Proyecciones Vol. 27, N^o 3, pp. 319–330, December 2008. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172008000300007

ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS

IOANNIS K. ARGYROS CAMERON UNIVERSITY, U.S.A. SAïD HILOUT

UNIVERSITY MOROCCO Received : October 2008. Accepted : November 2008

Abstract

We use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergence analysis with the following advantages over related [13]-[16]: finer error bounds on the distances involved, and a larger radius of convergence. An application is also provided.

AMS Subject Classification. 65K10, 65G99, 47H04, 49M15.

Key Words. Banach space, Steffensen's method, generalized equation, Aubin continuity, Hölder continuity, radius of convergence, divided difference, set-valued map.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x^* of the generalized equation

$$(1.1) 0 \in f(x) + G(x),$$

where f is a continuous function defined in a neighborhood V of the solution x^* included in a Banach space X with values in itself, and G is a set-valued map from X to its subsets with closed graph.

Many problems in mathematical programming, mathematical economics, variational inequalities and other fields can be formulated as in equation (1.1) [3], [5], [6], [8], [11], [12], [18]–[21] (see also the application at the end of the study).

We consider the two–step Steffensen–type method [1], [2], [4], [6], [13]–[16] for $x_0 \in V$ being the initial guess and all $k \geq 0$

(1.2)
$$\begin{cases} 0 \in f(x_k) + [g_1(x_k), g_2(x_k); f] \ (y_k - x_k) + G(y_k) \\ 0 \in f(y_k) + [g_1(x_k), g_2(x_k); f] \ (x_{k+1} - y_k) + G(x_{k+1}), \end{cases}$$

where g_1 and g_2 are a continuous functions from V into X and $[x, y; f] \in L(X)$ (the space of bounded linear operator on X) is a divided difference of order one of f at the points x, y satisfying

(1.3)
$$[x, y; f] (y - x) = f(y) - f(x), \text{ for all } x \neq y.$$

Note that if f is Fréchet-differentiable at x, then $[x, x; f] = \nabla f(x)$.

For $G \equiv 0$, (1.2) reduces to methods studied in [1], [4], [6] for nonlinear equations.

Recently in [13] a local convergence analysis was provided for method (1.2) under Hölder–type conditions introduced by us in [4], [6] to solve nonlinear equations.

Motivated by optimization considerations, and using the ideas from [4], [6], [7] for nolinear equations we provide under less computational cost a new local convergence analysis for method (1.2) with the following advantages over the corresponding results in [13]–[16]: finer error bounds on the distances $|| x_k - x^* || (k \ge 0)$, and a larger radius of convergence leading to fewer steps and a wider choice of initial guesses x_0 .

This observation is very important in computational mathematics [1]–[22]. The study ends with an application.

2. Preliminaries and assumptions

In order to make the paper as self-contained as possible we reintroduce some results on fixed point theorem [6]-[9], [13]-[16].

We let \mathcal{Z} be a metric space equipped with the metric ρ . For $A \subset \mathcal{Z}$, we denote by dist $(x, A) = \inf \{\rho(x, y), y \in A\}$ the distance from a point x to A. The excess e from A to the set $C \subset \mathcal{Z}$ is given by $e(A, C) = \sup \{\text{dist}(x, A), x \in C\}$. Let $\Lambda : XY$ be a set-valued map, we denote by $gph \Lambda = \{(x, y) \in X \times Y, y \in \Lambda(x)\}$ and $\Lambda^{-1}(y) = \{x \in X, y \in \Lambda(x)\}$ is the inverse of Λ . We call $B_r(x)$ the closed ball centered at x with radius r.

Definition 2.1. (see [8], [17], [20])

A set-valued Λ is said to be pseudo-Lipschitz around $(x_0, y_0) \in gph\Lambda$ with modulus M if there exist constants a and b such that

(2.1) $e(\Lambda(y') \cap B_a(y_0), \Lambda(y'')) \le M || y' - y'' ||$, for all y' and y'' in $B_b(x_0)$.

