Proyecciones Vol. 26, N^o 2, pp. 157-187, August 2007. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172007000200002

EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES

A. YOUSSFI

UNIVERSITÉ SIDI MOHAMMED BEN ABDALLAH, MAROC

Received : July 2006. Accepted : May 2007

Abstract

In this paper, we prove the existence of solutions for some strongly nonlinear Dirichlet problems whose model is the following

$$-\operatorname{div}(\overline{M}^{-1}M(|\nabla u|)\frac{\nabla u}{|\nabla u|}) + uM(|\nabla u|) = f - \operatorname{div} F \quad \text{in} \quad \mathcal{D}'(\Omega),$$

where Ω is an open bounded subset of $\mathbb{I}\!\!R^N, N \geq 2$.

We emphasize that no Δ_2 -condition is required for the N-function M.

Mathematics Subject Classification : (2000): 46E30, 35J60, 35J65.

Key words: Orlicz-Sobolev spaces, strongly nonlinear problems.

1. Introduction

Let Ω be a bounded open set of \mathbb{R}^N , $N \geq 2$, and let M be an N-function. Consider the following Dirichlet problem

(1.1)
$$A(u) + H(x, u, \nabla u) = f,$$

where

$$A(u) := -\operatorname{div} a(x, u, \nabla u)$$

is a Leray-Lions type operator defined on its domain $\mathcal{D}(A) \subset W_0^1 L_M(\Omega)$ and H is a nonlinearity assumed to satisfy the natural growth condition

(1.2)
$$|H(x,s,\xi)| \le b(|s|)(h(x) + M(|\xi|))$$

Recently, a large number of papers was devoted to the existence of solutions of (1.1). In the variational framework, that is $f \in W^{-1}E_{\overline{M}}(\Omega)$, an existence result was proved in [8] when H depends only on x and u and satisfy the following sign condition

$$H(x,s)s \ge 0,$$

and in [2] when M satisfies the Δ_2 -condition and H depends also on ∇u and satisfies

(1.3)
$$H(x,s,\xi)s \ge 0.$$

The result in [2] was generalized in [7] to N-functions without Δ_2 condition.

In the case where $f \in L^1(\Omega)$, problem (1.1) was solved in [3] under the so-called coercivity condition

(1.4)
$$|H(x, s, \xi)| \ge \beta M(|\xi|)$$
 for $|s| \ge \text{some } \tau$

and in [5] assuming the sign condition (1.3) but the result was restricted to N-functions satisfying the Δ_2 -condition (see bellow). The result contained in [5] was then extended in [6] to N-functions without assuming the Δ_2 condition. The solution u given in this case is such that its truncated function $T_k(u)$ belongs to the energy space $W_0^1 L_M(\Omega)$ for all k > 0, but not the function u it self.

Our main goal in this paper, is to prove the existence of a solution in $W_0^1 L_M(\Omega)$ for problems of the kind of (1.1) when the source term has the form $f - \operatorname{div} F$ with $f \in L^1(\Omega)$ and $|F| \in E_{\overline{M}}(\Omega)$, without any restriction on the N-function M.

The paper is organized as follows, after giving a background in section 2, in section 3 we list the basic assumptions and our main result which will be proved in six steeps in section 4.

2. Prerequisites

2.1 Let $M : \mathbb{R}^+ \to \mathbb{R}^+$ be an N-function, ie. M is continuous, convex, with M(t) > 0 for t > 0, $\frac{M(t)}{t} \to 0$ as $t \to 0$ and $\frac{M(t)}{t} \to \infty$ as $t \to \infty$. The N-function conjugate to M is defined as $\overline{M}(t) = \sup\{st - M(t), s \ge 0\}$. We recall the Young's inequality: for all $s, t \ge 0$,

$$st \le \overline{M}(s) + M(t).$$

If for some k > 0,

(2.1)
$$M(2t) \le kM(t) \quad \text{for all } t \ge 0,$$

we said that M satisfies the Δ_2 -condition, and if (2.1) holds only for $t \geq$ some t_0 , then M is said to satisfy the Δ_2 -condition near infinity. We will extend these N-functions into even functions on all \mathbb{R} . Let P and Q be two N-functions. the notation $P \ll Q$ means that P grows essentially less rapidly than Q, i.e.

for all
$$\epsilon > 0$$
, $\frac{P(t)}{Q(\epsilon t)} \to 0$ as $t \to \infty$,

that is the case if and only if

$$\frac{Q^{-1}(t)}{P^{-1}(t)} \to 0 \quad \text{as } t \to \infty.$$

2.2 Let Ω be an open subset of \mathbb{R}^N . The Orlicz class $K_M(\Omega)$ (resp. the Orlicz space $L_M(\Omega)$) is defined as the set of (equivalence class of) real-valued measurable functions u on Ω such that:

A. Youssfi

$$\int_{\Omega} M(u(x))dx < \infty \quad (\text{resp. } \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right)dx < \infty \text{ for some } \lambda > 0).$$

Endowed with the Luxemburg norm

$$||u||_M = \inf\{\lambda > 0 : \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) dx < \infty\},$$

 $L_M(\Omega)$ is a Banach space and $K_M(\Omega)$ is a convex subset of $L_M(\Omega)$. The Orlicz norm is defined on $L_M(\Omega)$ by

$$||u||_{(M)} = \sup \int_{\Omega} u(x)v(x)dx,$$

where the supremum is taken over all functions $v \in L_{\overline{M}}(\Omega)$ such that $||v||_{\overline{M}} \leq 1$.

The two norms $\|.\|_M$ and $\|.\|_{(M)}$ are equivalent (see [13]).

The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$.

2.3 The Orlicz-Sobolev space $W^1 L_M(\Omega)$ (resp. $W^1 E_M(\Omega)$) is the space of functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ (resp. $E_M(\Omega)$).

It is a Banach space under the norm

$$||u||_{1,M} = \sum_{|\alpha| \le 1} ||D^{\alpha}u||_{M}.$$

Thus, $W^1 L_M(\Omega)$ and $W^1 E_M(\Omega)$ can be identified with subspaces of the product of (N + 1) copies of $L_M(\Omega)$. Denoting this product by ΠL_M , we will use the weak topologies $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ and $\sigma(\Pi L_M, \Pi L_{\overline{M}})$.

The space $W_0^1 E_M(\Omega)$ is defined as the norm closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^1 E_M(\Omega)$ and the space $W_0^1 L_M(\Omega)$ as the $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1 L_M(\Omega)$.

We say that a sequence $\{u_n\}$ converges to u for the modular convergence in $W^1 L_M(\Omega)$ if, for some $\lambda > 0$,

$$\int_{\Omega} M\left(\frac{D^{\alpha}u_n - D^{\alpha}u}{\lambda}\right) dx \to 0 \text{ for all } |\alpha| \le 1,$$

this implies convergence for $\sigma(\Pi L_M, \Pi L_{\overline{M}})$ (see [9, Lemma 6]).

If M satisfies the Δ_2 -condition on \mathbb{R}^+ (near infinity only if Ω has finite measure), then the modular convergence coincides with norm convergence (see [13, Theorem 9.4]).

Recall that the norm $||Du||_M$ defined on $W_0^1 L_M(\Omega)$ is equivalent to $||u||_{1,M}$ (see [10]).

Let $W^{-1}L_{\overline{M}}(\Omega)$ (resp. $W^{-1}E_{\overline{M}}(\Omega)$) denotes the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{M}}(\Omega)$ (resp. $E_{\overline{M}}(\Omega)$). It is a Banach space under the usual quotient norm.

