Proyecciones
Vol. 26, N^{o} 2, pp. 145-156, August 2007.
Universidad Católica del Norte
Antofagasta - Chile DOI: 10.4067/S0716-09172007000200001

ON SOME PROPERTIES OF A CLASS OF POLYNOMIALS SUGGESTED BY MITTAL

A. K. SHUKLA
and
J. C. PRAJAPATI
S. V. NATIONAL INSTITUTE OF TECHNOLOGY, INDIA

Received: September 2006. Accepted : March 2007

Abstract

The object of this paper is to establish some generating relations by using operational formulae for a class of polynomials $T_{k n}^{(\alpha+s-1)}(x)$ defined by Mittal. We have also derived finite summation formulae for (1.6) by employing operational techniques. In the end several special cases are discussed.

Key Words : Operational formulae; generating relations; finite sum formulae.

2000 Mathematics Subject Classification : 33E12; 33E99; $44 A 45$.

1. Introduction

Chak [1] defined a class of polynomials as:

$$
\begin{equation*}
G_{n, k}^{(\alpha)}(x)=x^{-\alpha-k n+n} e^{x}\left(x^{k} D\right)^{n}\left[x^{\alpha} e^{-x}\right] \tag{1.1}
\end{equation*}
$$

where $D=\frac{d}{d x}, k$ is constant and $n=0,1,2, \ldots$.
Chatterjea [2] studied a class of polynomials for generalized Laguerre polynomial as:

$$
\begin{equation*}
T_{r n}^{(\alpha)}(x, p)=\frac{1}{n!} x^{-\alpha-n-1} \exp \left(p x^{r}\right)\left(x^{2} D\right)^{n}\left[x^{\alpha+1} \exp \left(-p x^{r}\right)\right] . \tag{1.2}
\end{equation*}
$$

Gould and Hopper [3] introduced generalized Hermite polynomials as:

$$
\begin{equation*}
H_{n}^{r}(x, a, p)=(-1)^{n} x^{-a} \exp \left(p x^{r}\right) D^{n}\left[x^{a} \exp \left(-p x^{r}\right)\right] \tag{1.3}
\end{equation*}
$$

Singh [10] obtained generalized Truesdell polynomials by using Rodrigues formula, which is defined as:

$$
\begin{equation*}
T_{n}^{(\alpha)}(x, r, p)=x^{-\alpha} \exp \left(p x^{r}\right)(x D)^{n}\left[x^{\alpha} \exp \left(-p x^{r}\right)\right] \tag{1.4}
\end{equation*}
$$

In 1971, Mittal [5] proved the Rodrigues formula for a class of polynomials $T_{k n}^{(\alpha)}(x)$ as:

$$
\begin{equation*}
T_{k n}^{(\alpha)}(x)=\frac{1}{n!} x^{-\alpha} \exp \left\{p_{k}(x)\right\} D^{n}\left[x^{\alpha+n} \exp \left\{-p_{k}(x)\right\}\right] \tag{1.5}
\end{equation*}
$$

where $p_{k}(x)$ is a polynomial in x of degree k.
Mittal [6] also proved the following relation for (1.5)

$$
\begin{equation*}
T_{k n}^{(\alpha+s-1)}(x)=\frac{1}{n!} x^{-\alpha-n} \exp \left\{p_{k}(x)\right\} \theta^{n}\left[x^{\alpha} \exp \left\{-p_{k}(x)\right\}\right] \tag{1.6}
\end{equation*}
$$

and an operator $\theta \equiv x(s+x D)$, where s is constant.
The following well-known facts are prepared for studying (1.6).
Generalised Laguerre polynomials (Srivastava and Manocha[12]) defined as:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{x^{-\alpha-n-1} e^{x}}{n!}\left(x^{2} D\right)^{n}\left[x^{\alpha+1} e^{-x}\right] . \tag{1.7}
\end{equation*}
$$

Hermite polynomials (Rainville [9]) defined as:

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} \exp \left(x^{2}\right) D^{n}\left[\exp \left(-x^{2}\right)\right] . \tag{1.8}
\end{equation*}
$$

