Proyecciones Vol. 26, N^o 3, pp. 253-257, December 2007. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172007000300003

QUASI - MACKEY TOPOLOGY

SURJIT SINGH KHURANA UNIVERSITY OF IOWA, U. S. A.

Received : July 2007. Accepted : October 2007

Abstract

Let E_1, E_2 be Hausdorff locally convex spaces with E_2 quasi-complete, and $T: E_1 \to E_2$ a continuous linear map. Then T maps bounded sets of E_1 into relatively weakly compact subsets of E_2 if and only if T is continuous with quasi-Mackey topology on E_1 . If E_1 has quasi-Mackey topology and E_2 is quasi-complete, then a sequentially continuous linear map $T: E_1 \to E_2$ is an unconditionally converging operator.

Keywords : *quasi - Mackey topology, weakly unconditionally Cauchy, unconditionally converging operators.*

Subjclass 2000 : Primary: 46A05, 46A20; Secondary: 46A50.

1. Introduction and Notation

In this paper, for locally convex spaces, the notations are results of ([5]) are used. All vector spaces are over the field of real numbers. N and R will stand, respectively, for the set of natural numbers and real numbers. For a locally convex space E, E' and E'' will denote its dual and bidual respectively. The topology induced on E by $(E'', \tau(E'', E'))$ will be called quasi-Mackey ([3]) (in [4], for a Banach space E, this tology is called the "Right topology").

In [4], using quasi-Mackey topology, some interesting results about weak compactness of linear mappings between Banach spaces are proved. Also a connection is established between quasi-Mackey topology and unconditionally convergent operators. In this paper, we extend these results to locally convex spaces. Our methods of proofs are different from [4].

2. Main Results

Theorem 1. E_1, E_2 are two Hausdorff locally conves spaces, $T : E_1 \to E_2$ a continuous linear map such that T(B) is relatively weakly compact in E_2 for every bounded set B in E_1 . Then

(i) the adjoint map $T': (E'_2, \tau(E'_2, E_2)) \to (E'_1, \beta(E'_1, E_1))$ is continuous; (ii) the adjoint map of T' in (i), $T'': (E''_1, \tau(E''_1, E_1)) \to (E_2, \tau(E_2, E'_2))$ is also continuous. As a result, the mapping T, with quasi-Mackey topology on E_1 and the given topology on E_2 , is continuous.

Conversely suppose E_2 is quasi-complete, E_1 has quasi-Mackey topology and $T: E_1 \to E_2$ is a continuous linear map. Then T maps bounded subsets of E_1 into relatively weakly compact subsets of E_2 .

Proof. To prove the continuity of $T' : (E'_2, \tau(E'_2, E_2)) \to (E'_1, \beta(E'_1, E_1))$, take a net $f_\alpha \to 0$ in $(E'_2, \tau(E'_2, E_2))$ and a absolutely convex, bounded set $B \subset E_1$. By hypothesis, the convex set T(B) is relatively weakly compact in E_2 which means $f_\alpha \to 0$ uniformly on T(B). So $T'(f_\alpha) \to 0$ in $(E'_1, \beta(E'_1, E_1))$. This proves (i). (ii) follows from ([5], Theorem 7.4, p.158).

Now we come to the converse. With given assumptions, E_1 is a dense subspace of $(E''_1, \tau(E''_1, E'_1))$ with induced topology. This means its completion $\tilde{E}_1 \supset E''_1$. Let $\tilde{T} : \tilde{E}_1 \to \tilde{E}_2$ be the unique continuous linear extension of T. Thus we have a continuous linear mapping $\tilde{T}_{|E''_1} : (E''_1, \tau(E''_1, E'_1)) \to \tilde{E}_2$ and so this mapping remains continuous when weak topologies are assigned on both sides ([5], Theorem 7.4, p.158). Since for any bounded set $B \subset E_1$, it closure in $(E''_1, \tau(E''_1, E'_1))$ is weakly compact and E_2 is quasicomplete, we get T(B) is relatively weakly compact in E_2 . This proves the result.

Before the next theorem, we make some comments about unconditionally converging operators.

Let $\sum x_n$ be a series in E. We denote by I the collection of all finite subsets of N; I is a directed set (by inclusion). For each $\alpha \in I$, put $s_{\alpha} = \sum_{i \in \alpha} x_i$. The series is said to be unconditionally convergent if the net $\{s_{\alpha}\}$ converges in E ([5], p. 120); The series will be called unconditionally Cauchy if this net in Cauchy. The following lemma is easily verified. The proof is omitted.