If the open Ω has the segment property then the space $\mathcal{D}(\Omega)$ is dense in $W_0^1 L_M(\Omega)$ for the topology $\sigma(\Pi L_M, \Pi L_{\overline{M}})$ (see [10]). Consequently, the action of a distribution in $W^{-1}L_{\overline{M}}(\Omega)$ on an element of $W_0^1 L_M(\Omega)$ is well defined. For an exhaustive treatments one can see for example [1, 13].

2.4 We will use the following lemma, (see [6]), which concerns operators of Nemytskii Type in Orlicz spaces. It is slightly different from the analogous one given in [13].

Lemma 2.1. Let Ω be an open subset of \mathbb{R}^N with finite measure. let M, P and Q be N-functions such that $Q \ll P$, and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function such that, for a.e. $x \in \Omega$ and for all $s \in \mathbb{R}$,

$$|f(x,s)| \le c(x) + k_1 P^{-1} M(k_2|s|),$$

where k_1, k_2 are real constants and $c(x) \in E_Q(\Omega)$. Then the Nemytskii operator N_f , defined by $N_f(u)(x) = f(x, u(x))$, is strongly continuous from $\mathcal{P}(E_M, \frac{1}{k_2}) = \{u \in L_M(\Omega) : d(u, E_M(\Omega)) < \frac{1}{k_2}\}$ into $E_Q(\Omega)$.

We will use the following lemma which can be found in [12],

Lemma 2.2. If $\{f_n\} \subset L^1(\Omega)$ with $f_n \to f \in L^1(\Omega)$ a.e. in Ω , $f_n, f \ge 0$ a.e. in Ω and $\int_{\Omega} f_n(x) dx \to \int_{\Omega} f(x) dx$, then $f_n \to f$ strongly in $L^1(\Omega)$.

We also use the technical lemma:

Lemma 2.3. Let x and y be two nonnegative real numbers and let

$$\phi(s) = s e^{\theta s^2},$$

with $\theta = \frac{y^2}{4x^2}$. Then

$$x\phi'(s) - y|\phi(s)| \ge \frac{x}{2}, \qquad \forall s \in \mathbb{R}.$$

3. Assumptions and main result

Let Ω be an open bounded subset of \mathbb{R}^N , $N \geq 2$, with the segment property and let M and P be two N-functions such that $P \ll M$.

Let $A: \mathcal{D}(\mathcal{A}) \subset W_0^1 L_M(\Omega) \longrightarrow W^{-1} L_{\overline{M}}(\Omega)$ be a mapping (non everywhere defined) given by

$$A(u) := -\operatorname{div} a(x, u, \nabla u)$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function (i.e., $a(x, \cdot, \cdot)$ is continuous on $\mathbb{R} \times \mathbb{R}^N$ for almost every x in Ω and $a(\cdot, s, \xi)$ is measurable on Ω for every (s, ξ) in $\mathbb{R} \times \mathbb{R}^N$) satisfying for a.e. $x \in \Omega$, and for all $s \in \mathbb{R}$ and all $\xi, \eta \in \mathbb{R}^N, \xi \neq \eta$,

(3.1)
$$|a(x,s,\xi)| \le a_0(x) + k_1 \overline{P}^{-1} M(k_2|s|) + k_1 \overline{M}^{-1} M(k_2|\xi|)$$

where $a_0(x)$ belongs to $E_{\overline{M}}(\Omega)$ and k_1, k_2 to \mathbb{R}^*_+ ,

(3.2)
$$(a(x, s, \xi) - a(x, s, \eta)) \cdot (\xi - \eta) > 0$$

(3.3)
$$a(x,s,\xi)\cdot\xi \ge M(|\xi|)$$

Furthermore, let $H: \Omega \times I\!\!R \times I\!\!R^N \to I\!\!R$ be a Carathéodory function such that

(3.4)
$$|H(x,s,\xi)| \le b(|s|)(M(|\xi|) + h(x))$$

for almost $x \in \Omega$ and for all $s \in \mathbb{R}$, $\xi \in \mathbb{R}^N$, with b a real valued positive increasing continuous function and h a nonnegative function in $L^1(\Omega)$, and

(3.5)
$$H(x, s, \xi) \operatorname{sgn}(s) \ge M(|\xi|)$$

for a.e. $x \in \Omega$, for every $\xi \in \mathbb{R}^N$ and for every $s \in \mathbb{R}$ such that $|s| \ge \sigma$, where σ is a positive real number. Consider the following Dirichlet problem:

(3.6)
$$\begin{cases} A(u) + H(x, u, \nabla u) = f - \operatorname{div}(F) & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial\Omega, \end{cases}$$

We shall prove the following existence result:

Theorem 3.1. Assume that $f \in L^1(\Omega)$, $|F| \in E_{\overline{M}}(\Omega)$ and (3.1)-(3.5) hold true, then there exists at least a function u solution of (3.6) in the sense that $u \in W_0^1 L_M(\Omega)$, $H(x, u, \nabla u) \in L^1(\Omega)$ and

$$\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - v) dx + \int_{\Omega} H(x, u, \nabla u) T_k(u - v) dx$$
$$= \int_{\Omega} fT_k(u - v) dx + \int_{\Omega} F \cdot \nabla T_k(u - v) dx$$

for every $v \in W_0^1 L_M(\Omega) \cap L^{\infty}(\Omega)$ and every $k \ge \sigma$.

Remark 3.1.

1. We can replace assumptions (3.3), (3.4) and (3.5) by the following ones:

(3.3)'
$$a(x,s,\xi)\cdot\xi \ge \alpha M\left(\frac{|\xi|}{\lambda}\right)$$

with $\alpha, \lambda > 0$ and

$$(3.4)' \qquad |H(x,s,\xi)| \le b(|s|) \left(M\left(\frac{|\xi|}{\mu}\right) + h(x) \right)$$

with $0 < \lambda \leq \mu$ and

(3.5)'
$$H(x, s, \xi) \operatorname{sgn}(s) \ge \beta M\left(\frac{|\xi|}{\tau}\right)$$

with $0 < \tau \leq \lambda$ and $\beta > 0$.

2. A consequence of (3.3) and the continuity of a with respect to ξ , is that, for almost every x in Ω and s in \mathbb{R} ,

$$a(x, s, 0) = 0.$$

- 3. Note that assumption (3.5) gives a sign condition on H only near infinity.
- 4. In (3.4) we can assume only that b is positive and continuous.

Remark 3.2. The solution of (3.6) given by theorem 3.1 belongs to $W_0^1 L_M(\Omega)$ even if F = 0, this regularity is due to assumption (3.5).

4. Proof of theorem 3.1

Let $\{f_n\}$ be a sequence of $L^{\infty}(\Omega)$ functions that converges strongly to f in $L^1(\Omega)$.

Let n in ${I\!\!N}$ and let

$$H_n(x, s, \xi) = \frac{H(x, s, \xi)}{1 + \frac{1}{n} |H(x, s, \xi)|}.$$

It's easy to see that $|H_n(x, s, \xi)| \leq n$, $|H_n(x, s, \xi)| \leq |H(x, s, \xi)|$ and $H_n(x, s, \xi)$ sgn(s) ≥ 0 for $|s| \geq \sigma$. Since H_n is bounded for fixed n, there exists, (see [11, Propositions 1 and 5]), a function u_n in $W_0^1 L_M(\Omega)$ solution of

$$\begin{cases} A(u_n) + H_n(x, u_n, \nabla u_n) = f_n - \operatorname{div} F & \text{in} \quad \Omega, \\ u_n = 0 & \text{on} \quad \partial \Omega, \end{cases}$$

in the sense
(3.7)
$$\int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla v dx + \int_{\Omega} H_n(x, u_n, \nabla u_n) v dx = \int_{\Omega} f_n v dx + \int_{\Omega} F \cdot \nabla v dx$$
for every $v \in W_0^1 L_M(\Omega)$.

