Proyecciones Vol. 26, N^o 3, pp. 259-267, December 2007. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172007000300004

REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS

A. REJALI ISFAHAN UNIVERSITY, IRÁN and H. R. E. VISHKI FERDOWSI UNIVERSITY, IRÁN

Received : April 2007. Accepted : October 2007

Abstract

For a wide variety of Banach algebras A (containing the group algebras $L^1(G)$, M(G) and A(G)) the Arens regularity of A^{**} is equivalent to that A, and the amenability of A^{**} is equivalent to the amenability and regularity of A. In this paper, among other things, we show that this variety contains the weighted group algebras $L^1(G, w)$ and M(G, w).

Keywords : Arens product, Weighted group algebra, Amenability

MR(2000) Subject Classification : 46H25, 43A10

1. Introduction

Over fifty years ago, Arens in his elaborate work [A], pointed out that, for every Banach algebra A, there exist two (Arens) products \circ and \diamond on the second dual A^{**} , extending the product of A. If these two products coincide on A^{**} , then A is said to be (Arens) regular. For further details on the properties of Arens products see the survey article [D-H]. It is readily verified that the regularity of A^{**} (equipped with either \circ or \diamond) implies that of A; therefore (A^{**}, \circ) is regular if and only if (A^{**}, \diamond) is regular. However it has been shown in [Y3] that there exists a regular Banach algebra whose second dual is not regular; for a more simple example of such a Banach algebra see [P]. Every C^* -algebra is regular [S], and its second dual is a von Neumann algebra, and so is regular. As a consequence of Young's result [Y1], (which asserts $L^1(G)$ is regular if and only if G is finite) the regularity of $L^1(G)^{**}$ is equivalent to the regularity of $L^1(G)$. For a commutative, semisimple, completely continuous and weakly sequentially complete Banach algebra A whose dual A^* is a von Neumann algebra (for instance, for the Fourier algebra A(G), it has been shown in [U2] that the regularity of A^{**} is equivalent to that of A.

A Banach algebra A is said to be amenable (resp. weakly amenable) if every continuous derivation $D: A \to X^*$ (resp. $D: A \to A^*$) is inner for every Banach A-module X. It has been shown in [Go] (see also [G-L-W]) that, if either (A^{**}, \circ) or (A^{**}, \diamond) is amenable then so is A. However, for an infinite amenable group G, $L^1(G)$ is amenable, but $L^1(G)^{**}$ is not; indeed in [G-L-W] they showed that $L^1(G)^{**}$ is amenable if and only if G is finite. For the Fourier algebra A(G) it is known that, $A(G)^{**}$ is amenable if and only if G is finite, see [Gra]. Although, one can use the earlier result of Forrest and Runde [F-R], to give a simple proof for the latter fact; (indeed, if $A(G)^{**}$ is amenable then so is A(G), and the main result of [F-R] implies that, G has an abelian subgroup H of finite index. It induces an epimorphism from $A(G)^{**}$ on $A(H)^{**}$, in particular $A(H)^{**} = L^1(\hat{H})^{**}$ is amenable. It follows by [G-L-W], that \hat{H} is finite, and so G is finite.)

If A is commutative or if it possesses a continuous involution then as it is shown in [G-L], the amenability (resp. weak amenability) of (A^{**}, \circ) is equivalent to that of (A^{**}, \diamond) . It seems still not known if there exists a Banach algebra A for which the amenability of (A^{**}, \circ) is not equivalent to that of (A^{**}, \diamond) .

The main theme of this paper is to investigate the regularity and amenabil-

ity of the second dual of the weighted group algebras $L^1(G, w)$ and M(G, w).

2. Preliminaries

Throughout this paper, G is a locally compact (topological) group, and w is a weight on G; (which is a continuous function $w : G \to (0, \infty)$ with $w(xy) \leq w(x)w(y)$, for all $x, y \in G$), for convenience we shall assume that w(e) = 1, where e is the identity of G. We define $\Omega : G \times G \to (0, 1]$ by $\Omega(x, y) = w(xy)/w(x)w(y)$.