Definition 2.2. ([6])

Let Ω be open subset of X, we say that the operator [.,.;f] is (ν_0, ν, p) -Hölder continuous in Ω where $\nu_0 \ge 0$, $\nu \ge 0$ and $p \in [0,1]$ if the following inequalities hold

(2.2)
$$|| [x, x^*; f] - [y, u; f] || \le \nu_0 (|| x - y ||^p + || x^* - u ||^p),$$

(2.3)
$$\| [x, y; f] - [u, v; f] \| \leq \nu(\| x - u \|^{p} + \| y - v \|^{p}),$$
for all $x, y, u, v \in \Omega.$

We need the following fixed point theorems.

Lemma 2.3. (see [9]) Let $(Z, \| . \|)$ be a Banach space, let ϕ a set-valued map from Z into the closed subsets of Z, let $\eta_0 \in Z$ and let r and λ be such that $0 \leq \lambda < 1$ and

(a) dist $(\eta_0, \phi(\eta_0)) \leq r(1 - \lambda)$,

(b) $e(\phi(x_1) \cap B_r(\eta_0), \phi(x_2)) \le \lambda \parallel x_1 - x_2 \parallel, \forall x_1, x_2 \in B_r(\eta_0),$

then ϕ has a fixed-point in $B_r(\eta_0)$. That is, there exists $x \in B_r(\eta_0)$ such that $x \in \phi(x)$. If ϕ is single-valued, then x is the unique fixed point of ϕ in $B_r(\eta_0)$.

We suppose that, for every distinct points x and y in a open neighborhood V of x^* , there exists a first order divided difference of f at these points. We will make the following assumptions:

 (\mathcal{H}') For i = 1, 2; the function g_i is α_i -center-Lipschitz from V into V, with $g_i(x^*) = x^*$, and $\alpha_i \in [0, 1)$. That is

$$(2.4) \| g_1(x) - g_1(x^*) \| \le \alpha_1 \| x - x^* \| \text{ and } \| g_2(x) - g_2(x^*) \| \le \alpha_2 \| x - x^* \|,$$

for all $x \in V$;

 $(\mathcal{H}\infty)$ [.,.; f] is (ν_0, ν, p) -Hölder continuous in V. $(\mathcal{H}\in)$ The set-valued map $(f(x^*) + G)^{-1}$ is *M*-pseudo-Lipschitz around $(0, x^*)$. $(\mathcal{H}\ni)$ For all $x, y \in V$, we have $||[x, y; f]|| \leq d$ with M d < 1, and $|| f(x) - f(x^*) || \leq d_0 || x - x^* ||$.

Before stating the main result on this study, we need to introduce some notations. First, for $k \in \mathbb{N}$ and (y_k) , (x_k) defined in (1.2), let us define the set-valued mappings $Q, \psi_k, \phi_k : XX$ by the following

(2.5)
$$Q(.) := f(x^*) + G(.); \quad \psi_k(.) := Q^{-1}(Z_k(.)); \quad \phi_k(.) := Q^{-1}(W_k(.))$$

where Z_k and W_k are defined from X to X by

(2.6)
$$Z_k(x) := f(x^*) - f(y_k) - [g_1(x_k), g_2(x_k); f](x - y_k) W_k(x) := f(x^*) - f(x_k) - [g_1(x_k), g_2(x_k); f](x - x_k)$$

3. Local convergence analysis for method (1.2)

We show the main local convergence result for method (1.2):

Theorem 3.1. We suppose that assumptions $(\mathcal{H}_{\prime})-(\mathcal{H}_{\ni})$ are satisfied. For every constant $C > C_0 = \frac{M\nu_0([1+\alpha_1]^p + \alpha_2^p)}{1-Md}$, there exist $\delta > 0$ such that for every starting point x_0 in $B_{\delta}(x^*)$ (x_0 and x^* distincts), and a sequence (x_k) defined by (1.2) which satisfies

(3.1) $||x_{k+1} - x^*|| \le C ||x_k - x^*||^{p+1}.$

The proof of Theorem 3.1 is by induction on k. We need to give two lemmas. In the first, we prove the existence of starting point y_0 for x_0 in V. In the second, we state a result which the starting point (x_0, y_0) .

