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Abstract

The main objective of this work is to build, based on the Euclidean
algorithm, a “matrix of algorithms”

ΦB : N∗m×n→N∗m×n , with ΦB(A) = (Φbij (aij)),

where B = (bij)1≤i≤m1≤j≤n is a fixed matrix on N
∗
m×n. The func-

tion ΦB is called the algorithmic matrix function. Here we show its
properties and some applications to Cryptography and nonlinear Dio-
phantine equations.

The case n = m = 1 has particular interest. On this way we show
equivalences between ΦB and the Carl Friedrich Gauβ’s congruence
module p.
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1. Introduction and Motivation

A good representative of the concept algorithm — which frequently ap-
pears in mathematical works and is a fundamental tool— is the so called
Euclidean algorithm (-330 a -227).

The word algorithm has the connotation of an exact method that re-
quires to be followed step by step, in order to solve a problem in a finite
number of “iterations”.

Nowadays, the understanding of the more abstract concepts of Math-
ematics can be made easy, in some way, with the support of algorithmic
programs.

From a computational viewpoint, an algorithm is a programmed com-
puting mechanism, which has to execute a determined number of “itera-
tions”.

An algorithm, not always is represented by a computational program. Its
implementation can be made by other types of automata or by the human
being. Several, and different algorithms, can made the same task using a
distinguishing set of commands, executed in an adequate time.

The concept algorithm was formalized in 1936 by The Turing Machine,
of the mathematician Alan Turing [0]. All These ideas about algorithms
became the basis of Scientific Computation, see [0].

The central part of this article consist in building an algorithmic mathe-
matical technique —based on the Euclidean algorithm— which we later apply
to Cryptography and problems of Number Theory. Here we show the rich-
ness and importance of several mathematical and computational concepts,
among them : the concept of computational algorithm, the Euclidean al-
gorithm, the concept of divisibility, the concept of isomorph function, the
concept of matrix and its properties, and the concept of congruence mod-
ule p. In this context, we also put an special emphasis in studying some
problems included in the nonlinear Diophantine equations Theory.

The article has four sections and an appendix. The first section is basi-
cally devoted to building a rectangular matrix with order m×n, where cer-
tain scalar functions φbij (·) — which we call “algorithmic scalar functions”—
act in every component of it. More exactly, here we build a matrix appli-
cation

ΦB : N
∗
m×n→N∗m×n , with ΦB(A) = (φbij (aij))

where A is a rectangular matrix with order m× n, given by
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A=(aij) =

⎛⎜⎜⎜⎜⎝
a11 a12 a13 . . . a1n−1 a1n
a21 a22 a23 . . . a2n−1 a2n
...

...
...

. . .
...

...
am1 am2 am3 . . . amn−1 amn

⎞⎟⎟⎟⎟⎠ ∈ N∗m×n
and ΦB(A) is the algorithmic matrix

ΦB(A) def=
(φbij (aij)) =

⎛⎜⎜⎜⎜⎝
φb11(a11) φb12(a12) . . . φb1n(a1n)
φb21(a21) φb22(a22) . . . φb2n(a2n)

...
...

. . .
...

φbm1(am1) φbm2(am2) . . . φbmn(amn)

⎞⎟⎟⎟⎟⎠ ∈
N∗m×n

where φbij : N
∗→ {0, 1, 2, . . . , bij − 1} and B = (bij) is a fixed matrix in

Nm×n with all their components bij ≥ 2, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The
function ΦB built on this way, is called “algorithmic matrix function”. In
the second section we show properties and theorems of this function, as
well as its applications to message codification and decoding. In the third
section we have some applications to the nonlinear Diophantine equations.
Then, in the fourth section, we face the particular case n = m = 1 and
show some equivalences between the concepts of algorithmic scalar function
and Carl Friedrich Gauβ’s congruence module p. We Finalize the work by
attaching an appendix in which a program that computes the residue of
division of two positive entire numbers is given.

2. Building the algorithmic matrix function

We start the work by reviewing some concepts and results which will be
used throughout it.

The following Theorem is one of the more important results in Arith-
metic, [0].

Theorem 2.1. (Euclidean Algorithm)

Let a and b be entire numbers, b > 0. Then there exist, and be unique,
entire numbers q and r such that a=bq+r, with 0≤ r < b.

This numbers q and r are called the quotient and residue of the entire
division of a by b.

The proof of this theorem is a classic one, but we give it with the purpose
of benefit of the article’s reading.
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Proof.
If b divides a, the result is valid with r = 0. So, we only consider the

case when b does not divide a.
Let S = {a− tb/t ∈ Z, a− tb > 0}. If a > 0 and t = 0, then a ∈ S and S

is not empty. If a ≤ 0, take t = a−1, then a−tb = a−(a−1)b = a(1−b)+b,
with (1−b) ≤ 0, since b ≥ 1. Thus, a−tb > 0 and S is not empty. Therefore,
for all a ∈ Z, S is a non-empty set in Z. For the well-ordering Principle,
S contains a least element r, such that 0 < r = a − qb, for some q ∈ Z.
If r = b, then a = (q + 1)b and b divides a, which contradicts the fact
that b does not divide a. If r > b, then r = b + c for some c ∈ Z and
a − qb = r = b + c, and this implies that c = a − (q + 1)b ∈ S, which
contradicts the fact that r is the least element of S. Therefore, r < b. ut

A consequence of this Theorem is Corollary 2.2 given below. Before
stating, let us denote N, the set of all natural numbers and N∗ = N∪ {0};
Also, the symbol × will denote the usual product in N.

We have to mention that even though Theorem 2.1 guarantees the exis-
tence of the residue r when an entire a (dividend) is divided by b (divisor),
it does not indicate how to calculate this residue. Just with the purpose
of helping readers, in the appendix we put a program that allow us to
calculate the residue of a division; this program is an adaptation from an
algorithm given in [0], pp. 217-218.

Corollary 2.2. Let a, b ∈ N∗ , b ≥ 2. There exist, and be unique,
the values ri, 0 ≤ i ≤ n, 0 ≤ ri ≤ b− 1, such that

a=r0 + r1b+ r2b
2 + . . .+ rn−1bn−1 + rnb

n

where n satisfies a < bn+1.
Corollary 2.2 and Theorem 2.1 allow us define a mapping on which is

based all this article.