A function $h: X \times Y \to \mathbf{C}$ is said to be 0-cluster if $\lim_{m} \lim_{m} h(x_n, y_m) = 0 = \lim_{m} \lim_{m} h(x_n, y_m)$ for every two sequences $\{x_n\} \subseteq X$ and $\{y_m\} \subseteq Y$ of distinct points, provided the involved limits exist.

We define w^* on G by $w^*(x) = w(x)w(x^{-1}), (x \in G)$. It can be simply verified that w^* is also a weight on G; moreover w^* is bounded on G if and only if w is semi-multiplicative (that is, there exists c > 0 such that $cw(x)w(y) \le w(xy)$, for all $x, y \in G$). Therefore, Ω can not be 0-cluster when w^* is bounded.

Define $L^1(G, w), L^{\infty}(G, w), G_0(G, w)$ and LUC(G, w) as follows:

$$L^{1}(G, w) = \{f : fw \in L^{1}(G)\},\$$

$$L^{\infty}(G, w) = \{f : f/w \in L^{\infty}(G)\},\$$

$$C_{0}(G, w) = \{f : f/w \in C_{0}(G)\},\$$

$$LUC(G, w) = \{f : f/w \in LUC(G)\}.$$

We norm these spaces in such a way the multiplication or division by w becomes an isometry between the non-weighted and the corresponding weighted spaces (whose norm will denote by $\|\cdot\|_w$). Thus the nonweighted and the corresponding weighted spaces are isometrically isomorphic as Banach spaces, but quite different as Banach algebras. Recall the inclusion relations of non-weighted cases of these spaces and the fact that $L^1(G)^* = L^{\infty}(G)$, we have:

$$C_0(G, w) \subseteq LUC(G, w) \subseteq L^{\infty}(G, w) = L^1(G, w)^*.$$

We refer the reader to [R2], for more study of different subalgebras of $L^{\infty}(G, w)$, and their equalities.

We define M(G, w) such that M(G, w) becomes isometric isomorphic to the Banach space $C_0(G, w)^*$. For this sake, let $M^+(G, w)$ be the set of all positive regular measures on G for which μw is again a positive regular measure on G; where $d(\mu w) = w d\mu$. Define an equivalence relation on $M^+(G, w) \times M^+(G, w)$ by $(\mu_1, \nu_1) \sim (\mu_2, \nu_2)$ if and only if $\mu_1 + \nu_2 = \mu_2 + \nu_1$. Now define M(G, w) by

$$M(G, w) = \{ [\mu, \nu] : \mu, \nu \in M^+(G, w) \},\$$

where $[\mu, \nu]$ is the equivalence class of (μ, ν) . For a full discussion on M(G, w) from this point of view and the fact that $C_0(G, w)^* = M(G, w)$ see [R1] and also [B].

It should be remarked that, if w is multiplicative (i.e. w(xy) = w(x)w(y), for all $x, y \in G$, or equivalently, w is a positive character on G) then $L^1(G, w) \cong L^1(G)$ and $M(G, w) \cong M(G)$ as Banach algebras. Indeed it can be readily verified that $f \to fw$ and $[\mu, \nu] \to \mu w - \nu w$ are algebra isomorphism from $L^1(G, w)$ on $L^1(G)$ and M(G, w) on M(G), respectively.

As a ground reference for the second dual of weighted group algebras, one may refer to [D-L].

3. Main Results

We start with the next lemma.

Lemma 1. If G is infinite (discrete) and Ω is 0-cluster, then $F \circ G = 0 = F \diamond G$, for every $F, G \in l^1(G, w)^{**} \setminus l^1(G, w)$.