Let us mention that y_0 and x_1 are a fixed points of ϕ_0 and ψ_0 respectively if and only if $0 \in f(x_0) + [g_1(x_0), g_2(x_0); f](y_0 - x_0) + G(y_0)$ and $0 \in f(y_0) + [g_1(x_0), g_2(x_0); f](x_1 - y_0) + G(x_1)$ respectively. **Proposition 3.2.** Under the assumptions of Theorem 3.1, there exists $\delta > 0$ such that for every starting point x_0 in $B_{\delta}(x^*)$ (x_0 and x^* distincts), the set-valued map ϕ_0 has a fixed point y_0 in $B_{\delta}(x^*)$, and satisfying

(3.2)
$$|| y_0 - x^* || \le C || x_0 - x^* ||^{p+1}$$
.

Proof of the Proposition 3.2.

By hypothesis $(\mathcal{H}\in)$ there exist positive numbers M, a and b such that

(3.3)
$$e(Q^{-1}(y') \cap B_a(x^*), Q^{-1}(y'')) \le M \parallel y' - y'' \parallel, \ \forall y', y'' \in B_b(0).$$

Fix $\delta > 0$ such that

(3.4)
$$\delta < \delta_0 = \min\left\{a \; ; \; \sqrt[p+1]{\frac{b}{4 \; \nu \; ([1+\alpha_1]^p + ([1+\alpha_2]^p)}} \; ; \; \frac{1}{\sqrt[p]{C}} \; ; \; \frac{b}{2 \, d_0}\right\}.$$

The main idea of the proof of Proposition 3.2 is to show that both assertions (a) and (b) of Lemma 2.3 hold; where $\eta_0 := x^*$, ϕ is the function ϕ_0 defined in (2.5) and where r and λ are numbers to be set. According to the definition of the excess e, we have

(3.5)
$$\operatorname{dist}(x^*, \phi_0(x^*)) \le e\left(Q^{-1}(0) \cap B_{\delta}(x^*), \phi_0(x^*)\right).$$

Moreover, for all point x_0 in $B_{\delta}(x^*)$ (x_0 and x^* distincts) we have

 $|| W_0(x^*) || = || f(x^*) - f(x_0) - [g_1(x_0), g_2(x_0); f](x^* - x_0) ||.$

Note that for $x \in B_{\delta}(x^*)$ we get (since $\alpha_i \in [0, 1)$)

$$|| g_i(x) - x^* || \le || g_i(x) - g_i(x^*) || \le || x - x^* || \le \delta,$$

which implies that $g_i(x) \in B_{\delta}(x^*)$.

In view of assumptions (\mathcal{H}') - $(\mathcal{H}\infty)$ we obtain

$$(3.6) \qquad \begin{array}{rcl} \| W_0(x^*) \| &= & \| \left([x_0, x^*; f] - [g_1(x_0), g_2(x_0); f] \right) (x^* - x_0) \| \\ &\leq & \| [x_0, x^*; f] - [g_1(x_0), g_2(x_0); f] \| \| \| x^* - x_0 \| \\ &\leq & \nu_0 \left(\| x_0 - g_1(x_0) \|^p + \| x^* - g_2(x_0) \|^p \right) \| x^* - x_0 \| \\ &\leq & \nu_0 \left([1 + \alpha_1]^p + \alpha_2^p \right) \| x^* - x_0 \|^{p+1} \end{array}$$

Then (3.4) yields, $W_0(x^*) \in B_b(0)$.