Definition 2.3. Given a, b ∈N∗ with b ≥ 2, such that
a=r0 + r1b+ r2b

2 + . . .+ rn−1bn−1 + rnb
n,

with 0 ≤ ri ≤ b− 1, for all 0 ≤ i ≤ n, we define the following mapping on
N∗

φb : N
∗→ N∗, tal que φb(a) =

⎧⎪⎨⎪⎩
a, if 0 ≤ a ≤ b− 1,

r0, if a ≥ b.
Just to fix ideas, we give some examples of how φb operates.
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Example 2.4. From definition of φb , we have :
(a) φ3(9) = 0, (b) φ17(23) = 6, (c) φ8(25) = 1,
(d) φ13(5) = 5, (e) φ8(9) = 1, (f) φ5(φ8(21)) = 0,
(g) φ7(φ15(φ6(21))) = 3.

Remark 2.5.

(i) In Definition 2.3, if a ≥ b, then r0 represents the residue of the division
of a by b, and so, 0 ≤ r0 ≤ b− 1.

(ii) From Definition 2.3, we can get the following algorithm :

Start denoting η0 = φb0(a) , where b0 ≥ 2 and a ≥ b0 . Then, for b1 ≥ 2
we have

φb1(η0) =

⎧⎪⎨⎪⎩
η0, if 0 ≤ η0 ≤ b1 − 1,

r1, if η0 ≥ b1,

thus,

φb1(φb0(a)) =

⎧⎪⎨⎪⎩
η0, if 0 ≤ η0 ≤ b1 − 1,

r1, if η0 ≥ b1.

Now, take η1 = φb1(φb0(a)) and η0 ≥ b1, then for b2 ≥ 2, we have

φb2(η1) =

⎧⎪⎨⎪⎩
η1, if 0 ≤ η1 ≤ b2 − 1,

r2, if η1 ≥ b2,

thus,

φb2(φb1(φb0(a))) =

⎧⎪⎨⎪⎩
η1, if 0 ≤ η1 ≤ b2 − 1,

r2, if η1 ≥ b2.

Continue on this way, until the (k − 1)-th step, with
φbk−1(φbk−2(. . . φb0(a))) = ηk−1, then for bk ≥ 2 and ηk−2 ≥ bk−1, we have

φbk(ηk−1) =

⎧⎪⎨⎪⎩
ηk−1, if 0 ≤ ηk−1 ≤ bk − 1,

rk, if ηk−1 ≥ bk,

thus,
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ηk = φbk(φbk−1(φbk−2(. . . φb0(a)))) =

⎧⎪⎨⎪⎩
ηk−1, if 0 ≤ ηk−1 ≤ bk − 1,

rk, if ηk−1 ≥ bk.

Henceforth, we will denote it by

ηk = φbk ◦ φbk−1 ◦ φbk−2 ◦ . . . ◦ φb0(a) =

⎧⎪⎨⎪⎩
ηk−1, if 0 ≤ ηk−1 ≤ bk − 1,

rk, if ηk−1 ≥ bk.

Note, this algorithm stops on the k-th iteration when 0 ≤ ηk−1 < bk,
and can be programmed similarly to the algorithm given in the appendix.

The following example illustrates the former algorithm.

Example 2.6.
It is evident φ9(φ7(φ8(φ24(φ62(100))))) = 6. In fact, we have

φ9(φ7(φ8(φ24(φ62(100))))) = φ9(φ7(φ8(φ24(38))))

= φ9(φ7(φ8(14))) = φ9(φ7(6)) = φ9(6) = 6.

In conclusion:

φ9 ◦ φ7 ◦ φ8 ◦ φ24 ◦ φ62(100) = 6.

Clearly, in the example we have: b0 = 62, b1 = 24, b2 = 8, b3 = 7 and
b4 = 9. Also note, if b0 = b1 = . . . = bk = b, the algorithm stops on the first
iteration, since by definition of φb, the formula φb(a) = φb(φb(a)) is always
satisfied.

Remark 2.7.

(i) Given x, y ∈ N∗, x ≥ b, y ≥ b such that x = y, then φb(x) = φb(y). It
makes φb a function for each b ∈ N∗, with b ≥ 2.

(ii) In this context, the domain of φb for each b ∈ N∗, with b ≥ 2, is the
set N∗, and its range is the set φb(N∗) = {0, 1, 2, . . . , b− 1} ⊂N∗.

(iii) The function φb acting on a ∈ N∗, with a ≥ b, gives the residue r of
dividing a by b.
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(iv) The function φb , for each b ∈ N∗, with a ≥ b, b ≥ 2, it is not
injective (see example 2.4, parts (c) and (e), above).

Theorem 2.8.
Let a, b and c ∈ N∗, where b ≥ 2 , a ≥ b and c ≥ b . Let also r0a and

r0c be the first 0-th coefficients appearing in the decomposition of a and c
on base b, respectively. Then φb verifies the following properties :

(a) φb(0) = 0,

(b) φb(db) = 0, para todo d ∈ N∗,
(c) φb(a) = φb(φb(a)),

(d) φb(a+ c) = φb(φb(a) + φb(c)),

(e) φb(a× c) = φb(φb(a)× φb(c))

(f) φb(a× c) = φb(a× φb(c))

(g) φb(a× c) = φb(φb(a)× c)

(h) φb(a+ b) = φb(a) (“periodicity” of φb)

Remark 2.9.
It is east to see that — from the Euclidean algorithm — for every a ∈ N∗

such that a ≥ b, we can characterize the function φb on the next way :

φb(a) = r, if and only if, there exists q ∈ N∗, such that a = r + bq, with

0≤ r ≤ b− 1.

For that and Remark 2.5, we name the mapping φb as “algorithmic
scalar function”. This function can be seen like an iterative process, from
which we get, after k iterations, a natural number ηk, such that 0 ≤ ηk < bk.

Now, we use the characterization of φb given in Definition 2.3 to prove
Theorem 2.8.

Proof of Theorem 2.8
(a) There exists q = 0 ∈ N∗, such that 0 = 0 + 0b, that is, φb(0) = 0.

