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Abstract

We establish uniform boundedness principle for pointwise bounded
families of continuous linear operators between locally convex spaces
which require no assumptions such as barrelledness on the domain
space of the operators. We give applications of the result to separately
continuous bilinear operators between locally convex spaces.
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In [ LC] Li and Cho established a version of the Banach-Steinhaus The-
orem which is valid for arbitrary locally convex spaces. Li and Cho showed
that if {Tk} is a sequence of continuous linear operators between locally
convex spaces such that limTkx = Tx exists for every x, then, although
the limit operator T may fail to be continuous with respect to the original
topologies of the spaces, T is continuous when the domain space is equipped
with the strong topology. Their result implies the version of the Banach-
Steihaus Theorem for barrelled spaces since a barrelled space always carries
the strong topology ([K]27.1,[S]24.7,[W]9.3.10). In this note we show that
a result similar to that of Li and Cho holds for the Uniform Boundedness
Principle. Namely, if Γ is a family of continuous linear operators between
locally convex spaces which is pointwise bounded, then, although Γmay fail
to be equicontinuous with respect to the original topologies of the spaces,
Γ is equicontinuous when the domain space is equipped with the strong
topology. Again, this result gives the version of the Uniform Bounded-
ness Principle for barrelled spaces since a barrelled space always carries the
strong topology. We use this result to establish hypocontinuity results for
a single and families of separately continuous bilinear operators which are
valid for arbitrary locally convex spaces.

Let (E, τ) and (F, η) be Hausdorff locally convex spaces and let σ(E0, E)
be the weak topology on E0 from E. If A ⊂ E0, the polar of A in E is
A0 = {x ∈ E : |hx0, xi| ≤ 1 for every x0 ∈ A}. The strong topology β(E,E0)
of E is the locally convex topology which has a local base at 0 consisting
of the polars A0 where A runs through the family of all σ(E0, E) bounded
subsets of E0 ([K]21.2,[S]17.5.19,[W]8.5). The topology η of F is generated
by the polars A0 where A runs through the family of all equicontinuous
subsets of F 0 ([K]21.3,[S]17.7,[W]9.1). If T is a continuous linear operator
from E into F , the adjoint (transpose) operator T 0 : F 0 → E0 is defined by
hT 0y0, xi = hy0, Txi for x ∈ E, y0 ∈ F 0.

We first establish a lemma. Let Γ be a family of continuous linear
operators from E into F .

Lemma 1. If Γ is pointwise bounded on E and A ⊂ F 0 is an equicontinuous
subset, then Γ0A = {T 0y0 : T ∈ Γ, y0 ∈ A} is σ(E0, E) bounded.

Proof : Let x ∈ E. Then {Tx : T ∈ Γ} is η bounded in F so {|hy0, Txi| =
|hT 0y0, xi| : T ∈ Γ, y0 ∈ A} is bounded or Γ0A is σ(E0, E) bounded.

Theorem 2. If Γ is pointwise bounded on E, then Γ is β(E,E0) − η
equicontinuous.
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Proof : Let A be an equicontinuous subset of F 0 so that A0 is a basic η
neighborhood of 0. If T ∈ Γ, then T−1A0 = (T 0A)0 ([W]11.2.1 ) so

(1) ∩T∈Γ T−1A0 = ∩T∈Γ(T 0A)0 = (∪T∈ΓT 0A)0 = (Γ0A)0.

But, (Γ0A)0 is a basic β(E,E0) neighborhood of 0 by Lemma 1 so (1) gives
the result.

Since a barrelled space always carries the strong topology
([K]27.1,[S]24.7,[W]9.3.10), we have the familiar version of the Uniform
Boundedness Principle ([B]III.4.2.1,[S]24.11,[W]9.3.4).

Corollary 3.( Bourbaki) Suppose that E is barrelled. If Γ is pointwise
bounded on E, then Γ is equicontinuous.

There exist locally convex spaces E such that (E, β(E,E0)) is not bar-
relled ([K]31.7,[W]15.4.6) so Theorem 2 gives a proper extension of the
”usual” form of the Uniform Boundedness Principle. Theorem 2 immedi-
ately gives the result of Li and Cho.

Corollary 4. ([LC]) If {Tk} is a sequence of continuous linear operators
from E into F such that limTkx = Tx exists for every x ∈ E, then T is
β(E,E0)− η continuous.

As noted earlier, Corollary 4 gives the ”usual” form of the Banach-
Steinhaus Theorem for barrelled spaces.

We now show that Theorem 2 can be used to derive a hypocontinuity
result which is valid for arbitrary locally convex spaces.

Let (G, θ) be a Hausdorff locally convex space and let b : E × F → G
be a separately continuous bilinear operator. Let BF be the family of
all bounded subsets of F . Then b is (τ,BF ) hypocontinuous if for every
neighborhood of 0,W, in G and every bounded set B ∈ BF , there exists a
τ neighborhood of 0,U, in E such that b(U,B) ⊂W .

Theorem 5. The bilinear operator b is (β(E,E0), BF ) hypocontinuous.

Proof : Let W be a neighborhood of 0 in G and let B ∈ BF . Consider
Γ = {b(·, y) : y ∈ B}, a family of continuous linear operators from E into
G. We claim that for every x ∈ E, Γx is bounded in G. For this, let
yk ∈ B and tk → 0. Then b(x, tkyk) = tkb(x, yk) → 0 since b is separately
continuous and B is bounded so tkyk → 0. Thus, Γx is bounded.
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From Theorem 2, Γ is (β(E,E0), θ) equicontinuous. Therefore, there
exists a β(E,E0) neighborhood of 0,U,in E such that b(x, y) ∈W for every
x ∈ U, y ∈ B, i.e., b is (β(E,E0), BF ) hypocontinuous.