Konhauser polynomials of first kind (Srivastava [11]) defined as:

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; k)=\frac{x^{-k n-\alpha-1} e^{x}}{k^{n} n!}\left(x^{k+1} D\right)^{n}\left[x^{\alpha+1} e^{-x}\right] . \tag{1.9}
\end{equation*}
$$

Konhauser polynomials of second kind (Srivastava [11]) defined as:

$$
\begin{equation*}
Z_{n}^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{x^{k j}}{\Gamma(k j+\alpha+1)} \tag{1.10}
\end{equation*}
$$

where k is a positive integer.
Srivastava and Manocha [12] verified following result by using induction method,

$$
\begin{equation*}
\left(x^{2} D\right)^{n}\{f(x)\}=x^{n+1} D^{n}\left\{x^{n-1} f(x)\right\} . \tag{1.11}
\end{equation*}
$$

2. Definitions and Notations

McBride [4] defined generating function as:
Let $G(x, t)$ be a function that can be expanded in powers of t such that
$G(x, t)=\sum_{n=0}^{\infty} c_{n} f_{n}(x) t^{n}$, where c_{n} is a function of n that may contain the parameters of the set $\left\{f_{n}(x)\right\}$, but is independent of x and t. Then $G(x, t)$ is called a generating function of the set $\left\{f_{n}(x)\right\}$.

Remark: A set of functions may have more than one generating function.
In our investigation we used the following properties of the differential operators;

$$
\theta \equiv x(s+x D) \text { and } \theta_{1} \equiv(1+x D), \text { where } D \equiv \frac{d}{d x}, \text { (Mittal [7], Patil }
$$ and Thakare [8]) which are useful to establish linear generating relations and finite sum formulae.

$$
\begin{gather*}
\theta^{n}=x^{n}(s+x D)(s+1+x D)(s+2+x D) \ldots(s+(n-1)+x D) \tag{2.1}\\
\theta^{n}\left(x^{\alpha}\right)=(\alpha+s)_{n} x^{\alpha+n} \tag{2.2}\\
\theta^{n}(x u v)=x \sum_{m=0}^{\infty}\binom{n}{m} \theta^{n-m}(v) \theta_{1}^{m}(u) \tag{2.3}\\
e^{t \theta}\left(x^{\alpha}\right)=x^{\alpha}(1-x t)^{-(\alpha+s)} \tag{2.4}\\
e^{t \theta}(x u v)=x e^{t \theta}(v) e^{t \theta_{1}}(u) \tag{2.5}\\
e^{t \theta}\left(x^{\alpha} f(x)\right)=x^{\alpha}(1-x t)^{-(\alpha+s)} f\left[x(1-x t)^{-1}\right] \tag{2.6}\\
e^{t \theta}\left(x^{\alpha-n} f(x)\right)=x^{\alpha}(1+t)^{-1+(\alpha+s)} f[x(1+t)] \tag{2.7}\\
(1-a t)^{-\alpha / a}=(1-a t)^{-\beta / a} \sum_{m=0}^{\infty}\left(\frac{\alpha-\beta}{a}\right)_{m} \frac{(a t)^{m}}{m!} \tag{2.8}
\end{gather*}
$$

3. Generating Relations

We obtained some generating relations of (1.6) as
(3.1) $\sum_{n=0}^{\infty} T_{k n}^{(\alpha+s-1)}(x) t^{n}=(1-t)^{-(\alpha+s)} \exp \left[p_{k}(x)-p_{k}\left\{x(1-t)^{-1}\right\}\right]$

$$
\begin{equation*}
\sum_{n=0}^{\infty} T_{k n}^{(\alpha-n+s-1)}(x) t^{n}=(1+t)^{-1+(\alpha+s)} \exp \left[p_{k}(x)-p_{k}\{x(1+t)\}\right] \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{m=0}^{\infty}\binom{m+n}{n} T_{k(n+m)}^{(\alpha+s-1)}(x) t^{m} \\
& =(1-t)^{-(\alpha+s+n)} \exp \left[p_{k}(x)-p_{k}\left\{x(1-t)^{-1}\right\}\right] T_{k n}^{(\alpha+s-1)}\left\{x(1-t)^{-1}\right\} \tag{3.3}\\
& (3.3)
\end{aligned} \quad \begin{aligned}
& \sum_{m=0}^{\infty}\binom{m+n}{n} T_{k(n+m)}^{(\alpha-m+s-1)}(x) t^{m} \\
& \quad=(1+t)^{\alpha+s-1} \exp \left[p_{k}(x)-p_{k}\{x(1+t)\}\right] T_{k n}^{(\alpha-m+s-1)}\{x(1+t)\} \tag{3.4}
\end{align*}
$$