This part of Theorem 2.8 can also be proved using Definition 2.3.
(b) There exists q = d ∈N∗, such that db = 0+ db, that is, φb(db) = 0.
(c) Let φb(a) = r0a. Then, r0a ≤ b − 1. This and Remark 2.5 imply

that φb(r0a) = r0a, it means, φb(φb(a)) = r0a = φb(a).
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(d) Let r0a = φb(a) and r0c = φb(c), then there exist q1 and q2 ∈ N∗,
such that a = r0a + q1b and c = r0c + q2b, with 0 ≤ r0a ≤ b− 1 y
0 ≤ r0c ≤ b− 1. It means, there exists q = q1 + q2 ∈ N∗, such that

(a+ c) = (r0a + r0c) + qb.(2.1)

By other hand, let φb(a+ c) = r0(a+c), then there exists q3, such that

(a+ c) = r0(a+c) + q3b,(2.2)

with 0 ≤ r0(a+c) ≤ b− 1. Now, from (1) and (2) we get a
q4 = q− q3 ∈ N∗, (ó q4 = q3− q ∈ N∗) such that (r0a+ r0b) = r0(a+c)+ q4b,
that is φb(r0a + r0c) = r0(a+c). Hence

φb(φb(a) + φb(c)) = φb(a+ c).

This proves item (d).
(f)—(g) Let φb(a) = r0a, then there exists q1 ∈ N∗, such that

a = r0a + q1b, with 0 ≤ r0a ≤ b− 1. Thus, for each z ∈N∗ we have

φb (z × c) = φb
(c+ c+ c+ ...+ c)| {z }

z− times
= φb (c+ (c+ c+ ...c)) (d)

=

(d)
=

φb

Ã
φb (c) + φb

(c+ c+ ...+ c)| {z }
z− 1 times

!
(d)
=

φb

Ã
φb (c) + φb (c) + φb

(c+ c+ ...+ c)| {z }
z− 2 times

!
(d)
=

(d)
=

... (d)
=

φb
(φb (c) + φb (c) + ...+ φb (c))| {z }

z times
= φb (zφb (c))

(2.3)

Now, making the change of variable z = a in equation (3), it follows
that φb(a× c) = φb(aφb(c)). The proof of item (g) is analogous.

(e) Let φb(a) = r0a, then there exists q1 ∈ N∗, such that a = r0a+ q1b,
with 0 ≤ r0a ≤ b− 1. Using item (f), already proved, we have

φb(a× c) = φb(aφb(c)) = φb((r0a + q1b)φb(c)) =

= φb(r0aφb(c) + q1bφb(c))(d)− (b)=φb(r0aφb(c))(c)=φb(φb(a)φb(c)).

This proves item (e).
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To prove item (h), is enough to use items (d), (b) and (c). Therefore,
Theorem 2.8 was entirely proved. ut

Corollary 2.10.

Let a1, a2, . . . , an ∈ N∗, and p, b ∈ N∗, with b ≥ 2 and p ≥ 1. Then:

(i) φb(
Pp

k=0 ak) = φb(
Pp

k=0 φb(ak)),

(ii) φb(
Qp

k=o ak) = φb(
Qp

k=o φb(ak)).

Proof: It is straightforward from Theorem 2.8, items (c) y (d).

By other hand, the next corollary comes evident

Corollary 2.11.

Let a, p, b ∈ N∗, such that b ≥ 2 and p ≥ 1. Then:
φb(a

p) = φb([φb(a)]
p).

Proof: It is immediate from Corollary 2.10, item (ii).

Definition 2.12 (Algorithmic matrix Function)

Given aij , bij ∈ N∗ with bij ≥ 2, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Let φbij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n, be algorithmic scalar functions of the form

φbij : N
∗→N∗, such that φbij (aij) =

⎧⎪⎨⎪⎩
aij , if 0 ≤ aij ≤ bij − 1,

r0ij , if aij ≥ bij .

From them, we build a matrix mapping ΦB:

ΦB : N
∗
m×n→N∗m×n, with ΦB(A) = (φbij (aij)),

where A is a matrix with order m× n built from the aij :

A =(aij) =

⎛⎜⎜⎜⎜⎝
a11 a12 a13 . . . a1n−1 a1n
a21 a22 a23 . . . a2n−1 a2n
...

...
...

. . .
...

...
am1 am2 am3 . . . amn−1 amn

⎞⎟⎟⎟⎟⎠ ∈ N∗m×n,

with
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ΦB(A) def=
(φbij (aij)) =

⎛⎜⎜⎜⎜⎝
φb11(a11) φb12(a12) . . . φb1n(a1n)
φb21(a21) φb22(a22) . . . φb2n(a2n)

...
...

. . .
...

φbm1(am1) φbm2(am2) . . . φbmn(amn)

⎞⎟⎟⎟⎟⎠ ∈ N∗m×n
Here, B = (bij) is a “base matrix” fixed in N

∗
m×n, with all their com-

ponents bij ≥ 2. The mapping ΦB, built on this way, is called algorithmic
matrix function. This matrix function has interesting properties.

Theorem 2.13.
Let A,B and C be matrices in N∗m×n, with A = (aij), B = (bij) and

C = (cij), such that bij ≥ 2, with aij ≥ bij and cij ≥ bij . Then, the
algorithmic matrix function ΦB satisfies the following properties:

(a) ΦB(O) = O,

(b) ΦB(dB) = O, for all d ∈N∗,
(c) ΦB(A) = ΦB(ΦB(A)),

(d) ΦB(A+C) = ΦB(ΦB(A) +ΦB(C)),

(e) ΦB(dA) = ΦB(dΦB(A)),

(f) Let B = (bij), E = (eij), F = (fij) ∈ N∗p×p, with bij ≥ 2.
Let E ·F = D = (dij), thus dij =

Pp
k=1 eikfkj , 1 ≤ i, j ≤ p, then

ΦB(E · F) = (φbij (dij)) = (φbij (
pX

k=1

φbij (eik)× φbij (fkj))).

(g) Let G = (gij) ∈ N∗p×p, a matrix whose components gij
satisfy gij < bij , with bij ≥ 2, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Then,

ΦB(G) = G.

In particular, we have

(h) ΦB(I) = I, where I denotes the identity matrix in N
∗
m×n,

(i) ΦB(A+B) = ΦB(A) (“periodicity” of ΦB).
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Proof:

The proofs of (a)-(g) are straightforward from Theorem 2.8 and
definition of ΦB. The proof of item (h) is straightforward from
definition of ΦB and the fact that bij ≥ 2 > 0, bij ≥ 2 > 1, for
all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Item (i) is straightforward from item
(h) of Theorem 2.8. ut

Remark 2.14.

It is interesting ro remark that when A = (aij), B = (bij) and
C = (cij) ∈N∗m×n with bij ≥ 2, cij ≥ 2, for all 1 ≤ i ≤ m,
1 ≤ j ≤ n, then the following matrix operation can be used :

ΦC(ΦB(A)) (d)
=⎛⎜⎜⎜⎜⎝

φc11(φb11(a11)) φc12(φb12(a12)) . . . φc1n(φb1n(a1n)
φc21(φb21(a21)) φc22(φb22(a22) . . . φc2n(φb2n(a2n))

...
...