Proof. Since Ω is 0-cluster, the mapping $(x, y) \to (\frac{\phi}{w})(xy)\Omega(x, y)$ is 0-cluster for every $\phi \in L^{\infty}(G, w)$. Using the Example 2 in page 312 of [Y2], the mapping $(f,g) \to \phi(f \star g) = \sum \sum (\frac{\phi}{w})(xy)(fw)(x)(gw)(y)\Omega(x, y)$ is 0-cluster on $l^1(G, w) \times l^1(G, w)$ (the sums are taken on $x, y \in G$). Now for $F, G \in l^1(G, w)^{**} \setminus l^1(G, w)$ there exist two nets $\{f_{\alpha}\}$ and $\{g_{\beta}\}$, each consisting of distinct points in $l^1(G, w)$ such that $f_{\alpha} \longrightarrow F$ and $g_{\alpha} \longrightarrow G$, in the weak^{*} topology, with

 $\langle F \circ G, \phi \rangle = \lim_{\alpha} \lim_{\beta} \phi(f_{\alpha} \star g_{\beta}) \text{ and } \langle F \diamond G, \phi \rangle = \lim_{\beta} \lim_{\alpha} \phi(f_{\alpha} \star g_{\beta}),$

for every $\phi \in L^{\infty}(G, w)$. One can construct two subsequences $\{f_{\alpha_m}\}$ and $\{g_{\beta_n}\}$ of $\{f_{\alpha}\}$ and $\{g_{\beta}\}$, respectively, such that, $\langle F \circ G, \phi \rangle = \lim_{m} \lim_{m} h(f_{\alpha_m} \star g_{\beta_n}) = 0 = \lim_{m} \lim_{m} h(f_{\alpha_m} \star g_{\beta_n}) = \langle F \diamond G, \phi \rangle$, as required.

Now, we come to the one of the main results.

Theorem 2. The following statements are equivalent. (i) $L^1(G, w)$ is regular, (ii) G is finite or G is discrete and Ω is 0-cluster, (iii) $L^1(G, w)^{**}$ is regular.

Proof. For (i) \Rightarrow (ii), suppose that $L^1(G, w)$ be regular. Since $L^1(G, w)$ is weakly sequentially complete and admits a bounded approximate identity, it is unital by theorem 3.3 of [U1]. Therefore G is discrete. If G is infinite, then by corollary 3.8 of [B-R] Ω must be 0-cluster. For (ii) \Rightarrow (iii), if G is finite then $L^1(G, w)$ is reflexive; for the infinite case (iii) follows from Lemma1.

Suppose that G admits a multiplicative weight bounded by w, (for instance, it is the case if either $1 \leq w$ or G is amenable (as a group), for the latter see Lemma 1 of [W]). Then, there exists a unique multiplicative weight on G which is equivalent to w, provided w^* is bounded. Indeed, $\varphi(x) = \lim_{n \to \infty} w(x^n)^{1/n}$ defines a multiplicative weight on G with $\varphi \leq w \leq c\varphi$, in which $c = \sup_{x \in G} w^*(x)$; see [W] for further details. In particular, $L^1(G, w) = L^1(G, \varphi) \cong L^1(G)$ and $M(G, w) = M(G, \varphi) \cong M(G)$.

An elegant result of [Gro] states $L^1(G, w)$ is amenable if and only G is amenable and w^* is bounded. Therefore, $L^1(G, w)$ is amenable if and only if G is amenable and $L^1(G, w) \cong L^1(G)$. Recently, it has been proved in [D-G-H] that M(G) is amenable if and only if G is amenable and discrete. As a weighted version of this we have;

Proposition 3. M(G, w) is amenable if and only if G is amenable, discrete and w^* is bounded.

Proof. If M(G, w) is amenable, then $L^1(G, w)$ is amenable, therefore G is amenable and w^* is bounded; and so by the discussion just before the proposition, there exists a unique multiplicative weight on G equivalent to w. It implies that, $M(G, w) \cong M(G)$. In particular, M(G) is amenable. By [D-G-H] G must be discrete. Since in the discrete setting $M(G, w) = L^1(G, w)$, the converse follows from [Gro]

As the second main result we have the next which is an extension of Theorem 1.3 of [G-L-W].

Theorem 4. The following statements are equivalent.

(i) L¹(G, w)^{**} is amenable,
(ii) L¹(G, w) is amenable and regular.