Proof of (3.1). From (1.6), we consider

$$
\sum_{n=0}^{\infty} x^{n} T_{k n}^{(\alpha+s-1)}(x) t^{n}=x^{-\alpha} \exp \left\{p_{k}(x)\right\} e^{t \theta}\left[x^{\alpha} \exp \left\{-p_{k}(x)\right\}\right]
$$

and using (2.6), above equation reduces to,

$$
\begin{gathered}
\sum_{n=0}^{\infty} x^{n} T_{k n}^{(\alpha-s+1)}(x) t^{n}=x^{-\alpha} \exp \left\{p_{k}(x)\right\} x^{\alpha}(1-x t)^{-(\alpha+s)} \exp \left[-p_{k}\left\{x(1-x t)^{-1}\right\}\right] \\
=(1-x t)^{-(\alpha+s)} \exp \left[p_{k}(x)-p_{k}\left\{x(1-x t)^{-1}\right\}\right]
\end{gathered}
$$

replacing t by t / x, which gives (3.1).

Proof of (3.2). From (1.6) we consider,

$$
T_{k n}^{(\alpha-n+s-1)}(x)=\frac{1}{n!} x^{-(\alpha-n)-n} \exp \left\{p_{k}(x)\right\} \theta^{n}\left[x^{\alpha-n} \exp \left\{-p_{k}(x)\right\}\right]
$$

or

$$
\sum_{n=0}^{\infty} T_{k n}^{(\alpha-n+s-1)}(x) t^{n}=(x)^{-\alpha} \exp \left\{p_{k}(x)\right\} e^{t \theta}\left[x^{\alpha-n} \exp \left(-p_{k}(x)\right)\right]
$$

by using (2.7), we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} T_{k n}^{(\alpha-n+s-1)}(x) t^{n} & =x^{-\alpha} \exp \left\{p_{k}(x)\right\} x^{\alpha}(1+t)^{-1+(\alpha+s)} \exp \left\{-p_{k}\{x(1+t)\}\right] \\
& =(1+t)^{-1+(\alpha+s)} \exp \left[p_{k}(x)-p_{k}\{x(1+t)\}\right]
\end{aligned}
$$

Proof of (3.3). Again from (1.6) we consider,

$$
\theta^{n}\left[x^{\alpha} \exp \left\{-p_{k}(x)\right\}\right]=n!x^{\alpha+n} \exp \left\{-p_{k}(x)\right\} T_{k n}^{(\alpha+s-1)}(x)
$$

or

$$
e^{t \theta}\left(\theta^{n}\left[x^{\alpha} \exp \left\{-p_{k}(x)\right\}\right]\right)=n!e^{t \theta}\left[x^{\alpha+n} \exp \left\{-p_{k}(x)\right\} T_{k n}^{(\alpha+s-1)}(x)\right]
$$

using (2.6) we get,

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \frac{t^{m} \theta^{m+n}}{m!}\left[x^{\alpha} \exp \left\{-p_{k}(x)\right\}\right] \\
& =n!x^{\alpha+n}(1-x t)^{-(\alpha+s+n)} \exp \left[-p_{k}\left\{x(1-x t)^{-1}\right\}\right] T_{k n}^{(\alpha+s-1)}\left\{x(1-x t)^{-1}\right\}
\end{aligned}
$$