. . .
...

φcm1(φbm1(am1)) φcm2(φbm2(am2)) . . . φcmn(φbmn(amn))

⎞⎟⎟⎟⎟⎠
Now, using this identity, we can generalize the whole algorithm
presented in remark 2.5 to algorithmic matrix functions.

We illustrate this idea with the following example.

Example 2.15.

Let A = (aij) ∈ N∗2×3, the matrix

A =

Ã
21 79 45
49 5 39

!
∈ N∗2×3.

Let B = (bij) and C = (cij) ∈N∗2×3 the following base matrices

B =

Ã
5 12 23
12 4 35

!
, C =

Ã
2 7 9
34 8 15

!
∈N∗2×3.

Then
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ΦC(ΦB(A)) =

Ã
φ2(φ5(21)) φ7(φ12(79)) φ9(φ23(45))
φ34(φ12(49)) φ8(φ4(5)) φ15(φ35(39))

!

=

Ã
φ2(1) φ7(7) φ9(22)
φ34(1) φ8(1) φ15(4)

!

=

Ã
1 0 4
1 1 4

!
.

3. An algorithm to codify and decode messages: An approach.

In Cryptography —from Greek kryptos (hide) and grafos (write), literally
”hidden writing” — there are a great variety of interesting problems related
to codification and decoding of information. Essentially, Cryptography is
the art or science of codifying and decoding information using mathe-
matical techniques which make possible the interchanging of messages
so that they only can be read by the people to whom they are
sent, see [2] and its references.

In this section we will use the concepts and results of the former section.
Here, we face some problems concerned to Cryptography, specifically con-
sider codification and decoding of Spanish language (this should not restrict
the analysis, for any reason). Thus the main objective of this section is to
show that, by the algorithmic matrix function, we can codify and decode
messages.

The authors of this article think that techniques and methods here
developed have great part of originality, and can be very useful when they
are applied to other fields of knowledge, like Genetics, specifically in reading
and interpretation of human DNA sequences.

An important point to be noted in this section — which we will soon
describe — is the concept of “Levels of Codification and Decoding”. Also,
from a didactic viewpoint, this section was conceived self-sufficient. All
the group of work has the sensation that the exposed ideas can germinate
and be taken to other areas such as Didactic of Mathematics, Mathematics
and Finances, Discrete Mathematics, Games Theory, Computation and
Informatics, Artificial Intelligence, Arithmetic, Engineering, and so on.

Definition 3.1. (Language Matrix)

Denote by Sm×n the space of all matrices whose components only con-
tain symbols coming from the Spanish alphabet and/or an insignificant
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symbol, which will be denoted by &. The symbols in the components of
the matrix can have or not a pre-established order.

We will call the matrices in Sm×n “Language matrices”. If L ∈Sm×n,
then :

L =

⎛⎜⎜⎜⎜⎝
l11 l12 l13 . . . l1n−1 l1n
l21 l22 l23 . . . l2n−1 l2n
...

...
...

. . .
...

...
lm1 lm2 lm3 . . . lmn−1 lmn

⎞⎟⎟⎟⎟⎠
m×n

.

Below, we illustrate Definition 3.1 with some examples.

Example 3.2.

L=

⎛⎜⎝ c w w s
& q p m
t y u z

⎞⎟⎠ ∈ S3×4 , , G =

⎛⎜⎝ d e j a
q u e &
c u e n

m e
t e
t e

⎞⎟⎠ ∈ S3×6.

Definition 3.3. (Isomorphism)
Let S be the set of all the Spanish alphabet letters, more an insignificant

sign, ordered in the following way:

S = {&, a, b, c, . . . , x, y, z} = {s1, s2, s3, . . . , s26, s27, s28}.

Let C be the set of the first twenty-seven natural numbers, and the
zero, that is:

C = {0, 1, 2, . . . , 25, 26, 27} = {c1, c2, c3, . . . , c26, c27, c28}.

With this sets, we define the following isomorphism:

f : S → C, where f(sk) = ck, 1 ≤ k ≤ 28.

Note, for example: f(s5) = f(d) = 4, f(s21) = f(s) = 20,
f(s1) = f(&) = 0. Also note that the inverse function of f , g = f−1 works
like this

g : C → S, where sk = g(ck), 1 ≤ k ≤ 28.
Which let us conclude that d = g(4), s = g(20) and & = g(0).

Remark 3.4. :

(i) Definition 3.3 is not restrictive, to the effect of that always is possible
to use other symbols.
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(ii) To the known Spanish alphabet letters, we have added —with the idea
of simplifying the reading of the message— a new symbol “&”, which
will denote a blank space between the words or letters, and form part
of message codification and/or decoding.

(iii) We have to mention that message codification and decoding, are fre-
quently used to building codes of public and private domains.

Definition 3.5. (Transformed Matrix)
Denote by T = (tij) to the “transformed matrix” of a language matrix

L. This matrix will be composed of m × n numerical characters tij , such
that tij < 28, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

This characters will be attached to the components of matrix T, by the
following mapping:

F : Sm×n → N∗m×n, such that F (L) = T, with f(li,j) = ti,j , 1 ≤ i ≤ m,

1 ≤ j ≤ n.

Here, f is the isomorphism given by Definition 3.3.
In order to illustrate this, we will use the same matrix of example 3.2.

In fact, note that the language matrix

L =

⎛⎜⎝ c w w s
& q p m
t y u z

⎞⎟⎠

has its transformed matrix

T =F (L) =

⎛⎜⎝ 3 24 24 20
0 18 17 13
21 26 22 27

⎞⎟⎠ .

Definition 3.6. We will call “return matrix” to the matrix obtained
from the mapping

R : N∗
m×n → Sm×n, with R(T) = (g(ti,j)), 1 ≤ i ≤ m, 1 ≤ j ≤ n,
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where g is the inverse function of the isomorphism f given in Definition
3.3. For illustration, we use the former example. Thus, we have:

R(T) =R

⎛⎜⎝
⎛⎜⎝ 3 24 24 20
0 18 17 13
21 26 22 27

⎞⎟⎠
⎞⎟⎠ =

⎛⎜⎝ c w w s
& q p m
t y u z

⎞⎟⎠ .