(iii) $L^1(G, w)$ is regular and w^* is bounded, (iv) $L^1(G, w)$ is reflexive and w^* is bounded, (v) $L^1(G, w)$ is a C^* -algebra, (vi) G is finite.

Proof. Trivially (vi) implies the other parts. If $L^1(G, w)^{**}$ is amenable, then so is $L^1(G, w)$, and so $L^1(G, w) \cong L^1(G)$. Now the amenability of $L^1(G)^{**}$ necessitates G must be finite by Theorem 1.3 of [G-L-W]. Thus (i) \Rightarrow (vi) follows. The implications (ii) \Rightarrow (iii) and (iv) \Rightarrow (iii) are obvious. Let $L^1(G, w)$ be regular and w^* be bounded; therefore Ω can not be 0-cluster and by Theorem 2, G is finite. Assume that $L^1(G, w)$ is a C^* -algebra; then it is regular and so G is discrete. Moreover, the equality $\|\delta_x * \delta_x^*\|_w = \|\delta_x\|_w^2$, for every $x \in G$ implies that $w(x) = \Delta(x)^{1/2}$, for each $x \in G$ (Δ is the modular function of G), and this implies that w is multiplicative and so $\Omega = 1$. Now Theorem 2 implies that G is finite and this completes the proof.

Remarks. (i) The conclusions of Theorems 2 and 4 remains valid if we replace $L^1(G, w)$ by M(G, w).

(ii) For a Banach algebra A if $A^{***} \cdot F = A^* \diamond F$, for every $F \in A^{**}$, (where $\langle m \cdot F, G \rangle = \langle m, F \circ G \rangle$ for every $m \in A^{***}, F, G \in A^{**}$) then it is not hard to prove that the regularity of A^{**} is equivalent to that of A; (indeed if A is regular, then for every $f \in A^*$, the mapping $F \to f \diamond F : A^{**} \to A^*$ is weakly compact, and the equality $A^{***} \cdot F = A^* \diamond F$ implies that for every $\Phi \in A^{***}$ the mapping $F \to \Phi \cdot F : A^{**} \to A^{***}$ is weakly compact, which is equivalent to the regularity of A^{**}). Using this fact, one may give a different proof to the Theorem 2.

(iii) For a Banach algebra A with a bounded approximate identity of norm one, A^*A is a closed subspace of A^* , and $A^{**} = (A^*A)^* \oplus (A^*A)^{\perp}$ (as Banach spaces), where $(A^*A)^{\perp} = \{F \in A^{**} : A^{**} \circ F = 0\}$ is a closed ideal of (A^{**}, \circ) and $(A^*A)^*$ is a closed subalgebra of (A^{**}, \circ) . These observations together with the Lemma 2.3 of [L-L] imply that; if (A^{**}, \circ) is weakly amenable then so is $(A^*A)^*$. Now for $A = L^1(G, w)$ it has been shown in Proposition 1.3 of [Gro] that $A^*A = LUC(G, w)$. On the other hand, using the methods of Lemma 1.1 of [G-L-L], we have $LUC(G, w)^* = M(G, w) \oplus$ $C_0(G, w)^{\perp}$, and that $M(G, w), C_0(G, w)^{\perp}$ are closed subalgebra and closed ideal of $LUC(G, w)^*$, respectively. Again use Lemma 2.3 of [L-L] the weak amenability of $L^1(G, w)^{**}$ implies that of M(G, w), which is an extension of Proposition 4.14 in [L-L]. (iv) The existing examples support the conjecture that, for a Banach algebra A if A^{**} is amenable then A is regular.