therefore, we get

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \frac{1}{m!n!}(m+n)!x^{\alpha+m+n} \exp \left\{-p_{k}(x)\right\} T_{k(m+n)}^{(\alpha+s-1)}(x) t^{m} \\
& \quad=x^{\alpha+n}(1-x t)^{-(\alpha+s+n)} \exp \left[-p_{k}\left\{x(1-x t)^{-1}\right\}\right] T_{k n}^{(\alpha+s-1)}\left\{x(1-x t)^{-1}\right\}
\end{aligned}
$$

hence above equation reduces to,

$$
\begin{aligned}
& \sum_{m=0}^{\infty} x^{m}\binom{m+n}{n} T_{k(m+n)}^{(\alpha+s-1)}(x) t^{m} \\
& =(1-x t)^{-(\alpha+s+n)} \exp \left[p_{k}(x)-p_{k}\left\{x(1-x t)^{-1}\right\}\right] T_{k n}^{(\alpha+s-1)}\left\{x(1-x t)^{-1}\right\}
\end{aligned}
$$

replacing t by t / x, which gives (3.3).
Proof of (3.4). Again from (1.6) we consider,

$$
\theta^{n}\left[x^{\alpha} \exp \left\{-p_{k}(x)\right\}\right]=n!x^{\alpha+n} \exp \left\{-p_{k}(x)\right\} T_{k n}^{(\alpha+s-1)}(x)
$$

replacing α by $\alpha-m$, we get
$\theta^{n}\left[x^{\alpha-m} \exp \left\{-p_{k}(x)\right\}\right]=n!x^{\alpha-m+n} \exp \left\{-p_{k}(x)\right\} T_{k n}^{(\alpha-m+s-1)}(x)$
or
$e^{t \theta}\left(\theta^{n}\left[x^{\alpha-m} E_{\alpha}\left\{-p_{k}(x)\right\}\right]\right)=n!e^{t \theta}\left[x^{(\alpha+n)-m} \exp \left\{-p_{k}(x)\right\} T_{k n}^{(\alpha-m+s-1)}(x)\right]$
using (2.7) we get,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{t^{m} \theta^{m+n}}{m!}\left[x^{\alpha-m} \exp \left\{-p_{k}(x)\right\}\right] \\
& \quad=n!x^{\alpha+n}(1+t)^{\alpha+s-1} \exp \left[-p_{k}\{x(1+t)\}\right] T_{k n}^{(\alpha-m+s-1)}\{x(1+t)\}
\end{aligned}
$$

therefore, we get

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \frac{1}{m!n!}(m+n)!x^{\alpha-m+m+n} \exp \left\{-p_{k}(x)\right\} T_{k(m+n)}^{(\alpha-m+s-1)}(x) t^{m} \\
& \quad=x^{\alpha+n}(1+t)^{\alpha+s-1} \exp \left[-p_{k}\{x(1+t)\}\right] T_{k n}^{(\alpha-m+s-1)}\{x(1+t)\}
\end{aligned}
$$

which reduces to (3.4).

4. Finite Summation Formulae

We obtained finite summation formula for (1.6) as

$$
\begin{align*}
T_{k n}^{(\alpha+s-1)}(x) & =\sum_{m=0}^{n}(m!)^{-1}(\alpha-\beta)_{m} T_{k(n-m)}^{(\beta+s-1)}(x) \tag{4.1}\\
T_{k n}^{(\alpha+s-1)}(x) & =\sum_{m=0}^{n} \frac{1}{m!}(\alpha)_{m} T_{k(n-m)}^{(s-1)}(x) \tag{4.2}
\end{align*}
$$

Proof of (4.1). We can write (1.6) as,

$$
\sum_{n=0}^{\infty} x^{n} T_{k n}^{(\alpha+s-1)}(x) t^{n}=x^{-\alpha} \exp \left\{p_{k}(x)\right\} e^{t \theta}\left[x^{\alpha} \exp \left\{-p_{k}(x)\right\}\right]
$$

by using (2.6), we write

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n} T_{k n}^{(\alpha+s-1)}(x) t^{n} \\
& \quad=x^{-\alpha} \exp \left\{p_{k}(x)\right\} x^{\alpha}(1-x t)^{-(\alpha+s)} \exp \left[-p_{k}\left\{x(1-x t)^{-1}\right\}\right] \\
& \quad=(1-x t)^{-(\alpha+s)} \exp \left[p_{k}(x)-p_{k}\left\{x(1-x t)^{-1}\right\}\right]
\end{aligned}
$$