Now, let L0∈ Sm×n a language matrix. We will suppose this matrix
contains the message we want to codify or decode. Also, let
C0 = (qij) = F (L) ∈ N∗m×n , a matrix, which we call “fount matrix”. This
matrix has the particularity of being the transformed of a language matrix
L0∈ Sm×n, for that, its components are numerical characters qij < 28,
1 ≤ i ≤ m, 1 ≤ j ≤ n. Also, denote by Cp = (pij) ∈ N∗m×n, the matrix
which we will call “personal code matrix”; This matrix has the particularity
of being given to the person who will codify the hidden message in L0. Now,
we are ready to give the next definition.

Definition 3.7. Let L0∈ Sm×n, C0 ∈ N∗m×n the matrices already
characterized. Let B ∈N∗m×n a base matrix of the form

B =

⎛⎜⎜⎜⎜⎝
28 28 28 . . . 28 28
28 28 28 . . . 28 28
...

...
...

. . .
...

...

28 28 28 . . . 28 28

⎞⎟⎟⎟⎟⎠
m×n

and C
(1)
p , C

(2)
p , C

(3)
p , . . . ,C

(k)
p a sequence of k personal code matrices, with

C
(k)
p = (c

(k)
ij ) ∈ N∗m×n. The level in where is computed the matrix Ck,

resulting of the operation

ΦB(
kX

m=1

C(m)p +C0) = Ck,

is called the k − th level of codification of matrix C0 using the per-

sonal code C
(k)
p .

This definition surges from the analysis of the following scheme of cod-

ification of matrix C0. For that we use the personal code matrices C
(m)
p ,

m = 1, 2, . . . , k and the algorithmic matrix function ΦB. For example, If
we are at the kth -level of codification of matrix C0, the scheme takes the
form:
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Lo,C0,
n
C
(m)
p

ok
m=1

,B

Data for the k-th level
→−→

φB
³Pk

m=1C
(m)
p +C0

´
Algorith at the k-th level

→−→
Ck, R (Ck) = Lk

output of the k-th level| {z }
Repeat the process if we want to codify C0 again

In other words,

Initial data: L0∈ Sm×n, C0 ∈ N∗m×n, C
(1)
p ∈ N∗m×n, and B ∈ N∗m×n.

Then ¯̄̄̄
¯
"
ΦB(C

(1)
p +C0) = C1 is the first level of codification of C0.

We take R(C1) = L1

Initial data: L1∈ Sm×n, C1 ∈ N∗m×n, C
(2)
p ∈ N∗m×n, and B ∈ N∗m×n.

Then¯̄̄̄
¯
"
ΦB(C

(2)
p +C1) = C2 is the second level of codification of C0.

We take R(C2) = L2

Initial data: L2∈ Sm×n, C2 ∈ N∗m×n, C
(3)
p ∈ N∗m×n, and B ∈ N∗m×n.

Then¯̄̄̄
¯
"
ΦB(C

(3)
p +C2) = C3 is the third level of codification of C0.

We take R(C3) = L3,

And so on.
Note that after k − 1 levels of codification of matrix C0, we have

Initial data: Lk−1∈ Sm×n,Ck−1 ∈N∗m×n,C
(k)
p ∈ N∗m×n, andB ∈ N∗m×n.

Then̄¯̄̄̄"
ΦB(C

(k)
p +Ck−1) = Ck is the k − —th level of codification ofC0.

We take R(Ck) = Lk

Also note that at the k− th level of codification, we get:
Ck = ΦB(C

(k)
p +Ck−1) = ΦB(C(

(k)
p + ΦB(C

(k−1)
p +Ck−2)| {z })
Ck−1

= ΦB(C
(k)
p +ΦB(C

(k−1)
p + ΦB(C

(k−2)
p +Ck−3)| {z }
Ck−2

))

= . . . Theo. 3.13
=

ΦB(C
(k)
p +C(k−1)p +C(k−2)p + . . .+C(1)p| {z }

k− addends

+C0)

= ΦB(
Pk

m=1C
(m)
p +C0).
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This fact motivated Definition 3.7.
On the next, we will denote by [x]pe the entire part of a real number x,

that is
[x]pe = máx {k ∈ Z, such that k ≤ x} .

The next Theorem is fundamental since it gives a way to decode a
matrix Ck codified at the k− th level. Without loosing generality, here we
give the theorem at the first level of codification.

Theorem 3.8. Given C
(1)
p = (c

(1)
ij )∈ N∗m×n, personal code matrix ,

and B ∈N∗m×n a base matrix of the type

B =

⎛⎜⎜⎜⎜⎝
28 28 28 . . . 28 28
28 28 28 . . . 28 28
...

...
...

. . .
...

...

28 28 28 . . . 28 28

⎞⎟⎟⎟⎟⎠
m×n

,

L0∈ Sm×n a language matrix, and C(1)d = dB−C(1)p ∈ N∗m×n a matrix of
“decoding”, with

d =

⎡⎣max
n
c
(1)
ij : 1 ≤ i ≤ m; 1 ≤ j ≤ n

o
28

+ 1

⎤⎦
pe

.

Initially take C0 = F (L0) ∈ N∗m×n, such that(
ΦB(C

(1)
p +C0) = C1,

R(C1) = L1∈ Sm×n.

Then (
ΦB(C

(1)
d +C1) = C0,

R(C0) = L0∈ Sm×n.
(3.1)

Remark 3.9.

(i) Do not forget, in identity (4), matrix C1 = (rij) ∈ N∗m×n with rij < 28,
1 ≤ i ≤ m, 1 ≤ j ≤ n, represents the resulting matrix of codifying
of message contained in L0, by ΦB using the personal code matrix

C
(1)
p ∈ N∗m×n . Matrix C

(1)
d , in (4) induces the decoding, by ΦB, of

matrix C1. Theorem 3.8 guarantees that, with this choosing of C
(1)
d

we return to matrix C0.
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(ii) Theorem 3.8 gives an algorithmic mathematical technique (the algo-
rithmic matrix function), based on the Euclidean algorithm, which let
us decode a codified message. This is carried out by the algorithmic
matrix function ΦB. In other words, what is possible codify by ΦB
using C

(1)
p , can be decoded by ΦB using C

(1)
d , and conversely.