Step1: Estimation in $W_0^1 L_M(\Omega)$.

For k > 0, we denote by T_k the usual truncation at level k defined by

$$T_k(s) = \max(-k, \min(k, s))$$

for all $s \in \mathbb{R}$. Let us choose

$$v = \phi(T_{\sigma}(u_n))$$

as test function in (3.7), where σ is given by (3.5), ϕ is the function in lemma 2.3 and b is the function in (3.4). Using (3.3) and the Young's inequality, we obtain

164

$$\int_{\Omega} M(|\nabla T_{\sigma}(u_n)|)\phi'(T_{\sigma}(u_n))dx + \int_{\Omega} H_n(x, u_n, \nabla u_n)\phi(T_{\sigma}(u_n))dx$$
$$\leq \phi(\sigma)\|f_n\|_{L^1(\Omega)} + \phi'(\sigma)\int_{\Omega} \overline{M}(2|F|)dx + \frac{1}{2}\int_{\Omega} M(|\nabla T_{\sigma}(u_n)|)\phi'(T_{\sigma}(u_n))dx.$$

Since $\{f_n\}$ is bounded in $L^1(\Omega)$, there exists a constant c not depending on n such that

$$\frac{1}{2} \int_{\Omega} M(|\nabla T_{\sigma}(u_n)|) \phi'(T_{\sigma}(u_n)) dx + \int_{\Omega} H_n(x, u_n, \nabla u_n) \phi(T_{\sigma}(u_n)) dx$$
$$\leq c(\phi(\sigma) + \phi'(\sigma)),$$

which we can write, since H_n enjoys the same properties of H,

$$\frac{1}{2} \int_{\Omega} M(|\nabla T_{\sigma}(u_n)|) \phi'(T_{\sigma}(u_n)) dx + \int_{\{|u_n| < \sigma\}} H_n(x, u_n, \nabla u_n) \phi(T_{\sigma}(u_n)) dx \\
+ \int_{\{|u_n| \ge \sigma\}} H_n(x, u_n, \nabla u_n) \phi(T_{\sigma}(u_n)) dx \\
\leq c(\phi(\sigma) + \phi'(\sigma)).$$

By (3.4) we have

$$\int_{\{|u_n|<\sigma\}} H_n(x,u_n,\nabla u_n)\phi(T_{\sigma}(u_n))dx$$

$$\leq b(\sigma) \left(\int_{\Omega} M(|\nabla T_{\sigma}(u_n)|)\phi(T_{\sigma}(u_n))dx + \phi(\sigma)||h||_{L^1(\Omega)}\right),$$

while using(3.5), we get

$$\int_{\{|u_n| \ge \sigma\}} H_n(x, u_n, \nabla u_n) \phi(T_\sigma(u_n)) dx \ge \phi(\sigma) \int_{\{|u_n| \ge \sigma\}} M(|\nabla u_n|) dx.$$

Hence, we obtain

$$\int_{\Omega} M(|\nabla T_{\sigma}(u_n)|) \left(\frac{1}{2}\phi'(T_{\sigma}(u_n)) - b(\sigma)|\phi(T_{\sigma}(u_n))|\right) dx$$

$$+,\phi(\sigma)\int_{\{|u_n|\geq\sigma\}}M(|\nabla u_n|)dx \leq c(\phi(\sigma)+\phi'(\sigma))+b(\sigma)\phi(\sigma)\|h\|_{L^1(\Omega)}.$$

Then, lemma 2.3 with the choice $x = \frac{1}{2}$ and $y = b(\sigma)$, yields

$$\frac{1}{4} \int_{\Omega} M(|\nabla T_{\sigma}(u_n)|) dx + \phi(\sigma) \int_{\{|u_n| \ge \sigma\}} M(|\nabla u_n|) dx$$

$$\leq c(\phi(\sigma) + \phi'(\sigma)) + b(\sigma)\phi(\sigma) \|h\|_{L^1(\Omega)},$$

which implies that

(3.8)
$$\int_{\Omega} M(|\nabla u_n|) dx \leq c_0,$$

where c_0 is a constant not depending on n. Thus $\{u_n\}$ is bounded in $W_0^1 L_M(\Omega)$, and consequently there exist a function u in $W_0^1 L_M(\Omega)$ and a subsequence still denoted by $\{u_n\}$ such that

(3.9)
$$u_n \rightharpoonup u \text{ in } W_0^1 L_M(\Omega) \text{ for } \sigma(\Pi L_M, \Pi E_{\overline{M}})$$

and

(3.10)
$$u_n \to u$$
 in $E_M(\Omega)$ strongly and a.e. in Ω .

Step2: $\{a(x, T_k(u_n), \nabla T_k(u_n))\}$ is bounded in $(L_{\overline{M}}(\Omega))^N$ for all $k \ge \sigma$. We will use the Orlicz norm. For that, let $\psi \in (L_M(\Omega))^N$ with $\|\psi\|_M \le 1$. For all $k \ge \sigma$, we write using (3.2)

$$\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \frac{\psi}{k_2}) \right) \cdot \left(\nabla T_k(u_n) - \frac{\psi}{k_2} \right) dx \ge 0,$$

so that

$$(3.11) \frac{1}{k_2} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \psi dx \leq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx \\ - \int_{\Omega} a(x, T_k(u_n), \frac{\psi}{k_2}) \cdot \nabla T_k(u_n) dx \\ + \frac{1}{k_2} \int_{\Omega} a(x, T_k(u_n), \frac{\psi}{k_2}) \cdot \psi dx.$$

To estimate the first term in the right, we take $v = T_k(u_n)$ as test function in (3.7) and then use the Young's inequality, the fact that $H_n(x, u_n, \nabla u_n)T_k(u_n) \ge 0$ on the set $\{|u_n| \ge k\}$ and (3.3), to obtain

$$\frac{1}{2} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx + \int_{\{|u_n| \le k\}} H_n(x, u_n, \nabla u_n) T_k(u_n) dx$$
$$\leq k \|f_n\|_{L^1(\Omega)} + \int_{\Omega} \overline{M}(2|F|) dx.$$

Assumption (3.4) yields

$$\left| \int_{\{|u_n| \le k\}} H_n(x, u_n, \nabla u_n) T_k(u_n) dx \right| \le kb(k) \left(\int_{\Omega} M(|\nabla u_n|) dx + ||h||_{L^1(\Omega)} \right)$$
$$\le kb(k)(c_0 + ||h||_{L^1(\Omega)}),$$

where c_0 is the constant in (3.8). Hence, since $\{f_n\}$ is bounded in $L^1(\Omega)$, we deduce that

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx \leq \lambda_k,$$

with λ_k a constant depending on k. By the Young's inequality, (3.11) becomes

$$\frac{1}{k_2} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \psi \, dx \leq \lambda_k + (1 + 2k_1) \int_{\Omega} M(|\nabla T_k(u_n)|) dx$$

$$+ (1 + \frac{1}{k_2})(1 + 2k_1) \int_{\Omega} \overline{M} \left(\frac{|a(x, T_k(u_n), \frac{\psi}{k_2})|}{1 + 2k_1} \right) dx \\ + \frac{1 + 2k_1}{k_2} \int_{\Omega} M(|\psi|) dx.$$