applying (2.8), which yields

$$
\sum_{n=0}^{\infty} x^{n} T_{k n}^{(\alpha+s-1)}(x) t^{n}
$$

$$
\begin{aligned}
& =(1-x t)^{-(\beta+s)} \sum_{m=0}^{\infty}(\alpha-\beta)_{m} \frac{(x t)^{m}}{m!} \exp \left[p_{k}(x)-p_{k}\left\{x(1-x t)^{-1}\right\}\right] \\
& =\sum_{n=0}^{\infty}(\alpha-\beta)_{m} \frac{x^{m} t^{m}}{m!} \exp \left\{p_{k}(x)\right\}(1-x t)^{-(\beta+s)} \exp \left[-p_{k}\left\{x(1-x t)^{-1}\right\}\right]
\end{aligned}
$$

using (3.1), above equation reduces to,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n} T_{k n}^{(\alpha+s-1)}(x) t^{n}= \\
= & \sum_{m=0}^{\infty}(\alpha-\beta)_{m} \frac{x^{m} t^{m}}{m!} \exp \left\{p_{k}(x)\right\} x^{-\beta} e^{t \theta}\left[x^{\beta} \exp \left\{-p_{k}(x)\right\}\right] \\
= & \sum_{m, n=0}^{\infty}(\alpha-\beta)_{m} \frac{x^{m} t^{n+m}}{m!n!} \exp \left\{p_{k}(x)\right\} x^{-\beta} \theta^{n}\left[x^{\beta} \exp \left(-p_{k}(x)\right)\right] \\
= & \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{1}{m!}(\alpha-\beta)_{m} \frac{x^{-\beta+m}}{(n-m)!} \exp \left\{p_{k}(x)\right\} \theta^{n-m}\left[x^{\beta} \exp \left\{-p_{k}(x)\right\}\right] t^{n}
\end{aligned}
$$

equating the coefficients of t^{n}, we get
$x^{n} T_{k n}^{(\alpha+s-1)}(x)=\sum_{m=0}^{n} \frac{1}{m!}(\alpha-\beta)_{m} \frac{x^{-\beta+m}}{(n-m)!} \exp \left\{p_{k}(x)\right\} \theta^{n-m}\left[x^{\beta} \exp \left\{-p_{k}(x)\right\}\right]$
Therefore, we obtain
$T_{k n}^{(\alpha+s-1)}(x)=\sum_{m=0}^{n} \frac{1}{m!}(\alpha-\beta)_{m} \frac{x^{-\beta(-n-m)}}{(n-m)!} \exp \left\{p_{k}(x)\right\} \theta^{n-m}\left[x^{\beta} \exp \left\{-p_{k}(x)\right\}\right]$
and applying (1.6) then above equation immediately leads to (4.1).
Proof of (4.2). We can write (1.6) as,

$$
T_{k n}^{(\alpha+s-1)}(x)=\frac{1}{n!} x^{-\alpha-n} \exp \left\{p_{k}(x)\right\} \theta^{n}\left[x x^{\alpha-1} \exp \left\{-p_{k}(x)\right\}\right]
$$

using (2.3) we get,
and by using (2.1) which yields,
$T_{k n}^{(\alpha+s-1)}(x)=\frac{1}{n!} x^{-\alpha-n} \exp \left\{p_{k}(x)\right\} x \sum_{m=0}^{n} \frac{n!}{m!(n-m)!}$
$\times x^{n-m}[(s+x D)(s+1+x D)(s+2+x D) \ldots(s+(n-m-1)+x D)] \exp \left\{-p_{k}(x)\right\}$
$\times x^{m}[(1+x D)(2+x D)(3+x D) \ldots(m+x D)] x^{\alpha-1}$
$T_{k n}^{(\alpha+s-1)}(x)=\exp \left\{p_{k}(x)\right\} \sum_{m=0}^{n} \frac{1}{m!(n-m)!} \prod_{i=0}^{n-m-1}(s+i+x D) \exp \left\{-p_{k}(x)\right\}(\alpha)_{m}$