Using (3.3) we have

(3.7)
$$e\left(Q^{-1}(0) \cap B_{\delta}(x^*), \phi_0(x^*)\right) = e\left(Q^{-1}(0) \cap B_{\delta}(x^*), Q^{-1}[W_0(x^*)]\right) \\ \leq M \nu_0 \left([1+\alpha_1]^p + \alpha_2^p\right) \|x^* - x_0\|^{p+1}$$

By the inequality (3.5), we get

(3.8)
$$\operatorname{dist}(x^*, \phi_0(x^*)) \leq M \nu_0 ([1+\alpha_1]^p + \alpha_2^p) \| x^* - x_0 \|^{p+1}.$$

Since $C(1 - M d) > M \nu_0 ([1 + \alpha_1]^p + \alpha_2^p)$, there exists $\lambda \in [M d, 1[$ such that $C(1 - \lambda) \ge M \nu_0 ([1 + \alpha_1]^p + \alpha_2^p)$ and

(3.9)
$$\operatorname{dist}(x^*, \phi_0(x^*)) \le C \ (1-\lambda) \ \| \ x_0 - x^* \|^{p+1}$$

By setting $r := r_0 = C \parallel x_0 - x^* \parallel^{p+1}$ we can deduce from the inequality (3.9) that the assertion (a) in Lemma 2.3 is satisfied.

Now, we show that condition (b) of Lemma 2.3 is satisfied. By (3.4) we have $r_0 \leq \delta \leq a$ and moreover for $x \in B_{\delta}(x^*)$ we have

$$\| W_0(x) \| = \| f(x^*) - f(x_0) - [g_1(x_0), g_2(x_0); f](x - x_0) \|$$

$$\leq \| f(x^*) - f(x) \| + \| f(x) - f(x_0) - [g_1(x_0), g_2(x_0); f](x - x_0) \|$$

$$\leq \| f(x^*) - f(x) \| + \| [x_0, x; f] - [g_1(x_0), g_2(x_0); f] \| \| x - x_0 \|$$

(3.10)

Using assumptions $(\mathcal{H}')-(\mathcal{H}\infty)$, and $(\mathcal{H}\ni)$, we get

$$\| W_{0}(x) \| \leq d_{0} \| x^{*} - x \| + \nu (\| x_{0} - g_{1}(x_{0}) \|^{p} + \| x - g_{2}(x_{0}) \|^{p}) \| x - x_{0} \|$$

$$\leq d_{0} \| x^{*} - x \| + \nu \left((\| x_{0} - x^{*} \| + \| x^{*} - g_{1}(x_{0}) \|)^{p} + (\| x - x^{*} \| + \| x^{*} - g_{2}(x_{0}) \|)^{p} \right) \| x - x_{0} \|$$

$$\leq d_{0} \delta + \nu ([1 + \alpha_{1}]^{p} + ([1 + \alpha_{2}]^{p}) \delta^{p} (2\delta)$$

$$= d_{0} \delta + 2 \nu ([1 + \alpha_{1}]^{p} + ([1 + \alpha_{2}]^{p}) \delta^{p+1}$$

(3.11)

Then by (3.4) we deduce that for all $x \in B_{\delta}(x^*)$ we have $W_0(x) \in B_b(0)$. Then it follows that for all $x', x'' \in B_{r_0}(x^*)$, we have

$$e(\psi_0(x') \cap B_{r_0}(x^*), \phi_0(x'')) \le e(\phi_0(x') \cap B_{\delta}(x^*), \phi_0(x'')),$$

which yields by (3.3)

$$(3.12) \begin{array}{rcl} e(\phi_0(x') \cap B_{r_0}(x^*), \phi_0(x'')) &\leq & M \parallel W_0(x') - W_0(x'') \parallel \\ &\leq & M \parallel [g_1(x_0), g_2(x_0); f] \parallel \parallel x'' - x' \parallel \end{array}$$

Using $(\mathcal{H}\ni)$ and the fact that $\lambda \geq M d$, we obtain

$$(3.13) \qquad e(\phi_0(x') \cap B_{r_0}(x^*), \phi_0(x'')) \le M \ d \parallel x'' - x' \parallel \le \lambda \parallel x'' - x' \parallel$$

and thus condition (b) of Lemma 2.3 is satisfied. Since both conditions of Lemma 2.3 are fulfilled, we can deduce the existence of a fixed point $y_0 \in B_{r_0}(x^*)$ for the map ϕ_0 . This finishes the proof of Proposition 3.2.