By virtue of (3.1) and the convexity of \overline{M} , we get

$$\begin{split} \int_{\Omega} \overline{M} \left(\frac{|a(x, T_k(u_n), \frac{\psi}{k_2})|}{1 + 2k_1} \right) dx \\ &\leq \frac{1}{1 + 2k_1} \left(\int_{\Omega} (|a_0(x)|) dx + k_1 \overline{M}^{-1} M(kk_2) |\Omega| \right) \\ &\quad + \frac{k_1}{1 + 2k_1} \int_{\Omega} M(|\psi|) dx. \end{split}$$

We conclude that

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \psi \, dx \, \le \, c_k$$

for all $\psi \in (L_M(\Omega))^N$ with $\|\psi\|_M \leq 1$, this means that

(3.12)
$$\|a(x, T_k(u_n), \nabla T_k(u_n))\|_{(\overline{M})} \leq c_k,$$

for every $k \geq \sigma$.

Step3: Almost everywhere convergence of the gradients.

Since the function u belongs to $W_0^1 L_M(\Omega)$, there exists a sequence $\{v_j\} \subset \mathcal{D}(\Omega)$, (see [9]), which converges to u for the modular convergence in $W_0^1 L_M(\Omega)$ and a.e. in Ω .

For $m \ge k \ge \sigma$, we define the function ρ_m by

$$\rho_m(s) = \begin{cases} 1 & \text{if } |s| \le m \\ m+1-|s| & \text{if } m \le |s| \le m+1 \\ 0 & \text{if } |s| \ge m+1. \end{cases}$$

Let $\theta_n^j = T_k(u_n) - T_k(v_j)$, $\theta^j = T_k(u) - T_k(v_j)$ and $z_{n,m}^j = \phi(\theta_n^j)\rho_m(u_n)$ where ϕ is the function in lemma 2.3.

In what follows, we denote by $\epsilon_i(n, j)$, $(i \in \mathbb{N})$, various sequences of real numbers which tend to 0 when n and $j \to \infty$ respectively, i.e.

$$\lim_{j \to \infty} \lim_{n \to \infty} \epsilon_i(n, j) = 0.$$

We use $z_{n,m}^j \in W_0^1 L_M(\Omega)$ as test function in (3.7) to get

$$< A(u_n), z_{n,m}^j > + \int_{\Omega} H_n(x, u_n, \nabla u_n) z_{n,m}^j dx = \int_{\Omega} f_n z_{n,m}^j dx + \int_{\Omega} F \cdot \nabla z_{n,m}^j dx.$$

In view of (3.10), we have $z_{n,m}^j \to \phi(\theta^j)\rho_m(u)$ weakly in $L^{\infty}(\Omega)$ for $\sigma^*(L^{\infty}, L^1)$ as $n \to \infty$, then

$$\lim_{n \to \infty} \int_{\Omega} f_n z_{n,m}^j dx = \int_{\Omega} f\phi(\theta^j) \rho_m(u) dx,$$

and since $\phi(\theta^j) \to 0$ weakly in $L^{\infty}(\Omega)$ for $\sigma(L^{\infty}, L^1)$ as $j \to \infty$, we have

$$\lim_{j \to \infty} \int_{\Omega} f \phi(\theta^j) \rho_m(u) dx = 0,$$

hence, we obtain

$$\int_{\Omega} f_n z_{n,m}^j dx = \epsilon_0(n,j).$$

Thanks to (3.8) and (3.10), we have as $n \to \infty$

$$z_{n,m}^j \rightharpoonup \phi(\theta^j)\rho_m(u)$$
 in $W_0^1 L_M(\Omega)$ for $\sigma(\Pi L_M, \Pi E_{\overline{M}})$,

which implies that

$$\lim_{n \to \infty} \int_{\Omega} F \cdot \nabla z_{n,m}^{j} dx = \int_{\Omega} F \cdot \nabla \theta^{j} \phi'(\theta^{j}) \rho_{m}(u) dx + \int_{\Omega} F \cdot \nabla u \phi(\theta^{j}) \rho'_{m}(u) dx.$$

On the one hand, by Lebesgue's theorem we get

$$\lim_{j \to \infty} \int_{\Omega} F \cdot \nabla u \phi(\theta^j) \rho'_m(u) dx = 0,$$

on the other hand, we write

$$\begin{split} \int_{\Omega} F \cdot \nabla \theta^{j} \phi'(\theta^{j}) \rho_{m}(u) dx &= \int_{\Omega} F \cdot \nabla T_{k}(u) \phi'(\theta^{j}) \rho_{m}(u) dx \\ &- \int_{\Omega} F \cdot \nabla T_{k}(v_{j}) \phi'(\theta^{j}) \rho_{m}(u) dx, \end{split}$$

so that, by Lebesgue's theorem one has

$$\lim_{j \to \infty} \int_{\Omega} F \cdot \nabla T_k(u) \phi'(\theta^j) \rho_m(u) dx = \int_{\Omega} F \cdot \nabla T_k(u) \rho_m(u) dx,$$

Let $\lambda > 0$ such that $M\left(\frac{|\nabla v_j - \nabla u|}{\lambda}\right) \to 0$ strongly in $L^1(\Omega)$ as $j \to \infty$ and $M\left(\frac{|\nabla u|}{\lambda}\right) \in L^1(\Omega)$, the convexity of the N-function M allows us to have

$$M\left(\frac{|\nabla T_k(v_j)\phi'(\theta^j)\rho_m(u) - \nabla T_k(u)\rho_m(u)|}{4\lambda\phi'(2k)}\right)$$

$$\leq \frac{1}{4}M\left(\frac{|\nabla v_j - \nabla u|}{\lambda}\right) + \frac{1}{4}\left(1 + \frac{1}{\phi'(2k)}\right)M\left(\frac{|\nabla u|}{\lambda}\right)$$

•

Then, by using the modular convergence of $\{\nabla v_j\}$ in $(L_M(\Omega))^N$ and Vitali's theorem, we obtain

$$\nabla T_k(v_j)\phi'(\theta^j)\rho_m(u) \to \nabla T_k(u)\rho_m(u)$$
 in $(L_M(\Omega))^N$

for the modular convergence, and then

$$\lim_{j \to \infty} \int_{\Omega} F \cdot \nabla T_k(v_j) \phi'(\theta^j) \rho_m(u) dx = \int_{\Omega} F \cdot \nabla T_k(u) \rho_m(u) dx.$$

We have proved that

$$\int_{\Omega} F \cdot \nabla z_{n,m}^j dx = \epsilon_1(n,j)$$

Since $H_n(x, u_n, \nabla u_n) z_{n,m}^j \ge 0$ on the set $\{|u_n| > k\}$ and $\rho_m(u_n) = 1$ on the set $\{|u_n| \le k\}$, we have

$$(3.14) \quad < A(u_n), z_{n,m}^j > + \int_{\{|u_n| \le k\}} H_n(x, u_n, \nabla u_n) \phi(\theta_n^j) dx \le \epsilon_2(n, j)$$