Lemma 2. Let *E* be a Hausdorff locally convex space and $\sum x_n$ be a series in *E*. Then

(i) if the series in unconditionally Cauchy in weak topology then $\sum |f(x_n)| < \infty, \forall f \in E'$

(ii) if the series is not unconditionally Cauchy in E, then, there is a continuous semi-norm $\|.\|$ on E, a c > 0, and a sequence $\{\alpha_n\} \subset I$ such that $\sup(\alpha_n) < \inf(\alpha_{n+1}), \forall n \text{ and } \|y_n\| > c, \forall n \text{ where } y_n = \sum_{i \in \alpha_n} x_i.$

We denote by $2^N = \{0, 1\}^N$ all subsets of N.

Lemma 3. Let *E* be a Hausdorff locally convex space with *E'* its dual. If a $\mu : 2^N \to E$ is countably additive in $(E, \sigma(E, E'))$, then it also countably additive in $(E, \tau(E, E'))$.

Proof. This is well-known Orlicz-pettis theorem; for normed spaces E, this result is proved in ([1], p. 22); it has straight extension to locally convex spaces.

For locally convex spaces E_1 and E_2 , a linear operator $T : E_1 \to E_2$ will be called unconditionally Cauchy if for any series $\sum x_n$, which is weakly unconditionally Cauchy in E_1 , $\sum T(x_n)$, is unconditionally Cauchy in E_2 ([2]).

Theorem 4. E_1, E_2 are two Hausdorff locally convex spaces with E_1 having quasi-Mackey topology and E_2 being quasi-complete. $T : E_1 \to E_2$ a sequentially continuous linear map. Then T is an unconditionally converging operator.

Proof. Assume a series $\sum x_i$ in E_1 be unconditionally weakly Cauchy but $\sum T(x_i)$ is not an unconditionally Cauchy. In the notations of Lemma 2, there is a continuous semi-norm $\|.\|$ on E_2 and a c > 0, $\|T(y_n)\| > 0$ c, $\forall n$. From the definition of y_n , $\sum y_n$ is also unconditionally weakly Cauchy in E_1 . For notational convenience, we denote y_n again by x_n ; thus $||T(x_n)|| > c, \forall n$. In the notations introduced before Lemma 2, $B = \{s_{\alpha} : \alpha \in I\}$ is a bounded subset of E_1 and so its closure B in $(E''_1, \sigma(E''_1, E'_1))$ is compact. Using this and the fact that $\sum x_i$ is unconditionally weakly Cauchy, we get that for any subset $M \subset N$, $s_M =$ $\sum_{i \in M} x_i$ is convergent in $(E''_1, \sigma(E''_1, E'_1))$. This means the measure μ : $2^N \to (E_1'', \sigma(E_1'', E_1')), \ \mu(M) = s_M$ is countably additive. By Lemma 3, it is countably additive in $\tau(E''_1, E'_1)$. This means $x_n \to 0$ in E_1 ; since T is sequentially continuos, $T(x_n) \to 0$ in E_2 . This is a contradiction. Thus $\sum T(x_i)$ is unconditionally Cauchy in E_2 ; since E_2 is quasi-complete, we get that $\sum T(x_i)$ is unconditionally convergent in E_2 . This proves that T is an unconditionally converging operator.

References

- Diestel, J., Uhl, J. J., Vector Measures, Amer. Math. Soc. Surveys, Vol. 15, Amer. Math. Soc., (1977).
- [2] Howard Joe, Unconditionally converging operators in locally convex spaces, Comment. Math. Univ. Carolinae, 13, pp. 637-641, (1972).
- [3] Qiu, Jinghui, Local completeness and dual local quasi-completeness. Proc. Amer. Math. Soc. 129, pp. 1419–1425, (2001).
- [4] Peralta, Antonio M., Villanueva, Ignacio, Wright, J. D. Maitland, Ylinen, Kari, Topological characterisation of weakly compact operators, J. Math. Anal. Appl. 325, pp. 968–974, (2007).
- [5] Schaefer, H. H., Topological Vector spaces, Springer Verlag, (1986).

Surjit Singh Khurana

Department of Mathematics University of Iowa Iowa City Iowa 52242 U. S. A. e-mail : khurana@math.uiowa.edu