Proof of Theorem 3.8. Suppose the first level of codification of

matrix C0 was carried out, that is, identity ΦB(C
(1)
p +C0) = C1 holds on,

then

ΦB(C1 +C
(1)
d )Hip=ΦB(ΦB(C

(1)
p +C0)| {z }
C1

+C
(1)
d )

(d)
=
ΦB(ΦB(ΦB(C0 +C

(1)
p )) + ΦB(C

(1)
d ))

(d− g)
=

ΦB(ΦB(C0 +C
(1)
p ) + ΦB(C

(1)
d )).

Hence,

ΦB(C1 +C
(1)
d ) = ΦB((C0 +C

(1)
p ) +C

(1)
d )

= ΦB(C0 +C
(1)
p + dB−C(1)p )

= ΦB(C0 + dB+O).

Then,

ΦB(C1 +C
(1)
d ) = ΦB(C0 + dB)

(d)
=
ΦB(ΦB(C0) + ΦB(dB))

(b)
=
ΦB(ΦB(C0) +O)

= ΦB(ΦB(C0)).
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And finally,

ΦB(C1 +C
(1)
d ) = ΦB(ΦB(C0))(c)=ΦB(C0)(g)=C0.

The last equality is due to item (g) of Theorem 2.13, since all the
components of matrix C0 = (qij) = F (L0) ∈N∗m×n are qij < 28,
1 ≤ i ≤ m, 1 ≤ j ≤ n. ut

To try reading a codified message, before all, we have to decode it; the
resulting matrix of decoding would have its components in N∗. To try
reading this matrix and, for it, the message, we have to apply to this last
matrix, the return function R. All this ideas are illustrated in the next

example.

Example 3.10. Suppose a colleague from Universidad de Antofagasta
(Chile) send us, by e-mail, a codified message which is contained in the
language matrix

L =

Ã
i a k x f o c n d e z r z n
v & l z o z c p u l r y p y

!
∈S2×14.

Our colleague, tell us the message has been codified by ΦB, and should
be read, it means decoded, only at the third level of decoding; and each
level of decoding should be carried out using a personal code matrix of the
type:

Cp = (c
(p)
ij ) =Ã

19 23 9 8 2 3 4 13 17 20 21 25 37 14
2 4 7 9 13 21 22 24 29 32 34 12 17 15

!
∈N∗2×14.

This information gets by Internet. Therefore, if we want to read the
message, we should be able of building the matrix C1 and then R(C1).

If this is the purpose, our first step should be to determinate the
transformed of L = L4 by F . If we do so, we get the codifying matrix
F (L4) = C4, and then

C4=

Ã
9 1 11 25 6 16 3 14 4 5 27 19 27 14
23 0 12 27 16 27 3 17 22 12 19 26 17 26

!
∈ N∗2×14.

To decoding the initial message, we will use Theorem 3.8 several times.
In fact, let B ∈ N∗2×14, a base matrix given by
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B =

Ã
28 28 28 28 28 28 28 28 28 28 28 28 28 28
28 28 28 28 28 28 28 28 28 28 28 28 28 28

!
2×14

,

the decoding matrix Cd, is calculated using the formula Cd = dB − Cp,
with

d =

⎡⎣max
n
c
(p)
ij : 1 ≤ i ≤ 2; 1 ≤ j ≤ 14

o
28

+ 1

⎤⎦
pe

=

∙
37

28
+ 1

¸
pe
= [1.3214 + 1]pe = 2

(3.2)

thus Cd ∈ N∗2×14, and takes the form:

Cd=

Ã
37 33 47 48 54 53 52 43 39 36 35 31 19 42
54 52 49 47 43 35 34 32 27 24 22 44 39 41

!
.

Hence we have,
ΦB(C4 +Cd) = C3 =Ã
18 6 2 17 4 13 27 1 15 13 6 22 18 0
21 24 5 18 3 6 9 21 21 8 13 14 0 11

!
,

this induces the language matrix

R(C3) = L3=

Ã
q f b p d m z a ñ m f u q &
t w e q c f i t t h m n & k

!
.

It is evident the hidden message in L3, at the first level of decoding, is
incomprehensible in the Spanish language, so we have to go to the second
level of codification, for this, we again considerate the matrix:

C3 = F (L3) =

Ã
18 6 2 17 4 13 27 1 15 13 6 22 18 0
21 24 5 18 3 6 9 21 21 8 13 14 0 11

!

Now, using again the decoding matrix Cd,

Cd=

Ã
37 33 47 48 54 53 52 43 39 36 35 31 19 42
54 52 49 47 43 35 34 32 27 24 22 44 39 41

!

we get,
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ΦB(C3 +Cd) = C2 =Ã
27 11 21 9 2 10 23 16 26 21 13 25 9 14
19 20 26 9 18 13 15 25 20 4 7 2 11 24

!
.

Therefore,

R(C2) = L2=

Ã
z k t i b j v o y t m x i n
r s y i q m ñ x s d g b k w

!
.

Again, we observe the hidden message in L2, at the second level of
decoding, keeps being imprecise; this take us to the third level of decoding.
For it we determine a third matrix

C2 = F (L2) =

Ã
27 11 21 9 2 10 23 16 26 21 13 25 9 14
19 20 26 9 18 13 15 25 20 4 7 2 11 24

!
and using again the decoding matrix

Cd=

Ã
37 33 47 48 54 53 52 43 39 36 35 31 19 42
54 52 49 47 43 35 34 32 27 24 22 44 39 41

!
we get,

ΦB(C2+Cd) = C1 =

Ã
8 16 12 1 0 7 19 3 9 1 20 0 0 0
17 16 19 0 5 20 21 1 19 0 1 18 22 9

!
.

From this operation, a new language matrix surges:

R(C1) = L1=

Ã
h o l a & g r c i a s & & &
p o r & e s t a r & a q u i

!
.

Hence, the message sent by our colleague is:
HOLA GRCIAS POR ESTAR AQUI.
Therefore, the process has to finish, and we must be able to perceive

the message sent by our colleague is:

HOLA, GRACIAS POR ESTAR AQUI.

Remark 3.11.

(i) Note, the personal code matrix can change at each level of decoding or
codification. Just to simplify operations, here we keep it constant.

(ii) Also — as it will be showed in a future work — the algorithmic ma-
trix function ΦB has other applications, one of them relates to the
possibility of codifying and decoding a message in a partial way.
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4. Applications of the algorithmic scalar function to non-
linear Diophantine equations: a world of conjectures

The expression “Diophantine Equation” proceeds from Diofantos of Ale-
jandŕıa (255 A.D.), one of the great mathematicians of the Greek civiliza-
tion. He was the first mathematician who began a systematic study of
equations with positive entire solutions. He found the first great results on
this area. He wrote three important works on this line, being the most im-
portant what nowadays is known as “Arithmetic”. In this work, Diofantos
gives entire solutions for linear equations (even of higher order); this results
were the mathematical guiding light which guided to the Number Theory,
until the French mathematician Pierre de Fermat (1601—1665) entered the
mathematic scenery.