Now, we will evaluate the first term of the left-hand side of (3.14) by writing

$$< A(u_n), z_{n,m}^{j} >$$

$$= \int_{\Omega} a(x, u_n, \nabla u_n) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)) \phi'(\theta_n^j) \rho_m(u_n) dx$$

$$+ \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n \phi(\theta_n^j) \rho'_m(u_n) dx$$

$$= \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)) \phi'(\theta_n^j) dx$$

$$- \int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \cdot \nabla T_k(v_j) \phi'(\theta_n^j) \rho_m(u_n) dx$$

$$+ \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n \phi(\theta_n^j) \rho'_m(u_n) dx,$$

and then

$$< A(u_{n}), z_{n,m}^{j} >$$

$$= \int_{\Omega} (a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(v_{j})\chi_{j}^{s})))$$

$$\cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(v_{j})\chi_{j}^{s})\phi'(\theta_{n}^{j})dx$$

$$(3.15) + \int_{\Omega} a(x, T_{k}(u_{n}), \nabla T_{k}(v_{j})\chi_{j}^{s})) \cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(v_{j})\chi_{j}^{s})\phi'(\theta_{n}^{j})dx$$

$$- \int_{\Omega \setminus \Omega_{j}^{s}} a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \cdot \nabla T_{k}(v_{j})\phi'(\theta_{n}^{j})dx$$

$$- \int_{\{|u_{n}| > k\}} a(x, u_{n}, \nabla u_{n}) \nabla T_{k}(v_{j})\phi'(\theta_{n}^{j})\rho_{m}(u_{n})dx$$

$$+ \int_{\Omega} a(x, u_{n}, \nabla u_{n}) \cdot \nabla u_{n}\phi(\theta_{n}^{j})\rho'_{m}(u_{n})dx,$$

where by χ_j^s , s > 0, we denote the characteristic function of the subset

$$\Omega_j^s = \{ x \in \Omega : |\nabla T_k(v_j)| \le s \}.$$

For fixed m and s, we will pass to the limit in n and then in j in the second, third, fourth and five terms in the right side of (3.15). Starting with the second term , we have

A. Youssfi

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s)) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s)\phi'(\theta_n^j)dx$$
$$\rightarrow \int_{\Omega} a(x, T_k(u), \nabla T_k(v_j)\chi_j^s)) \cdot (\nabla T_k(u) - \nabla T_k(v_j)\chi_j^s)\phi'(\theta^j)dx$$

as $n \to \infty$, since by lemma 2.1 one has

$$a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s))\phi'(\theta_n^j) \to a(x, T_k(u), \nabla T_k(v_j)\chi_j^s))\phi'(\theta^j)$$

strongly in $(E_{\overline{M}}(\Omega))^N$ as $n \to \infty$, while

$$\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$$

weakly in $(L_M(\Omega))^N$ by (3.8). Let χ^s denote the characteristic function of the subset

$$\Omega^s = \{ x \in \Omega : |\nabla T_k(u)| \le s \}.$$

As $\nabla T_k(v_j)\chi_j^s \to \nabla T_k(u)\chi^s$ strongly in $(E_M(\Omega))^N$ as $j \to \infty$, one has

$$\int_{\Omega} a(x, T_k(u), \nabla T_k(v_j)\chi_j^s)) \cdot (\nabla T_k(u) - \nabla T_k(v_j)\chi_j^s)\phi'(\theta^j)dx \to 0$$

as $j \to \infty$. Then

$$(3.16) \\ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s)) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s)\phi'(\theta_n^j)dx = \epsilon_3(n, j).$$

For the third term of (3.15), by virtue of (3.12) there exist a subsequence still indexed again by n and a function l_k in $(L_{\overline{M}}(\Omega))^N$ with $k \geq \sigma$ such that

$$a(x, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup l_k$$
 weakly in $(L_{\overline{M}}(\Omega))^N$ for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$.

Then, since $\nabla T_k(v_j)\chi_{\Omega\setminus\Omega_j^s} \in (E_M(\Omega))^N$, we obtain

$$-\int_{\Omega\setminus\Omega_j^s} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(v_j) \phi'(\theta_n^j) dx \to -\int_{\Omega\setminus\Omega_j^s} l_k \cdot \nabla T_k(v_j) \phi'(\theta^j) dx$$

as $n \to \infty$. The modular convergence of $\{v_j\}$ allows us to have

$$-\int_{\Omega\setminus\Omega_j^s} l_k \cdot \nabla T_k(v_j) \phi'(\theta^j) dx \to -\int_{\Omega\setminus\Omega^s} l_k \cdot \nabla T_k(u) dx$$

as $j \to \infty$. This, proves that

$$-\int_{\Omega\setminus\Omega_{j}^{s}}a(x,T_{k}(u_{n}),\nabla T_{k}(u_{n}))\cdot\nabla T_{k}(v_{j})\phi'(\theta_{n}^{j})dx = -\int_{\Omega\setminus\Omega^{s}}l_{k}\cdot\nabla T_{k}(u)dx + \epsilon_{4}(n,j).$$
(3.17)

As regards the fourth term, observe that $\rho_m(u_n) = 0$ on the subset $\{|u_n| \ge m+1\}$, so we have

$$-\int_{\{|u_n|>k\}} a(x, u_n, \nabla u_n) \cdot \nabla T_k(v_j) \phi'(\theta_n^j) \rho_m(u_n) dx$$
$$= -\int_{\{|u_n|>k\}} a(x, T_{m+1}(u_n), \nabla T_{m+1}(u_n)) \cdot \nabla T_k(v_j) \phi'(\theta_n^j) \rho_m(u_n) dx.$$

As above, we obtain

$$-\int_{\{|u_n|>k\}} a(x, T_{m+1}(u_n), \nabla T_{m+1}(u_n)) \cdot \nabla T_k(v_j) \phi'(\theta_n^j) \rho_m(u_n) dx$$

= $-\int_{\{|u|>k\}} l_{m+1} \cdot \nabla T_k(u) \rho_m(u) dx + \epsilon_5(n, j).$

Observing that $\nabla T_k(u) = 0$ on the subset $\{|u| > k\}$, one has

(3.18)
$$-\int_{\{|u_n|>k\}} a(x, u_n, \nabla u_n) \cdot \nabla T_k(v_j) \phi'(\theta_n^j) \rho_m(u_n) dx = \epsilon_5(n, j)$$

For the last term of (3.15), we have

$$\left| \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n \phi(\theta_n^j) \rho'_m(u_n) dx \right|$$

= $\left| \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \cdot \nabla u_n \phi(\theta_n^j) \rho'_m(u_n) dx \right|$
 $\le \phi(2k) \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \cdot \nabla u_n dx.$

To estimate the last term of the previous inequality, we test by $T_1(u_n - T_m(u_n)) \in W_0^1 L_M(\Omega)$ in (3.7), to get

$$\begin{split} \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \cdot \nabla u_n dx \\ &+ \int_{\{|u_n| \ge m\}} H_n(x, u_n, \nabla u_n) T_1(u_n - T_m(u_n)) dx \\ &= \int_{\Omega} f_n T_1(u_n - T_m(u_n)) dx + \int_{\{m \le |u_n| \le m+1\}} F \cdot \nabla u_n dx. \end{split}$$

Using the fact that $H_n(x, u_n, \nabla u_n)T_1(u_n - T_m(u_n)) \ge 0$ on the subset $\{|u_n| \ge m\}$ and the Young's inequality, we get

$$\frac{1}{2} \int_{\{m \le |u_n| \le m+1\}} a(x, u_n, \nabla u_n) \cdot \nabla u_n dx$$
$$\le \int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx.$$