Putting $\alpha=0$ and replacing n by $n-m$ in (1.6) which reduces to

$$
T_{k(n-m)}^{(s-1)}(x)=\frac{1}{(n-m)!} x^{-(n-m)} \exp \left\{p_{k}(x)\right\} \theta^{n-m}\left[\exp \left\{-p_{k}(x)\right\}\right]
$$

thus, we have

$$
\frac{1}{(n-m)!} \theta^{n-m}\left[\exp \left\{-p_{k}(x)\right\}\right]=\frac{x^{n-m}}{\exp \left\{p_{k}(x)\right\}} T_{k(n-m)}^{(s-1)}(x)
$$

using (2.1), we get

$$
\begin{equation*}
\frac{1}{(n-m)!} \prod_{i=0}^{n-m-1}(s+i+x D)\left[\exp \left\{-p_{k}(x)\right\}\right]=\frac{1}{\exp \left\{p_{k}(x)\right\}} T_{k(n-m)}^{(s-1)}(x) \tag{4.4}
\end{equation*}
$$

use of (4.4) and (4.3), gives complete proof of (4.2).

5. Concluding Remarks

Some special cases of $T_{k n}^{(\alpha+s-1)}(x)$ polynomials are given below:
If we replace α by $\alpha+1, p_{k}(x)=p_{1}(x)=x$ and $s=0$ in (1.6), then this equation reduces to

$$
\begin{equation*}
T_{n}^{(\alpha)}(x)=L_{n}^{(\alpha)}(x)=Z_{n}^{\alpha}(x ; 1)=Y_{n}^{\alpha}(x ; 1) \tag{5.1}
\end{equation*}
$$

Again replacing α by $\alpha+1, p_{k}(x)=p x^{r}$ and $s=0$ in (1.6), which gives

$$
\begin{equation*}
T_{r n}^{(\alpha)}(x)=T_{r n}^{(\alpha)}(x, p) . \tag{5.2}
\end{equation*}
$$

Substituting $\alpha=1-n, p_{k}(x)=x^{2}, s=0$ in (1.6) and using (1.11), which yields

$$
\begin{equation*}
T_{2 n}^{(1-n)}(x)=\frac{(-x)^{n}}{n!} H_{n}(x) \tag{5.3}
\end{equation*}
$$

Acknowledgements

We express our sincere thanks to the referees for their kind comments for the improvement of this manuscript.

References

[1] A. M.Chak, A class of polynomials and generalization of stirling numbers, Duke J. Math. 23 pp. 45-55, (1956).
[2] S. K. Charttejea, On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova 34, pp. 180-190, (1964).
[3] H. W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J. 29, pp. 51-63, (1962).
[4] E. B. McBride, Obtaining Generating Functions, Springer-Verlag New York, (1971).
[5] H. B. Mittal, A generalization of Laguerre polynomials, Publ. Math. Debrecen, 18, pp. 53-88, (1971).
[6] H. B. Mittal, Operational representations for the generalized Laggure polynomial, Glasnik Mat. Ser III, 6(26), pp. 45-53, (1971).
[7] H. B. Mittal, Bilinear and bilateral generating relations, American J. Math. 99, pp. 23-45, (1977).
[8] K. R. Patil and N.K. Thakre, Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, pp. 1-10, (1975).
[9] E. D. Rainville, Special Functions, The Macmillan Company, New York, (1960).
[10] R. P. Singh, On generalized Truesdell polynomials, Rivista de Mathematica, 8, pp. 345-353, (1968).
[11] H. M. Srivastava, Some biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 98(1), pp. 235-250, (1982).
[12] H. M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Ellis Horwood Limited, Chichester, (1984).

A. K. Shukla
Department of Mathematics
S. V. National Institute of Technology
Surat-395007
India
e-mail : ajayshukla2@rediffmail.com
and
\section*{J. C. Prajapati}
Department of Mathematics
S. V. National Institute of Technology
Surat-395007
India
e-mail : jyotindra18@rediffmail.com