Proposition 3.3. Under the assumptions of Theorem 3.1, there exist $\delta > 0$ such that for every starting point x_0 in $B_{\delta}(x^*)$ and y_0 given by Proposition 3.2 (x_0 and x^* distincts), and the set-valued map ψ_0 has a fixed point x_1 in $B_{\delta}(x^*)$ satisfying

$$(3.14) || x_1 - x^* || \le C || x_0 - x^* ||^{p+1}$$

Idea of the proof of Proposition 3.3.

The proof of Proposition 3.3 is the same one as that of Proposition 3.2. The choise of δ is the same one given by (3.4).

The inequality (3.5) is valid if we replace ϕ_0 by ψ_0 .

Moreover, for all point x_0 in $B_{\delta}(x^*)$ (x_0 and x^* distincts), we have

$$|| Z_0(x^*) || = || f(x^*) - f(y_0) - [g_1(x_0), g_2(x_0); f](x^* - y_0) ||$$

In view of assumptions (\mathcal{H}') – $(\mathcal{H}\infty)$ we get

$$(3.15) \quad \| Z_0(x^*) \| = \| \left([y_0, x^*; f] - [g_1(x_0), g_2(x_0); f] \right) (x^* - y_0) \| \\ \leq \| [y_0, x^*; f] - [g_1(x_0), g_2(x_0); f] \| \| x^* - y_0 \| \\ \leq \nu_0 \left(\| y_0 - g_1(x_0) \|^p + \| x^* - g_2(x_0) \|^p \right) \| x^* - y_0 \|$$

By Proposition 3.2 and (3.4) we have

$$\| Z_0(x^*) \| \leq C \nu_0 \left((C \| x_0 - x^* \|^{p+1} + \alpha_1 \| x_0 - x^* \|)^p + \alpha_2^p \right) \| x^* - x_0 \|^{p+1}$$

$$\leq \nu_0 \left([1 + \alpha_1]^p + \alpha_2^p \right) \| x^* - x_0 \|^{p+1}.$$

(3.16)

Then (3.4) yields, $Z_0(x^*) \in B_b(0)$.

Setting $r := r_0 = C \parallel x_0 - x^* \parallel^{p+1}$, we can deduce from the assertion (a) in Lemma 2.3 is satisfied.

By (3.4) we have $r_0 \leq \delta \leq a$ and moreover for $x \in B_{\delta}(x^*)$ we have

$$\| Z_0(x) \| = \| f(x^*) - f(y_0) - [g_1(x_0), g_2(x_0); f](x - y_0) \|$$

$$(3.17) \leq \| f(x^*) - f(x) \| + \| f(x) - f(y_0) - [g_1(x_0), g_2(x_0); f](x - y_0) \|$$

$$\leq \| f(x^*) - f(x) \| + \| [y_0, x; f] - [g_1(x_0), g_2(x_0); f] \| \| x - y_0 \|$$

Using the assumptions $(\mathcal{H}\prime)-(\mathcal{H}\infty)$ and $(\mathcal{H}\ni)$, Proposition 3.2 and (3.4) we obtain

$$(3.18) || Z_0(x) || \le d_0 \, \delta + 2 \, \nu \, ([1+\alpha_1]^p + ([1+\alpha_2]^p) \, \delta^{p+1})$$

A slight change in the end of proof of Proposition 3.2 shows that the condition (b) of Lemma 2.3 is satisfied. The existence of a fixed point $x_1 \in B_{r_0}(x^*)$ for the map ψ_0 is ensured. This finishes the proof of Proposition 3.3.