A Diophantine equation is a mathematical expression which have to be
solved only with natural (entire) numbers , [0, 7, 0].

A fundamental problem of the theory associated to Diophantine equa-
tions, surges from the next question: Given a Diophantine equation (or
system of equations), is there or not possibility of solutions?.

Here we face some problems related to this kind of questions. In our
treatment we use the algorithmic scalar function as a basic tool.

On this context, the problems here studied are associated to the so called
“Beal’s and Fermat’s Conjectures”, see [1, 4, 5, 6] and their references.

Beal’s Conjecture

Let A, B, C, x, y, z be all natural numbers, x, y, z > 2. If

Ax +By = Cz,

then A, B y C have a common factor.

An equivalent way of writing the Beal’s Conjecture is:

The equation Ax +By = Cz, has not solution for natural numbers A,
B, C, x, y, z , with x, y, z > 2 and A, B , C co-prime.

Fermat’s Conjecture

This conjecture states that equation

An +Bn = Cn, has not solutions A, B, C ∈ N with n ∈ N and n > 2.

Remark 4.1.

(i) To prove the Beal’s and Fermat’s conjectures is enough to considerate
all exponents x, y, z and n prime.
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(ii) Fermat’s conjecture — also called by the number theoreticians as “Last
Fermat’s Theorem”— has been recently proved (or proved again) using
mathematic tools of high level. The mathematician who achieved
this deed is the English A. Walis (1996) by proving for it another
conjecture called The Taniyama—Shimura-Weil Conjecture.

(iii) We do not pretend to solve this conjectures; however, we give a short
Theorem which involves both of them. To prove this Theorem, we
only use the concept of algorithmic scalar function. In the immedi-
ate future we hope to continue studying these and other interesting
problems.

Theorem 4.2. Let A ∈ N be an even number and B ∈N, C ∈N odd
numbers, such that φ8(B × C) 6= 1. Also, let x, y, z be all prime greater
than 2. Then, the Diophantine equation Ax + By = Cz, does not have
solution.

Corollary 4.3. Let A ∈ N be an even number and B ∈ N, C ∈N odd
numbers. If φ8(B × C) 6= 1, then the Fermat’s equation Ap +Bp = Cp,
does not have solution when p is a prime greater than 2.

Theorem 4.4 Let A ∈ N be an even number and B ∈ N, C ∈ N odd
numbers, such that φ7(A×B × C) 6= 0. Then the Diophantine equation

A3 +B3 = C3, does not have solution.
Before proving this results, we will need two technical Lemmas:

Lemma 4.5. Let B ∈ N be an odd number, then φ8(B
2) = 1, and in

general φ8(B
2n) = 1 for all n ∈ N∗.

Proof: We use Theorem 2.8, together to the definition of algorithmic
scalar function φb and Corollaries 2.10—2.11. In fact, if B ∈ N is odd, then
it has the form B = 2k + 1, with k ∈ N. Now suppose that k ∈ N is
even, this implies that k = 2t, for some t ∈ N. Thus, B2 = 16t2 + 8t + 1.
Therefore, for each even k ∈ N, we have

φ8(B
2) = φ8(16t

2 + 8t+ 1) (2.10)
=

φ8(φ8(16t
2) + φ8(8t) + φ8(1)) =

(b)
=

φ8(0 + 0 + φ8(1)) = φ8(φ8(1)) (c)
=

φ8(1) def
=
1.

If k ∈ N is odd, that is having the form k = 2t+ 1, then

B2 = 4(2t+ 1)2 + 4(2t+ 1) + 1,
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and then we have

B2 = 16t2 + 16t+ 4 + 8t+ 4 + 1 = 16t2 + 24t+ 8 + 1

Hence, for all odd k ∈ N we have

φ8(B
2) = φ8(16t

2 + 24t+ 8+1) 2.10
=

= φ8(φ8(16t
2) + φ8(24t) + φ8(8) + φ8(1)) =

(b)
=

φ8(0 + 0 + 0 + φ8(1)) = φ8(φ8(1)) = φ8(1) def
=
1.

This prove the firs part of Lemma 4.5.
To the second part, we use Corollary 2.11. In fact, let z = B2 where

B ∈N is an odd number, then φ8(z) = 1. Hence,

φ8(B
2n) = φ8(z

n) 2.11
=

φ8([φ8(z)]
n) = φ8(1

n) = φ8(1) def
=
1

for all n ∈ N∗. This proves the Lemma.

Corollary 4.6. Let B ∈N an odd number, then φ8(B
3) = φ8(B), and

in general φ8(B
2n+1) = φ8(B) for all n ∈N∗.

Proof:
Note that

φ8(B
3) = φ8(B

2 ×B) = φ8(φ8(B
2)× φ8(B))

lema 4.5
=

φ8(1× φ8(B)) = φ8(φ8(B)) = φ8(B).

In a similar way, we have,

φ8(B
2n+1) = φ8(B

2n ×B) = φ8(φ8(B
2n)× φ8(B))

lema 4.5
=

φ8(1× φ8(B)) = φ8(φ8(B)) = φ8(B).

Lemma 4.7. Let B ∈ N an odd number, such that B < 8, then
φ8(B) = B.

Proof: The proof of this Lemma is evident, it comes straightforward
from definition of the algorithmic scalar function φb with b = 8.
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Lemma 4.8. Let B ∈ N an even number, then φ8(B
3) = 0, and in

general φ8(B
2n+1) = 0 for all n ∈N.

Proof If B ∈ N is an even number, then B = 2k, thus
φ8(B

3) = φ8(8k
3) = φ8(8z) = 0, where z = k3 ∈ N. Similarly, we have

φ8(B
2n+1) = φ8(2

2n+1k2n+1) = φ8(φ8(2
2n+1)× φ8(k

2n+1)) =

φ8(0× φ8(k
2n+1)) = 0.

Lemma 4.9. Let B ∈ N, such that φ7(B) 6= 0, then φ7(B
3) = 1 ó

φ7(B
3) = 6.

Proof: The proof is similar to the proof of Lemma 4.5, and will be
omitted.

Now, we prove Theorem 4.2. We shall assume it to be false and get a
contradiction.