It follows that

(3.19)
$$\left| \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n \phi(\theta_n^j) \rho'_m(u_n) dx \right|$$
$$\leq 2\phi(2k) \left(\int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \right).$$

From (3.16), (3.17), (3.18) and (3.19) we obtain

$$(3.20)$$

$$< A(u_n), z_{n,m}^j > \geq \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s))$$

$$\cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s)\phi'(\theta_n^j)dx$$

$$-2\phi(2k) \left(\int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \right)$$

$$- \int_{\Omega \setminus \Omega^s} l_k \cdot \nabla T_k(u) dx + \epsilon_6(n, j).$$

Now, we turn to second term of the left hand side of (3.14). We have

$$\begin{aligned} \left| \int_{\{|u_n| \le k\}} H_n(x, u_n, \nabla u_n) \phi(\theta_n^j) dx \right| \\ &= \left| \int_{\{|u_n| \le k\}} H_n(x, T_k(u_n), \nabla T_k(u_n)) \phi(\theta_n^j) dx \right| \\ &\le b(k) \int_{\Omega} M(|\nabla T_k(u_n)|) |\phi(\theta_n^j)| dx + b(k) \int_{\Omega} h(x) |\phi(\theta_n^j)| dx \\ &\le b(k) \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) |\phi(\theta_n^j)| dx + \epsilon_7(n, j). \end{aligned}$$

Then,

$$\begin{aligned} (3.21) \\ \left| \int_{\{|u_n| \le k\}} H_n(x, u_n, \nabla u_n) \phi(\theta_n^j) dx \right| \\ \le b(k) \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \right) \\ \cdot \left(\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s \right) |\phi(\theta_n^j)| dx \\ + b(k) \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s) |\phi(\theta_n^j)| dx \\ + b(k) \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(v_j)\chi_j^s |\phi(\theta_n^j)| dx + \epsilon_7(n, j). \end{aligned}$$

We proceed as above to get

$$b(k) \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s)) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s) |\phi(\theta_n^j)| dx = \epsilon_8(n, j)$$

and

$$b(k) \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(v_j) \chi_j^s |\phi(\theta_n^j)| dx = \epsilon_9(n, j).$$

Hence, we have

$$(3.22) \qquad \left| \begin{aligned} \int_{\{|u_n| \le k\}} H_n(x, u_n, \nabla u_n) \phi(\theta_n^j) dx \\ \le b(k) \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \right) \\ \cdot \left(\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s \right) |\phi(\theta_n^j)| dx \\ + \epsilon_{10}(n, j). \end{aligned} \right|$$

Combining (3.14), (3.20) and (3.22), we get

$$\begin{split} &\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \right) \\ &\quad \cdot \left(\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s \right) \left(\phi'(\theta_n^j) - b(k) |\phi(\theta_n^j)| \right) dx \\ &\leq \int_{\Omega \setminus \Omega^s} l_k \cdot \nabla T_k(u) dx \\ &\quad + 2\phi(2k) \left(\int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \right) + \epsilon_{11}(n, j). \end{split}$$

Then, lemma 2.3 with
$$x = 1$$
 and $y = b(k)$, yields
(3.23)

$$\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \right)$$

$$\cdot \left(\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s \right) dx$$

$$\leq 2 \int_{\Omega \setminus \Omega^s} l_k \cdot \nabla T_k(u) dx$$

$$+4\phi(2k) \left(\int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \right) + \epsilon_{11}(n, j).$$

On the other hand

$$\begin{split} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi^s) \right) \\ & \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi^s \right) dx \\ &= \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi^s_j) \right) \\ & \cdot \left(\nabla T_k(u_n) - \nabla T_k(v_j)\chi^s_j \right) dx \\ & + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \left(\nabla T_k(v_j)\chi^s_j - \nabla T_k(u)\chi^s \right) dx \\ & - \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)\chi^s) \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi^s \right) dx \\ & + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi^s_j) \cdot \left(\nabla T_k(u_n) - \nabla T_k(v_j)\chi^s_j \right) dx. \end{split}$$

We shall pass to the limit in n and then in j in the last three terms of the right hand side of the above equality. By similar arguments as in (3.15) and (3.21), we obtain

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(v_j)\chi_j^s - \nabla T_k(u)\chi^s) dx = \epsilon_{12}(n, j)$$

and

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)\chi^s) \cdot (\nabla T_k(u_n) - \nabla T_k(u)\chi^s) dx = \epsilon_{13}(n, j)$$

and

(3.24)
$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s) dx = \epsilon_{14}(n, j),$$

so that

$$(3.25) \qquad \begin{aligned} \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi^s)) \\ \cdot (\nabla T_k(u_n) - \nabla T_k(u)\chi^s) dx \\ = \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi^s_j)) \\ \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi^s_j) dx \\ + \epsilon_{15}(n, j). \end{aligned}$$

Let $r \leq s$, we use (3.2), (3.25) and (3.23) to get

$$0 \leq \int_{\Omega^{r}} (a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(u)))$$

$$\cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(u))dx$$

$$\leq \int_{\Omega^{s}} (a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(u)))$$

$$\cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(u))dx$$

$$= \int_{\Omega^{s}} (a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(u)\chi^{s}))$$

$$\cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi^{s})dx$$

$$\leq \int_{\Omega} (a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(u)\chi^{s}))$$

$$\cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi^{s})dx$$

$$\begin{split} &= \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi_j^s)) \\ &\quad \cdot (\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s) dx + \epsilon_{15}(n, j) \\ &\leq 2 \int_{\Omega \setminus \Omega^s} l_k \cdot \nabla T_k(u) dx \\ &\quad + 4\phi(2k) \left(\int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \right) + \epsilon_{16}(n, j), \end{split}$$

Which gives by passing to the limit sup over n and then over j

$$0 \le \limsup_{n \to \infty} \int_{\Omega^r} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)))$$
$$\cdot (\nabla T_k(u_n) - \nabla T_k(u)) dx$$

$$\leq 2\int_{\Omega\setminus\Omega^s} l_k \cdot \nabla T_k(u) dx + 4\phi(2k) \left(\int_{\{|u|\geq m\}} |f| dx + \int_{\{m\leq |u|\leq m+1\}} \overline{M}(|F|) dx\right).$$

Letting s and then $m \to \infty$, taking into account that

$$l_k \nabla T_k(u) \in L^1(\Omega), \ f \in L^1(\Omega), \ \overline{M}(|F|) \in L^1(\Omega), \ |\Omega \setminus \Omega^s| \to 0,$$
$$\{|u| \ge m\} \to 0, \text{ and } \{m \le |u| \le m+1\} \to 0, \text{ one has}$$
$$\int (a(m, T_k(u)), \nabla T_k(u)) a(m, T_k(u)), \nabla T_k(u)) (\nabla T_k(u)) \nabla T_k(u))$$

$$\int_{\Omega^r} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))) \cdot (\nabla T_k(u_n) - \nabla T_k(u)) dx \to 0$$

as $n \to \infty$. As in [4], we deduce that there exists a subsequence of $\{u_n\}$ still indexed again by n such that

(3.26)
$$\nabla u_n \to \nabla u$$
 a.e. in Ω .

Thus, by (3.12) and (3.26) we have

$$(3.27) a(x, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup a(x, T_k(u), \nabla T_k(u)) \quad \text{weakly in } (L_{\overline{M}}(\Omega))^N$$

for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$ and for all $k \geq \sigma$.

Step4: Modular convergence of the truncations.