Proof of Theorem 3.1.

Keeping $\eta_0 = x^*$ and setting $r := r_k = C \parallel x^* - x_k \parallel^{p+1}$, the application of Proposition 3.2 and Proposition 3.3 to the map ϕ_k and ψ_k respectively gives the existence of a fixed points y_k and x_{k+1} for ϕ_k and ψ_k respectively which is an elements of $B_{r_k}(x^*)$. This last fact implies the inequality (3.1), which is the desired conclusion.

Remark 3.4. The sequence (y_n) given by algorithm (1.2) is also super-linearly convergent to a solution x^* of (1.1).

Remark 3.5. In order for us to compare our results with corresponding ones in [13], let us introduce assumptions:

 (\mathcal{H}_{\prime}) For i = 1, 2; there exist parameters $\alpha_3, \alpha_4 \in [0, 1)$ such that

(3.19)
$$||g_1(x) - g_1(y)|| \le \alpha_3 ||x - y||,$$

(3.20)
$$\| g_2(x) - g_2(y) \| \le \alpha_4 \| x - y \|,$$
for all $x, y \in V,$

and

 $g_i(x^*) = x^*.$

 $(\mathcal{H}\infty)$ ' [.,.; f] is (ν, p) -Hölder continuous in V.

 $(\mathcal{H} \ni)$ ' For all $x, y \in V$, we have $||[x, y; f]|| \leq d$, and M d < 1.

Using (H0)', (H1)', (H2), (H3)', similar result was shown in [13]. Let us define

(3.21)
$$C'_0 = \frac{M \ \nu \left[(1 + \alpha_3)^2 + \alpha_4^2 \right]}{1 - M \ d},$$

and

(3.22)
$$\delta_0' = \min\left\{a \; ; \; \sqrt[p+1]{\frac{b}{4\nu\left([1+\alpha_3]^p + ([1+\alpha_4]^p)\right)}} \; ; \; \frac{1}{\sqrt[p]{C}} \; ; \; \frac{b}{2d} \right\}$$

Assumption (H0) is weaker than (H0)'. Note also that in general

$$(3.24) d_0 \le d,$$

$$(3.25) \qquad \qquad \alpha_1 \le \alpha_3,$$

and

$$(3.26) \qquad \qquad \alpha_2 \le \alpha_4$$

hold, and $\frac{\nu}{\nu_0}$, $\frac{d}{d_0}$, $\frac{\alpha_3}{\alpha_1}$ and $\frac{\alpha_4}{\alpha_2}$ can be arbitrarily large [4], [6]. Hence, if strict inequality hold in any of (3.23)–(3.26) and δ_0 is not equal to a or $\frac{1}{\sqrt[p]{C}}$, then we conclude:

$$(3.27) C_0 \le C'_0,$$

and

$$(3.28) \delta_0' \le \delta_0,$$

which justify the advantages of our analysis over the corresponding ones in [13] mentioned in the introduction. Similar improvements can immediately follow the same way with the works in [9]-[21].

Application 3.6. (see [18])

Let K be a convex set in \mathbb{R}^n , P is a topological space and φ is a function from $P \times K$ to \mathbb{R}^n , the "perturbed" variational inequality problem consists of seeking k_0 in K such that

(3.29) For each
$$k \in K$$
, $(\varphi(p, k_0); k - k_0) \ge 0$

where (.;.) is the usual scalar product on \mathbb{R}^n and p is fixed parameter in P. Let \mathcal{I}_K be a convex indicator function of K and ∂ denotes the subdifferential operator. Then the problem (3.29) is equivalent to problem

$$(3.30) 0 \in \varphi(p,k_0) + \mathcal{H}(k_0)$$

with $\mathcal{H} = \partial \mathcal{I}_K$. \mathcal{H} is also called the normal cone of K. The "perturbed" variational inequality problem (3.29) is equivalent to (3.30) which is a generalized equation in the form (1.1). Consequently, we can approximate the solution k_0 of (3.29) using our method (1.2).