Proof of Theorem 4.2 Suppose there are A0 ∈ N an even number
and B0 ∈ N, C0 ∈N odd numbers with φ8(B0 × C0) 6= 1, such that

Ax
0 +By

0 = Cz
0 ,

where the exponents x, y and z, are all prime greater than two. Then, since
φ8 is function, we have that

φ8(A
x
0 +By

0) = φ8(C
z
0 ),

hence φ8(φ8(A
x
0) + φ8(B

y
0)) = φ8(C

z
0 ). Now, since A0 is even, Lemma 4.8

implies φ8(A
x
0) = 0. Therefore, we straightly have:

φ8(C
z
0 ) = φ8(A

x
0 +By

0)(4.1)

= φ8(φ8(A
x
0) + φ8(B

y
0)) = φ8(0 + φ8(B

y
0)) = φ8(B

y
0),(4.2)

because of φ8(φ8(B
y
0)) = φ8(B

y
0). Now, due to Corollary 4.6 and the odd-

ness of B0 and C0, we can replace in expression (4.1) φ8(B
y
0) by φ8(B0) and

by other hand, replace φ8(C
z
0 ) by φ8(C0). Therefore, from (4.1) we deduce

φ8(B0) = φ8(C0). Now, multiply this equality by C0, and have

C0 × φ8(B0) = C0 × φ8(C0).(4.2)
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One more time, apply φ8 to the expression (4), and get

φ8(C0 × φ8(B0)) = φ8(C0 × φ8(C0)) = φ8(φ8(C0)× φ8(C0)) = φ8(C
2
0) = 1.

But, by other hand,
φ8(C0 × φ8(B0)) = φ8(φ8(C0)× φ8(B0)) = φ8(C0 ×B0).
That is,

1 = φ8(C0 ×B0) = φ8(B0 × C0).

This clearly contradicts the hypothesis of Theorem 4.2. Consequently,
we can say that Beal’s Conjecture, under our assumptions, is true. ut

Remark 4.10:

(i) There are endless products of two odd numbers which satisfy the con-
dition φ8(B0×C0) 6= 1, for example, 3×7, 5×11, etc. But there also
have endless products of two odd numbers which satisfy φ8(B0×C0) =
1 , for example, 3× 11, 17× 1, etc.

(ii) Proofs of Corollary 4.3 and Theorem 4.4, are similar to the former
proof, so they are omitted here. Though, did note that Corollary 4.3
is a straight consequence of Theorem 4.2. In fact, it is enough to do
x = y = z = p

(iii) On this part of the work, we wanted to motivate using the algorith-
mic scalar function for facing these kind of conjectures. For other
non-linear problems, linear diophantine equations, we think the algo-
rithmic scalar and matrix function should be useful. Showing this,
will be theme for another investigation.

5. Equivalences between the algorithmic scalar function and
congruence module p of Carl F. Gauβ

The mathematician Johann Carl Friedrich Gauβ (Gauss, 1777—1855), nick-
named the prince of mathematics, did very important contributions in sev-
eral fields of Mathematics and Physics, that is why he es considered as one
of the more important scientists of nineteenth century.

Among his multiples findings there are many results on divisibility. A
very interesting contribution on this area was to define the concept of Con-
gruence Module p, which is associated to division of two entire numbers.
Specifically,
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Definition 5.1. (K. F. Gauβ).
Let a and b two entire numbers. We will say a is congruent to bmodule

p if a− b is divisible by p.

Remark 5.2.

(a) From definition 5.1 a is congruent to b module p if and only if there
is a k ∈ Z such that a = b+ kp.

(b) Given a certain entire number p, the set of the entire numbers can be
divided in classes of equivalences in which the elements of the same
class are those having the same residue when are divided by p. In
Number theory, the set of classes of equivalences is represented by
Z/ [p], which must be read Z module p. When two entire numbers
belongs to the same class ∈ Z/ [p] we say that are congruent module
p,

Theorem 5.3 (Equivalence between φb and the congruence mod-
ule p)

Let a,m ∈ N∗ with a ≥ p and p ≥ 2, such that,

a = r0 + r1p+ r2p
2 + . . .+ rn−1p

n−1 + rnp
n,

with 0 ≤ ri ≤ p− 1, for all 0 ≤ i ≤ n, then

φm(a− r0) = 0 if and only if a is congruent to r0 módule p.

Remark 5.4. The proof of Theorem 5.3 is straightforward. Also
note, working with natural numbers, we get the triple equivalence:

a is congruent to r0 module p ⇐⇒ φp(a− r0) = 0

⇐⇒ There is q ∈ N∗, such that a = r0 + qp.

In other words, the algorithmic scalar function defined in section §2 , is
between the congruence module and the Euclidean algorithm. And If we
only work in N , is logic to think that, in some way, it must be possible to
show, by φm, the great part of results of Arithmetic related to the concept
of congruence module p. Because of its importance, this has to be a theme
for future investigation. On this way, our group of work has made some
advances with the pre print titled ”Entre la congruencia de Gauβ y el
algoritmo de la división”, see [8].
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6. Appendix

Program Resto(input, output) ;

Var a, b, q, r: Integer ;
Begin
Writeln ( ‘queremos determinar el resto r = φb(a)’) ;

Writeln (‘cuando el entero a se divide entre el entero positivo b’) ;
Write (‘a =’) ;

Read (a) :
Write (‘b =’) ;

Read (b) :
If a = 0 then

Writeln ( ‘En este caso, a = 0, por lo que q = 0 y r = 0.’)
Else
Begin

r := abs(a) ;
q := 0 ;

While (r >= b) do
Begin

r := r − b ;
q := q + 1 ;

End
if a > 0 then

Begin
Writeln ( ‘cuando dividimos’, a : 0, ‘entre’, b : 0. ’.’) ;
Writeln (´el resto r =0, r : 0,’.’) ;
End
Else if r = 0 then

Begin
Writeln ( ‘cuando dividimos’, a : 0, ‘entre’, b : 0. ’.’) ;

Writeln (‘el resto r = 0.’) ;
End

Else
Begin

Writeln ( ‘cuando dividimos’, a : 0, ‘entre’, b : 0. ’.’) ;
Writeln (‘el resto r = φb(a) =

0, b− r : 0,’.’) ;
End: End : End

Queremos determinar el resto r = φb(a)
cuando el entero a se divide entre el entero positivo b.
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a = 43
b = 8
Cuando dividimos 43 entre 8,
el resto r = φb(43) = 3
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