In general, a separately continuous bilinear operator may fail to be
hypocontinuous with respect to the original topology of the space.

Example 6. Let E = F = coo be the space of real sequences which are
eventually equal to 0 equipped with the sup-norm topology kk∞ . Define b :
E×F → R by b({xj}, {yj}) =

P∞
j=1 xjyj . Then b is separately continuous.

Let ej be the sequence with 1 in the jth coordinate and 0 in the other
coordinates. Then xk = 1

k

Pk
j=1 e

j → 0 and yk =
Pk

j=1 e
j is such that {yk}

is bounded but b(xk, yk) = 1 so b is not (kk∞ ,Bc00) hypocontinuous.

Theorem 5 gives the ”usual” form of the hypocontinuity result for bar-
relled spaces ([B]III.5.3.6,[K2]40.2.(3).a),[S]24.14).

Corollary 7. Suppose that E is barrelled. Then b is (τ,BF ) hypocontinu-
ous.

We can also obtain a general continuity result for metrizable spaces
from Theorem 5.

Corollary 8. If E and F are metrizable, then b is β(E,E0)×η continuous.

Proof : Let (xk, yk)→ 0 in β(E,E0)× η. By Theorem 5 limk b(xk, yj) = 0
uniformly for j ∈ N. In particular, limk b(xk, yk) = 0 so b is continuous.

Corollary 8 gives the result in [K2]40.2.(1).a) as a corollary, where it is
assumed that both E and F are barrelled so the operator b is continuous
on E × F .

It is interesting to compare the proofs of Theorems 2 and 5 with stan-
dard proofs of the corresponding results for barrelled spaces ([S]24.11 and
24.14,[W]9.3.4). In these proofs the definition of a barrel and the definition
of barrelled space are employed whereas the proofs above use the strong
topology directly.

Using the methods above, we can also treat families of separately contin-
uous bilinear operators from E×F into G. Let Λ be a family of separately
continuous bilinear operators from E × F into G. The family Λ is right
(left) equicontinuous if for every x ∈ E (y ∈ F ), the family {b(x, ·) : b ∈ Λ}
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({b(·, y) : b ∈ Λ}) is equicontinuous; Λ is separately equicontinuous if Λ is
both right and left equicontinuous. The family Λ is (τ,BF ) equihypocon-
tinuous if for every neighborhood of 0, W , in G and B ∈ BF , there is a τ
neighborhood of 0,U , in E such that Λ(U,B) ⊂W .

We have a result analogous to Theorem 5 for families of bilinear oper-
ators.

Theorem 9. If Λ is right equicontinuous, then Λ is (β(E,E0),BF ) equi-
hypocontinuous.

The proof follows from the proof of Theorem 5 where right equiconti-
nuity is used in place of separate continuity.

Theorem 9 gives the result in [K2]40.2.(3).b) where it is assumed that F
is barrelled. We can also obtain a generalization of another result of Köthe
from Theorem 9.

Corollary 10. Assume that E and F are metrizable. If Λ is pointwise
bounded on E × F and Λ is right equicontinuous, then Λ is β(E,E0) × η
equicontinuous.

Proof : Let (xk, yk) → 0 in β(E,E0) × η. Then {yk} is η bounded and
xk → 0 in β(E,E0) so by Theorem 9 limk b(xk, yj) = 0 uniformly for b ∈
Λ, j ∈ N. In particular, limk b(xk, yk) = 0 uniformly for b ∈ Λ. Now apply
[K]15.14.(4).

Corollary 10 gives the result in [K2]40.2.(1).b) where it is assumed
that both E and F are barrelled so the pointwise boundedness assump-
tion yields the right (left) equicontinuity condition by the version of the
Uniform Boundedness Principle for barrelled spaces.

Finally, we can obtain a uniform boundedness result for bilinear oper-
ators.

Corollary 11. If Λ is right equicontinuous and pointwise bounded on
E×F , then Λ is uniformly bounded on sets of the form A×B, where A is
β(E,E0) bounded and B is η bounded.

Proof : Let bk ∈ Λ, xk ∈ A, yk ∈ B and tk → 0. Then tkb(xk, yk) =
b(tkxk, yk) → 0 by Theorem 9 since tkxk → 0 in β(E,E0) and {yk} is η
bounded.
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In particular, it follows from Corollary 11 that if both E and F are
barrelled, then a pointwise bounded family Λ is uniformly bounded on
products of bounded subsets in E × F .

In general, the strong topology cannot be replaced by the original topol-
ogy in either Theorem 9 or Corollary 11.

Example 12. Define bi : c00 × l∞ → R by bi(x, y) =
Pi

j=1 xjyj , where
both c00 and l

∞ have the sup-norm. Then each bi is separately continuous.
Morover, if x ∈ c00 has 0 coordinates after the n

th entry, then for
i ≥ n |bi(x, y)| ≤ kyk∞

Pn
j=1 |xj | so that {bi} is right equicontinuous and

pointwise bounded. However, if xk =
Pk

j=1 e
j , then A = { xk : k} is

bounded, xk/k → 0 and bi(x
k/k, xk) = 1 and bi(x

k, xk) = k for i ≥ k so
the conclusions of Theorem 9 and Corollary 11 both fail for the sup-norm
topology.
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