References

- S. Amat, S. Busquier, Convergence and numerical analysis of a family of two– step Steffensen's methods, Comput. and Math. with Appl., 49, pp. 13–22, (2005).
- [2] I. K. Argyros, A new convergence theorem for Steffensen's method on Banach spaces and applications, Southwest J. of Pure and Appl. Math., 01, pp. 23–29, (1997).
- [3] I. K. Argyros, On the solution of generalized equations using $m \ (m \ge 2)$ Fréchet differential operators, Comm. Appl. Nonlinear Anal., 09, pp. 85–89, (2002).
- [4] I. K. Argyros, A unifying local-semilocal convergence analysis and applications for Newton-like methods, J. Math. Anal. Appl., 298, pp. 374–397, (2004).
- [5] I. K. Argyros, On the approximation of strongly regular solutions for generalized equations, Comm. Appl. Nonlinear Anal., 12, pp. 97–107, (2005).

- [6] I. K. Argyros, Approximate solution of operator equations with applications, World Scientific Publ. Comp., New Jersey, U. S. A., (2005).
- [7] I. K. Argyros, An improved convergence analysis of a superquadratic method for solving generalized equations, Rev. Colombiana Math., 40, pp. 65–73, (2006).
- [8] J. P. Aubin, H. Frankowska, Set–valued analysis, Birkhäuser, Boston, (1990).
- [9] A. L. Dontchev, W. W. Hager, An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc., 121, pp. 481–489, (1994).
- [10] M. H. Geoffroy, S. Hilout, A. Piétrus, Stability of a cubically convergent method for generalized equations, Set–Valued Anal., 14, pp. 41–54, (2006).
- [11] M. A. Hernández, The Newton method for operators with Hölder continuous first derivative, J. Optim. Theory Appl., 109, pp. 631–648, (2001).
- [12] M. A. Hernández, M. J. Rubio, Semilocal convergence of the secant method under mild convergence conditions of differentiability, Comput. and Math. with Appl., 44, pp. 277–285, (2002).
- [13] S. Hilout, Superlinear convergence of a family of two-step Steffensen-type method for generalized equations, to appear in International Journal of Pure and Applied Mathematics, (2007).
- [14] S. Hilout, An uniparametric Newton–Steffensen–type methods for perturbed generalized equations, to appear in Advances in Nonlinear Variational Inequalities, (2007).
- [15] S. Hilout, Convergence analysis of a family of Steffensen-type methods for solving generalized equations, submitted, (2007).
- [16] S. Hilout, A. Piétrus, A semilocal convergence of a secant-type method for solving generalized equations, Positivity, 10, pp. 673–700, (2006).
- [17] B. S. Mordukhovich, Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc., 343, pp. 609-657, (1994).
- [18] S. M. Robinson, Generalized equations and their solutions, part I: basic theory, Math. Programming Study, 10, pp. 128–141, (1979).
- [19] S. M. Robinson, Generalized equations and their solutions, part II: applications to nonlinear programming, Math. Programming Study, 19, pp. 200–221, (1982).

- [20] R. T. Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Analysis 9, pp. 867–885, (1984).
- [21] R. T. Rockafellar, R. J–B. Wets, Variational analysis, A Series of Comprehensives Studies in Mathematics, Springer, 317, (1998).
- [22] J. D. Wu, J. W. Luo, S. J. Lu, A unified convergence theorem, Acta Mathematica Sinica, English Series, Vol. 21, (2), pp. 315–322, (2005).

Ioannis K. Argyros

Cameron university Department of Mathematics Sciences Lawton, OK 73505, U. S. A. e-mail : ioannisa@cameron.edu

and

Saïd Hilout

Faculty of Science & Technics of Béni–Mellal Department of Applied Mathematics & Computation B. P. 523, Béni–Mellal 23000, Morocco e-mail : said_hilout@yahoo.fr