References

- [A] Arens R.I., "The adjoint of a bilinear operation", Proc. Amer. Math. Soc. 2, pp. 839-848, (1951).
- [B] Baker J.W., "Measure algebras on semigroups", The analytical and topological theory of semigroups, Walter de Gruyter, Berlin, New York, pp. 221-252, (1990).
- [B-R] Baker J.W. and Rejali A.," On the Arens regularity of the weighted convolution algebras, J. London Math. Soc. (2) 40, pp. 535-546, (1987).
- [D-G-H] Dales H.G., Ghahramani F. and Helemskii A.Y.A., "The amenability of measure algebras", J. London Math. Soc. (2) 66, pp. 213-226, (2002).
- [D-H] Duncan J. and Houssainun S.A.R.," The second dual of a Banach algebra", Proc. Roy. Soc. Edinburgh A 84, pp. 309-325, (1979).
- [D-L] Dales H.G. and Lau A.T.-M.," The second duals of Beurling algebras", Mem. Amer. Math. Soc. 177, No. 386, (2005).
- [F-R] Forrest B. and Runde V.," Amenability and weak amenability of the Fourier algebra", Math. Z. 250 4, pp. 731-744, (2005).
- [G-L] Ghahramani F. and Laali J." Amenability and topological centers of the second duals of Banach algebras", Bull. Austral. Math. Soc. 65, pp. 191-197, (2002).
- [G-L-L] Ghahramani F., Lau A.T.M. and Losert V., "Isometric isomorphisms between Banach algebras related to locally compact groups", *Trans, Amer. Math. Soc.* 321, pp. 273-383, (1990).
- [G-L-W] Ghahramani F., Loy R.J. and Willis G., "Amenability and weak amenability of second conjugate Banach algebras", Proc. Amer. Math. Soc. 124, pp. 1489-1497, (1996).
- [Go] Gourdeau F., "Amenability and the second dual of a Banach algebra", Studia Math. 125, pp. 45-80, (1997).

- [Gro] Gronback N., "Amenability of weighted convolution algebras on locally compact groups", Trans. Amer. Math. Soc. 319, pp. 765-775, (1990).
- [Gra] Granirer E., "Amenability and semisimplicity for second duals of quotients of the Fourier algebra A(G)," J. Austral. Math. Soc. (Series A) 63, pp. 289-296, (1997).
- [L-L] Lau A.T.M and Loy R.J.," Weak amenability of Banach algebras on locally compact groups", J. Funct. Anal. 145, pp. 175-204, (1997).
- [P] Pym J.S., "Remarks on the second duals of Banach algebras", Nigerian Math. Soc. 2, pp. 31-33, (1983).
- [R1] Rejali A., "The analogue of weighted group algebra for semitopological semigroups", J. Sci. I.R. Iran 6, pp. 113-120, (1995).
- [R2] Rejali A.," Weighted function spaces on topological groups", Bull. Iranian Math. Soc. 22, pp. 43-63, (1996).
- [S] Sherman S., "The second adjoint of a C*-algebra," Proc. Intern. Congr. Math. Cambridge, I, 470, (1950).
- [U1] Ulger A., "Arens regularity of weakly sequentially complete Banach algebras", Proc. Amer. Math. Soc. 127, pp. 3221-3227, (1999).
- [U2] Ulger A., "Centeral elements of A^{**} for certain Banach algebras A without bounded approximate identities," *Glasgow Math.* J. 41, pp. 369-377, (1999).
- [W] White M., "Characters on weighted amenable groups", Bull. London Math. Soc. 23, pp. 375-380, (1991).
- [Y1] Young N., "The irregularity of multiplication in group algebras," Quart. J. Math. Oxford (2) 24, pp. 59-62, (1973).
- [Y2] Young N., "Separate continuity and multilinear operations", Proc. London Math. Soc. (3) 26, pp. 289-319, (1973).
- [Y3] Young N., "Periodicity of functionals and representations of normed algebras on reflexive spaces," Proc. Edinburgh Math. Soc. 20, pp. 100-120, (1976).

A. Rejali

Department of Mathematics Isfahan University Isfahan 81746-73441 Iran e-mail : rejali@sci.ui.ac.ir

and

H. R. E. Vishki Faculty of Mathematical Sciences Ferdowsi University, Mashhad P.O. Box 91775-1159 Iran e-mail : vishki@ferdowsi.um.ac.ir