistence result for strongly nonlinear elliptic equations in ... 183

On the other hand, we use (3.3) and (3.4) to get

/ |Hoy (2w, V) |dz < /]Hn(x,Tm(un),VTm(un))]dzc
En{|un|<m} E

IN

b(m) < /E M|V T () )z + /E h(w)dw)

IN

b(m) / a(, Ty (), Vo (1)) - V(1)

E
+b(m) /E h(z)dz.

We use the fact that from (3.28) the sequence {a(z, Ty, (un), VI (uy)) -
VT (uy)} is equi-integrable and that h € L(Q) to obtain

lim sup/ |Hp (2, tn, Vuy,)|dz =0,
[E|=0 n JE{|jun|<m}

where |E| denotes the Lebesgue measure of the subset E. Consequently

lim sup/ |Hp (2, wn, Vuy,)|dx = 0.
|[E|—-0 n JE

This proves that the sequence { H,(x, up, Vuy,)} is uniformly equi-integrable

in . By Vitali’s theorem, we conclude that H(z,u, Vu) € L'(Q2) and

(3.29) H,(z,upn, Vuy,) — H(z,u, Vu)

strongly in L(Q).

Step6: Passage to the limit.
Let v € WLy () N L2(2). By [9, Lemma 4], there exists a sequence
{vj} € D(Q) such that ||vj[lcc < (N + 1)||v]|cc and

v; — v in WyLy(Q)

for the modular convergence and a.e. in 2. Let & > 0. We go back to
approximate equations (3.7) and use T (u, — v;) as test function to obtain
(3.30)

/ a(z, Ty (un), VTi(up)) - VI (un — vj)dx + / Hy (2, un, V)T (un — vj)dx
Q

Q
= /anTk(un —vj)dz + /QF - VT (uy — vj)dez,
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where t = k+ (N + 1)||v||oo- The first term in the left-hand side of (7.3.23)

1s written as

/Q a(@, Ty(tn), VTy(un)) - Vi (un — v;)da
- / (@, Ty(un), VTi(wn)) - VT (un)da
{lun—v;|<k}

-/ ala, Ty(un), VT () - Voyda
{lun—vj|<k}
Thus, by (3.27) and (3.28) we obtain
/ a(z, Ty(un), VTi(up)) VI (u, —vj)de — / a(z, Ty(u), VTi(u)) - VI (u—vj)d
Q Q
as m — oo. Since
Tic(up, — v;) — Ti(u —v;) in L%(Q) for o*(L>®, LY),

we use (3.29) and the fact that f, — f strongly in L'(2) as n — oo, to
obtain

/ H,(z,upn, Vup) Ty (un — vj)dx — / H(z,u, Vu)Tj(u — v;)dz,
Q Q

/anTk(un_'Uj)diU*/Qka(u—vj)d:L‘,

as n — oo. For the last term in the right-hand side of (3.30) we write

/ F - VT (up — vj)dr = / F - Vu,dx — / F - Vvjdz.
Q {Jun—v;|<k} {lun—vj|<k}

Hence, by (3.9) we obtain
/ F VT (up — vj)de — / F-VTi(u —vj)de.
Q Q
Therefore, passing to the limit as n — oo in (3.30), we get

/ a(z,u, Vu) - VI (u —vj)dx + / H(z,u, Vu)T}(u — vj)dz
Q Q

= /Qka(u—Uj)deJr /QF'VTk(U—Uj)d%
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in which we pass to the limit as 7 — co to obtain

/ a(z,u, Vu) - VT (u — v)dz + / H(z,u, Vu)Ti(u —v)dx
Q Q

= / fTe(u —v)dx + / F - VTi(u—v)dx.
Q Q
Which completes the proof of theorem 3.1.

Remark 4.1. If the N-function M satisfies the As—condition, the se-
quence {a(z, uy, Vuy)} will be bounded in (L37(2))N. Then, the function
u solution of the problem (3.6) is such that: uw € W§ Ly (Q), H(z,u, Vu) €
LY(Q) and

/a(m,u,Vu)-Vvdx + /H(a:,u, Vu)vdr = / fudx + /F-Vvdm,
Q Q Q Q

for every v € Wi L (Q) N L*°(Q).

Remark 4.2. We can interpret theorem 3.1 in the following sense: the

problem
{ u € WaLy(Q), H(x,u, Vu) € L' (Q)

—diva(z,u, Vu) + H(z,u, Vu) = 1
admits a solution if and only if i belongs to L*(Q) + W1 L7(Q).
Remark 4.3. If we replace (3.1) by the more general growth condition

ja(, 5, )| < bo(|s|)(ao(x) + BT M(7l¢])

where ag(x) belongs to F77(Q), 7 > 0 and by is a positive continuous
increasing function, we can adapt the same ideas to prove the existence of
solutions for the problem

u € WLy (Q), H(x,u, Vu) € L(Q) and
/ a(z,u, Vu) - VI (u — v)dr + / H(z,u, Vu)Ti(u —v)dx
Q Q

:/ fTi(u—v)der + / F-VTi(u—v)dx
Q Q
for v € Wi Lpr(2) N L®(Q),

by considering the following approximation problems
u, € Wa Ly ()
—diva(z, T, (un), Vuy) + Hyp(x, upn, Vuy) = fr, —divE  in .
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As an application of this result, we give

(e Vup) ~ 1

—div((1 4+ |ul) Vul

Vu) +u(exp(|VulP) —1) = f —divF in Q.

with p > 1 and q > 0.
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