Going back to (3.23), we write

$$\begin{split} &\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx \\ &\leq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(v_j) \chi_j^s dx \\ &+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \cdot (\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^s) dx \\ &+ 4\phi(2k) \left(\int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \right) \\ &+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) dx + \epsilon_{11}(n, j). \end{split}$$

and by (3.24) we get

$$\begin{split} &\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx \\ &\leq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(v_j) \chi_j^s dx \\ &+ 4\phi(2k) \left(\int_{\{|u_n| \ge m\}} |f_n| dx + \int_{\{m \le |u_n| \le m+1\}} \overline{M}(|F|) dx \right) \\ &+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) dx + \epsilon_{17}(n, j). \end{split}$$

We pass now to the limit sup over \boldsymbol{n} in both sides of this inequality, to obtain

$$\begin{split} \limsup_{n \to \infty} &\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx \\ \leq &\int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(v_j) \chi_j^s dx \\ &+ 4\phi(2k) \left(\int_{\{|u| \ge m\}} |f| dx + \int_{\{m \le |u| \le m+1\}} \overline{M}(|F|) dx \right) \\ &+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) dx + \lim_{n \to \infty} \epsilon_{17}(n, j), \end{split}$$

in which, we pass to the limit in j to get

$$\begin{split} \limsup_{n \to \infty} &\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx \\ &\leq \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) \chi^s dx \\ &+ 4\phi(2k) \left(\int_{\{|u| \ge m\}} |f| dx + \int_{\{m \le |u| \le m+1\}} \overline{M}(|F|) dx \right) \\ &+ 2 \int_{\Omega \setminus \Omega^s} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) dx, \end{split}$$

letting s and then $m \to \infty$, one has

$$\limsup_{n \to \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx \le \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) dx$$

On the other hand, by Fatou's lemma, we have

$$\int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) dx \le \liminf_{n \to \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx.$$

It follows that

$$\lim_{n \to \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx = \int_{\Omega} a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u) dx.$$

By lemma 2.2 we conclude that

$$(3.28) \quad a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) \to a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u)$$

strongly in $L^1(\Omega)$, $\forall k \geq \sigma$. The convexity of the N-function M and (3.3) allow us to have

$$M\left(\frac{|\nabla T_k(u_n) - \nabla T_k(u)|}{2}\right)$$

$$\leq \frac{1}{2}a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) + \frac{1}{2}a(x, T_k(u), \nabla T_k(u)) \cdot \nabla T_k(u).$$

Then, by (3.28) we get

$$\lim_{|E|\to 0} \sup_n \int_E M\left(\frac{|\nabla T_k(u_n) - \nabla T_k(u)|}{2}\right) dx = 0.$$

So that, by Vitali's theorem one has

$$T_k(u_n) \to T_k(u)$$
 in $W_0^1 L_M(\Omega)$

for the modular convergence, for all $k \geq \sigma$.

Step5: Equi-integrability of the nonlinearities. As a consequence of (3.10) and (3.26), one has

$$H_n(x, u_n, \nabla u_n) \to H(x, u, \nabla u)$$
 a.e. in Ω .

We shall prove that the sequence $\{H_n(x, u_n, \nabla u_n)\}$ is uniformly equiintegrable in Ω .

Let E be a measurable subset of Ω , for all $m \geq \sigma$, we have

$$\int_{E} |H_n(x, u_n, \nabla u_n)| dx = \int_{E \cap \{|u_n| \le m\}} |H_n(x, u_n, \nabla u_n)| dx$$
$$+ \int_{E \cap \{|u_n| > m\}} |H_n(x, u_n, \nabla u_n)| dx.$$

On the one hand, the use of $T_1(u_n - T_{m-1}(u_n))$ as test function in (3.7), the Young's inequality and (3.3) led to

$$\begin{split} \int_{\Omega} H_n(x,u_n,\nabla u_n) T_1(u_n - T_{m-1}(u_n)) dx &\leq \int_{\{|u_n| \leq m-1\}} |f_n| dx \\ &+ \int_{\{m-1 \leq |u_n| \leq m\}} \overline{M}(2|F|) dx. \end{split}$$

Then, assumption (3.5) gives

$$\int_{\{|u_n| \ge m\}} |H_n(x, u_n, \nabla u_n)| dx \le \int_{\{|u_n| \le m-1\}} |f_n| dx + \int_{\{m-1 \le |u_n| \le m\}} \overline{M}(2|F|) dx.$$

For all $\epsilon > 0$, one can find an $m = m(\epsilon) > 1$ such that

$$\sup_{n} \int_{\{|u_n| \ge m\}} |H_n(x, u_n, \nabla u_n)| dx \le \frac{\epsilon}{2}.$$

On the other hand, we use (3.3) and (3.4) to get

$$\begin{split} \int_{E \cap \{|u_n| \le m\}} |H_n(x, u_n, \nabla u_n)| dx &\leq \int_E |H_n(x, T_m(u_n), \nabla T_m(u_n))| dx \\ &\leq b(m) \left(\int_E M(|\nabla T_m(u_n)|) dx + \int_E h(x) dx \right) \\ &\leq b(m) \int_E a(x, T_m(u_n), \nabla T_m(u_n)) \cdot \nabla T_m(u_n) dx \\ &\quad + b(m) \int_E h(x) dx. \end{split}$$

We use the fact that from (3.28) the sequence $\{a(x, T_m(u_n), \nabla T_m(u_n)) \cdot \nabla T_m(u_n)\}$ is equi-integrable and that $h \in L^1(\Omega)$ to obtain

$$\lim_{|E|\to 0} \sup_n \int_{E\cap\{|u_n|\le m\}} |H_n(x, u_n, \nabla u_n)| dx = 0,$$

where |E| denotes the Lebesgue measure of the subset E. Consequently

$$\lim_{|E|\to 0} \sup_n \int_E |H_n(x, u_n, \nabla u_n)| dx = 0.$$

This proves that the sequence $\{H_n(x, u_n, \nabla u_n)\}$ is uniformly equi-integrable in Ω . By Vitali's theorem, we conclude that $H(x, u, \nabla u) \in L^1(\Omega)$ and

$$(3.29) H_n(x, u_n, \nabla u_n) \to H(x, u, \nabla u)$$

strongly in $L^1(\Omega)$.

Step6: Passage to the limit.

Let $v \in W_0^1 L_M(\Omega) \cap L^{\infty}(\Omega)$. By [9, Lemma 4], there exists a sequence $\{v_j\} \subset \mathcal{D}(\Omega)$ such that $\|v_j\|_{\infty} \leq (N+1)\|v\|_{\infty}$ and

$$v_j \to v$$
 in $W_0^1 L_M(\Omega)$

for the modular convergence and a.e. in Ω . Let $k \geq \sigma$. We go back to approximate equations (3.7) and use $T_k(u_n - v_j)$ as test function to obtain (3.30)

$$\int_{\Omega} a(x, T_t(u_n), \nabla T_t(u_n)) \cdot \nabla T_k(u_n - v_j) dx + \int_{\Omega} H_n(x, u_n, \nabla u_n) T_k(u_n - v_j) dx$$
$$= \int_{\Omega} f_n T_k(u_n - v_j) dx + \int_{\Omega} F \cdot \nabla T_k(u_n - v_j) dx,$$

where $t = k + (N+1) ||v||_{\infty}$. The first term in the left-hand side of (7.3.23) is written as

$$\int_{\Omega} a(x, T_t(u_n), \nabla T_t(u_n)) \cdot \nabla T_k(u_n - v_j) dx$$
$$= \int_{\{|u_n - v_j| < k\}} a(x, T_t(u_n), \nabla T_t(u_n)) \cdot \nabla T_t(u_n) dx$$
$$- \int_{\{|u_n - v_j| < k\}} a(x, T_t(u_n), \nabla T_t(u_n)) \cdot \nabla v_j dx$$

Thus, by (3.27) and (3.28) we obtain

$$\int_{\Omega} a(x, T_t(u_n), \nabla T_t(u_n)) \cdot \nabla T_k(u_n - v_j) dx \to \int_{\Omega} a(x, T_t(u), \nabla T_t(u)) \cdot \nabla T_k(u - v_j) dx$$

as $n \to \infty$. Since

$$T_k(u_n - v_j) \to T_k(u - v_j)$$
 in $L^{\infty}(\Omega)$ for $\sigma^*(L^{\infty}, L^1)$,

we use (3.29) and the fact that $f_n \to f$ strongly in $L^1(\Omega)$ as $n \to \infty$, to obtain

$$\begin{split} \int_{\Omega} H_n(x, u_n, \nabla u_n) T_k(u_n - v_j) dx &\to \int_{\Omega} H(x, u, \nabla u) T_k(u - v_j) dx, \\ \int_{\Omega} f_n T_k(u_n - v_j) dx &\to \int_{\Omega} f T_k(u - v_j) dx, \end{split}$$

as $n \to \infty$. For the last term in the right-hand side of (3.30) we write

$$\int_{\Omega} F \cdot \nabla T_k (u_n - v_j) dx = \int_{\{|u_n - v_j| < k\}} F \cdot \nabla u_n dx - \int_{\{|u_n - v_j| < k\}} F \cdot \nabla v_j dx.$$

Hence, by (3.9) we obtain

$$\int_{\Omega} F \cdot \nabla T_k(u_n - v_j) dx \to \int_{\Omega} F \cdot \nabla T_k(u - v_j) dx.$$

Therefore, passing to the limit as $n \to \infty$ in (3.30), we get

$$\begin{split} &\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - v_j) dx + \int_{\Omega} H(x, u, \nabla u) T_k(u - v_j) dx \\ &= \int_{\Omega} fT_k(u - v_j) dx + \int_{\Omega} F \cdot \nabla T_k(u - v_j) dx, \end{split}$$

in which we pass to the limit as $j \to \infty$ to obtain

$$\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - v) dx + \int_{\Omega} H(x, u, \nabla u) T_k(u - v) dx$$
$$= \int_{\Omega} fT_k(u - v) dx + \int_{\Omega} F \cdot \nabla T_k(u - v) dx.$$

Which completes the proof of theorem 3.1.

Remark 4.1. If the N-function M satisfies the Δ_2 -condition, the sequence $\{a(x, u_n, \nabla u_n)\}$ will be bounded in $(L_{\overline{M}}(\Omega))^N$. Then, the function u solution of the problem (3.6) is such that: $u \in W_0^1 L_M(\Omega), H(x, u, \nabla u) \in L^1(\Omega)$ and

$$\int_{\Omega} a(x, u, \nabla u) \cdot \nabla v dx + \int_{\Omega} H(x, u, \nabla u) v dx = \int_{\Omega} f v dx + \int_{\Omega} F \cdot \nabla v dx,$$

for every $v \in W_0^1 L_M(\Omega) \cap L^{\infty}(\Omega)$.

Remark 4.2. We can interpret theorem 3.1 in the following sense: the problem

$$\begin{cases} u \in W_0^1 L_M(\Omega), \ H(x, u, \nabla u) \in L^1(\Omega) \\ -\operatorname{div} a(x, u, \nabla u) + H(x, u, \nabla u) = \mu \end{cases}$$

admits a solution if and only if μ belongs to $L^1(\Omega) + W^{-1}L_{\overline{M}}(\Omega)$.

Remark 4.3. If we replace (3.1) by the more general growth condition

$$|a(x, s, \xi)| \le b_0(|s|)(a_0(x) + \overline{M}^{-1}M(\tau|\xi|))$$

where $a_0(x)$ belongs to $E_{\overline{M}}(\Omega)$, $\tau > 0$ and b_0 is a positive continuous increasing function, we can adapt the same ideas to prove the existence of solutions for the problem

$$\begin{aligned} u &\in W_0^1 L_M(\Omega), \ H(x, u, \nabla u) \in L^1(\Omega) \text{ and} \\ &\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - v) dx + \int_{\Omega} H(x, u, \nabla u) T_k(u - v) dx \\ &= \int_{\Omega} fT_k(u - v) dx + \int_{\Omega} F \cdot \nabla T_k(u - v) dx \\ &\text{for } v \in W_0^1 L_M(\Omega) \cap L^{\infty}(\Omega), \end{aligned}$$

by considering the following approximation problems

$$\begin{cases} u_n \in W_0^1 L_M(\Omega) \\ -\operatorname{div} a(x, T_n(u_n), \nabla u_n) + H_n(x, u_n, \nabla u_n) = f_n - \operatorname{div} F \quad \text{ in } \Omega. \end{cases}$$

As an application of this result, we give

$$-\operatorname{div}((1+|u|)^q \frac{\exp(|\nabla u|^p) - 1}{|\nabla u|^2} \nabla u) + u(\exp(|\nabla u|^p) - 1) = f - \operatorname{div} F \quad in \ \Omega.$$

with p > 1 and q > 0.

References

- [1] Adams, R.: Sobolev spaces, Academic Press Inc, New York, (1975)
- [2] Benkirane, A., Elmahi, A.: An existence theorem for a strongly nonlinear problems in Orlicz spaces, Nonlinear Anal. T.M.A. 36, pp. 11-24 (1999).
- [3] Benkirane, A., Elmahi, A.: strongly nonlinear elliptic equations having natural growth terms and L¹ data, Nonlinear Anal. T.M.A. **39**, pp. 403-411 (2000).
- [4] Benkirane, A., Elmahi, A.: Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. T.M.A. 28, pp. 1769-1784 (1997).
- [5] Benkirane, A., Elmahi, A., Meskine, D.: An existence theorem for a class of elliptic problems in L¹, Applicationes Mathematicae 29, 4, pp. 439-457 (2002).
- [6] Elmahi, A., Meskine, D.: Nonlinear elliptic problems having natural growth and L¹ data in Orlicz spaces, Ann. Mat. Pura Appl. 184, 2, pp. 161-184 (2004).
- [7] Elmahi, A., Meskine, D.: Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces, Abst. Appl. Anal. 2004, 12, pp. 1031-1045 (2004).
- [8] Gossez, J.-P.: A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. Sympos. Pure Math., 45, Part 1, (1986).
- [9] Gossez, J.-P.: Some approximation properties in Orlicz-Sobolev spaces, Stud. Math. 74, pp. 17-24 (1982).

- [10] Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. soc. 190, pp. 163-205 (1974).
- [11] Gossez, J.-P., Mustonen, V.: Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11, pp. 379-492 (1987).
- [12] Hewitt, E., Stromberg, K.: Real and abstract analysis, Springer-Verlag, Berlin Heidelberg New York, (1965).
- [13] Krasnosel'skii, M., Rutikii, Ya.: Convex functions and Orlicz spaces, Groningen, Nordhooff (1969).

A. Youssfi

Département de Mathématiques et Informatique Faculté des Sciences Dhar-Mahraz B.P 1796 Atlas Fès Morocco Morocco e-mail: Ahmed.youssfi@caramail.com